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ABSTRACT Contaminated insulators can have higher surface conductivity, which can result in irreversible
failures in the electrical power system. In this paper, the ultrasound equipment is used to assist in the
prediction of failure identification in porcelain insulators of the 13.8 kV, 60 Hz pin profile. To perform
the laboratory analysis, insulators from a problematic branch are removed after an inspection of the
electrical system and are evaluated in the laboratory under controlled conditions. To perform the time series
predictions, the stacking ensemble learning model is applied with the wavelet transform for signal filtering
and noise reduction. For a complete analysis of the model, variations in its configuration were evaluated.
The results of root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute
error (MAE), and coefficient of determination (R2) are presented. To validate the result, a benchmarking
is presented with well-established models, such as an adaptive neuro-fuzzy inference system (ANFIS) and
long-term short-term memory (LSTM).

INDEX TERMS Electric power system, ensemble learningmodel, grid inspection, wavelet packet transform.

I. INTRODUCTION
Current electrical demands are growing and it is getting
harder to keep the electrical system running, a possible solu-
tion to better meet these demands would be to increase the
quality in the evaluation of the electrical power system [1].
To maintain transmission and distribution systems working
satisfactorily it is necessary to have accurate and comprehen-
sive information on the service performance of the insulators.
Over time the insulators may present failures due to several
reasons, the more common ones being contamination, cracks
caused by vandalism, the nest of birds, and accumulation of
dust [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Arpan Kumar Pradhan .

The use of artificial intelligence to predict adverse con-
ditions in the electrical system is a promising alternative to
the problem in question, as it can improve the quality of
electricity, reducing possible failures. Some researches are
focused on load forecasting in electrical systems [3], fault
prediction applications in the electrical grid are rarer [4].
According to Santos and Barros [5] a stochastic approach can
be used to predict the amplitude and duration of voltage sags
when planning the electrical network. This analysis needs to
be performed as a network planning criterion, considering the
stochastic nature of the energy system failures.

In [6] the problem of power failure is analyzed consid-
ering the influence of severe weather, the infrastructure of
the electricity grid, and nearby vegetation. Large storms can
cause power outages, and forecasting these events can help
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maintenance teams prepare for a storm, and thus, take more
organized action depending on what might happen. In this
way, an interruption prediction model can be used to prevent
failures and improve electrical reliability.

To improve security on these networks, it is possible to
monitor high voltage circuit breakers (HVCB), to keep the
power system stable. Failure recognition can be used to cate-
gorize the failure data to identify the type of failure that is
occurring. The method proposed by [7], using the support
vector machine, achieved promising diagnostics of typical
HVCB failures.

Specifically for the prediction of time series for the iden-
tification of faults in insulators, Stefenon et al. [8] presented
the application of adaptive neuro-fuzzy inference system to
assess predictability, emitted by an ultrasound device. The
study shows that hybrid algorithms in this application out-
performed classic algorithms. For the extraction of charac-
teristics, the wavelet transform showed promising results,
reducing the forecast error considerably [9].

Through statistical simulations to evaluate the influence
of the inherent random errors of the electricity distribution
system, it is possible to locate faults using a modern network
measurement and monitoring system [10]. Fault location in
insulators can be carried out even through aerial inspection.
According to [11], the experimentally assessed accuracy can
reach 93.69 %. For a good assertiveness in the analysis of
ultrasonic signals, in addition to choosing the appropriate
model, a complete evaluation of the network configuration
is necessary. An artificial neural network that performs well
for one type of problem may not be suitable for another.

Applied to the power quality of the electric power grid,
[12] performed the location of faults in transmission lines
using the ensemble Kalman filter. The algorithm enables
accurate identification of faults in transmission lines, min-
imizing downtime, labor, and costs. Wang et al. [13] had
promising results applying algorithms that combine complete
ensemble empirical mode decomposition with adaptive noise
for ground fault detection in a distribution network.

Based on the promising applications of the wavelet trans-
form for feature extraction, as well as the ensemble learning
model for time series forecasting, this paper aims to evaluate
the forecasting effectiveness of a hybrid wavelet stacking
ensemble learning model for ultrasonic signal detection from
a contaminated insulator, which may develop a failure over
time.

The contributions of this paper for electric power systems
research are summarized in the following:
• The first contribution is about the use of ultrasound
equipment to identify and prevent failures in the electri-
cal system, which is specific equipment for conducting
network inspection. In this paper, we show that the pro-
cessing of this signal through a hybrid artificial intelli-
gence model can assist the operator in making decisions
regarding the maintenance of the system.

• The second contribution is related to the use of the
Wavelet transform for filtering and reducing signal

noise. The results presented in this paper show that the
use of this technique is promising when combined with
advanced time series forecasting models.

• The third contribution is related to the use of the stacking
ensemble model, which has superior results in accuracy
and error reduction than well-establishedmodels such as
Adaptive Neuro-Fuzzy Inference System (ANFIS) and
Long-term Short-Term Memory (LSTM).

The remainder of the paper is organized as follows: In
Section II the contaminated insulator problem is presented
and the laboratory configuration is detailed. In Section III,
the proposed method for evaluating the signal obtained
through laboratory tests is conducted. In Section IV,
the results obtained are investigated and discussed. Finally,
the conclusions are provided in Section V, regarding the
applicability of the technique.

II. EVALUATION OF INSULATORS CONTAMINATION
Insulators of Brazil’s medium voltage overhead distribution
networks are typically built outdoors and are thus exposed
to environmental variations [14]. Contamination in insulators
does not represent a failure in the system, however, the high
concentration of contaminants can increase surface conduc-
tivity and impair the insulation of these components, for this
reason, this condition needs to be monitored [15]–[17].

Researchers have evaluated the influence of contaminants
on the surface of insulating materials. The presence of salt
on insulators is the focus of several studies, there are specific
analyzes to determine which concentration of salinity gen-
erates a problem in these components [18]. In rural regions,
there is greater contamination by dust from unpaved streets
in addition to organic residues present in these environments.
Over time, the contamination that accumulates on the surface
of insulators can become encrusted and the rain is not suffi-
cient to clean these insulators [19].

In Figure 1, insulators with different types of contamina-
tion can be seen that are found in the field during inspections
of the electrical system. The insulator shown in Figure 1A
has an accumulation of dust because is installed close to
unpaved streets. With a higher level of contamination, fungi
can settle on the surface of the insulator, as can be seen
in Figure 1B. Over time, contamination becomes strongly
stuck to the surface, and thus it is difficult to remove, as can
be seen in Figure 1C.

The insulator in Figure 1D has a high level of saline
concentration, as it is installed close to the coastal region,
however, this contamination is difficult to be perceived with
the naked eye. Insulators with saline contamination were not
considered in this paper, since the equipment’s removed from
the problematic branch were in the mountain region.

A. FIELD INSPECTION
Initially, an inspection of the distribution system was carried
out in the Riu Rufino city, which is located in the Santa Cata-
rina plateau, in southern, Brazil. In this inspection, possibly
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FIGURE 1. Field contaminated insulators: A) Dust contamination; B) Fungi
contamination; C) Contamination strongly stuck; D) Saline contamination.

damaged insulators were reported to the electric utility. The
electricity utility removed the components that had an indi-
cation of failure in their vicinity, and so these were taken to
the laboratory for analysis under controlled conditions.

Field inspections are performed to assess which compo-
nents are most likely to develop irreversible failures [20].
These inspections are carried out with specific techniques,
such as thermovision, radio interference, ultraviolet image,
and ultrasound. Equipment that assesses the condition of
insulators in the system based on the image can be harmed by
interference from solar radiation. Equipment that uses sound
can suffer interference from electric motors and other equip-
ment that are close to the systems. In this way, the inspection
of the electrical power system is a difficult task to be carried
out, which requires specific equipment and specialized tech-
nicians [21].

The equipment that has been successfully used for the
inspection of electrical power systems is the ultrasound detec-
tor, as it is directional and can be adjusted according to the
condition to be analyzed. Damaged components can generate
ultrasonic noise, which can be captured in a directional way,
thus facilitating the exact identification of the source of the
possible failure [22]. As ultrasound equipment generates an
audible noise that is based on a time series, the evaluation
of its continuity in contaminated insulators can facilitate
the prediction of the development of a failure. Contami-
nated insulators do not represent components that must be
replaced; however, the permanence of surface contamination
can increase partial discharges and leakage current, thus gen-
erating irreversible failures [23].

The ultrasound equipment has wide application for the
inspection of the electrical power system, however, there is
a presence of high-frequency noise in the signal, which is
not interesting for analysis since the equipment generates an

FIGURE 2. Laboratory analysis setup.

audible signal. To improve signal forecasting, the wavelet
transform is applied in this paper [24].

The application of Wavelet transform for feature extrac-
tion coupled with ensemble learning is promising for the
diagnosis of failures. According to [25], these techniques
can be applied for the investigation of vibration features
of motor bearing faults. Also applied to fault diagnosis in
rotating machinery based on vibration signals, [26] presents
promising results using the combination of these techniques.
The results show that the support vector machine (SVM)
ensemble can reliably separate different fault conditions and
identify the severity of faults, and have a better performance
rating than the single SVM.

B. LABORATORY SETUP
The analyzed insulator was assembled in the laboratory with-
out changing the installation pattern used by the energy utility
Centrais Elétricas de Santa Catarina (CELESC). The insu-
lator was mounted on a 2 m crosshead, the cable was fixed on
the insulator using the electric utility’s mooring pattern. This
assembly is shown in Figure 4. Fixed grounding was used as
a reference for high voltage and temporary grounding was
used between the measurements for the safety of laboratory
operators.

A voltage of 13.8 kV, 60 Hz was applied on the cable,
which is the same used in the grid where the insulator was
installed previously. The Radar Engineers® (model 250)
ultrasound detector was used, to capture the ultrasonic signal
from the insulator. The signal was recorded by a computer
through its audio connection.

The insulators evaluated in this paper were removed from
the field after an inspection of the electrical power system.
The local electricity utility requested a specialized team to
inspect the network, considering that in adverse weather
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conditions there was a power shortage at the branch, where
the insulators were installed.

The insulators were removed from the field to preserve
their original characteristics, for this reason, they were not
washed or cleaned for carrying out the experiments. These
insulators were installed on a rural branch that is close to the
unpaved street, thus, the insulators had an accumulation of
dust and organic residues encrusted (strongly attached) under
their surface.

C. RAW SIGNAL
The ultrasound equipment pre-processes the signal and gen-
erates an audible response for the operator. This signal is
evaluated by the operator to identify possible failures in
the electrical system. During the experiment, the signal was
recorded with a sampling rate of 48 kHz, which corresponds
to a recorded point every 20.83 µs. As ultrasonic noise is
based on a time series that can vary depending on the con-
dition of the insulator, the forecasting of the ultrasonic noise
variation may indicate the presence of discharges that may be
related to insulation failure.

Considering an audible signal, frequencies higher than
20 kHz are not considered in this research and the ana-
lyzed signal has 20,000 samples. From these samples, using
the Holdout approach, the data set was divided for training
and testing the network. The analyses were performed con-
sidering an Intel Core I5-7400, 20 GB of Random-Access
Memory, with GeForce GTX 1050TI NVIDIA video card,
the Matlab software was used.

III. HYBRID ENSEMBLE STACKING
In this section the proposed method is detailed. The proposed
framework is a hybrid approach composed of wavelet packet
transform, employed to signal denoising, and a stacking
ensemble learning for insulators contamination forecasting
from the distribution network.

The ensemble learning approach is a promising technique
for diagnosing failures [27]. It is an approach employed in
classification, time series forecasting [28], and nonlinear sys-
tem identification problems to obtain an accurate model [29].
This methodology is based on the dived-to-conquer frame-
work, in which, several base-learners (weak) are combined
(by average rule for regression problems) with the purpose
of building an efficient model [30]. Applying this technique,
it is possible to evaluate large data sets to increase defective
minority classes [31].

A. WAVELET PACKET TRANSFORM
A wavelet is a waveform of effectively limited duration
that has a null average value. It is a multi-resolution signal
analysis method widely used to deal with non-linear and
non-stationary time series [32]. While the Fourier trans-
form describes a signal as a sum-up of sines and cosines,
the wavelet transform expands the original signal into a set
(coefficient wavelets) of shifted and scaled versions of the

base wavelet, named mother wavelet, it can represent the data
in the time domain and frequency [33].

To perform wavelet analysis, continuous wavelet trans-
form (CWT) and discrete wavelet transform (DWT) versions
should be used.Whereas the CWT has a considerable amount
of wavelet coefficients as result, DWT operates on scales with
discrete numbers, and a subset of scales and positions are
adopted, named dyadic scales and positions. Despite DWT
is an effective tool for signal decomposition and feature
extraction, it has two main drawbacks, the sample size of
the signal should be kind of 2J , in which J is the wavelet
decomposition level, and the circular shift of the series has
different empirical power spectra. In this respect, an improved
version of DWT can be considered, such as wavelet packet
transform (WPT) [34].

TheWPT is attractive once can generating more frequency
bands and enhancing the extraction of relevant information
from the original signal. As well as DWT, the WPT has been
successfully applied to solve several engineering problems.
The WPT decomposes each iteration and extracts a coeffi-
cient, so the number of coefficients depends on how many
iterations were performed. The decomposition of the wavelet
obtains several levels of packets nodes, from the wavelet
packet (WP) a tree structure is formed dividing the approxi-
mation of the coefficients [35]. The process of decomposition
and reconstruction of the signal through the wavelet packets
is shown in Figure 3.

FIGURE 3. Decomposition and reconstruction of wavelet packets.

To have the best performance in the algorithm, an opti-
mized tree is used. Each WP coefficient is specific with a
frequency resolution level associated with a scale parameter
l and an oscillation parameter n. While wavelet transform
decomposes only low-frequency components, WPT decom-
poses all components at all levels and nodes. Concepts such as
entropy, energy, and variation are used to calculateWP coeffi-
cients. From the WPT the wavelet energy coefficient (WEC)
is obtained and applied in the time series, as the concepts of
entropy, energy, and variation are used, the resulting signal
loses less information than other techniques [36].
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B. STACKED GENERALIZATION
The stacked generalized is an ensemble learning model based
on the principle of dived-to-conquer [37], which improves
models’ accuracy by integrating models through layers that
have been successfully applied to solve problems in sev-
eral fields of knowledge. Usually, two layers are commonly
adopted, however, it may not be limited to that. In fact, in the
first layer (layer-0), base-learners (weak-learner, or weak-
models) are trained and its predictions are used in the next
layer. In the sequence, for layer-1 a meta-learner (strong-
learner, or strong-model) is trained, whose predictions of the
previous layer are adopted as system inputs and predictions
are obtained.

The effectiveness of this methodology and the main advan-
tage lies in the fact that different models can produce different
predictions, and the meta-learner acquires knowledge with
these results [38]. This approach reaches the improvement
of forecasting output due to possible variance reduction of
forecast error or correction of biases. Results from this learn-
ing process tend to converge for an improved solution when
compared to the base-learners. Alongside this, a disadvantage
of this approach is associated with the choice of the number
of base-learners employed. However, with the adoption of
general-purpose machine learning wrappers freely available,
this may be overcome by testing many different base-learners
as the syntax is unified.

In this paper, the base and meta-learners are based on
support vector regression (SVR), which is trained based on
a set of inputs to predict an output [39]. The SVR is chosen
because it has as its main advantage its capacity to capture
the predictor nonlinearity and then use it to improve the
insulator’s contamination forecasting from the distribution
network. Let [xi, yi] an ordered pair of observations, in which
xi ∈ Rd is a set of input variables, and yi ∈ R its respective
output variable. The main concept behind the SVR is to
map low-dimensional input data into high-dimensional space
based on the non-linear mapping or kernel functions.

To create the proposed ensemble, some different kernel
functions K(xj,xk ), equivalent to an inner product between
observations (xj,xk ) in some feature space, are combined. In
fact, they are Gaussian (1), Linear (2), and Polynomial (3)
functions, which are stated as follows,

K(xj, xk ) = exp(−
∥∥xj − xk∥∥2), (1)

K(xj, xk ) = xj′ xk , (2)

K(xj, xk ) =
(
1+ xj′ xk

)q
. (3)

Figure 4 illustrates the proposed stacking ensemble model
for insulators contamination prediction, the model uses the
result of applying the WEC as an input signal. The procedure
of the Wavelet transform for the extraction of features and
noise reduction is presented in detail in Figure 3.

The main criteria adopted to evaluate the proposed model
according to the global error, are root mean square error
(RMSE), mean absolute percentage error (MAPE), mean
absolute error (MAE), and coefficient of determination

FIGURE 4. Stacking Ensemble model.

R2 [40]. While the criteria RMSE, MAE, and MAE compute
the performance of models regarding the errors, which a
lower value is desirable, the R2 criterion shows the variability
explained by the model, where a high value is need [41].

Additionally, the above-described performance measures,
based on the best configuration found for the proposedmodel,
the statistical performance of the algorithm in relation to
50 analyzes will be evaluated. In fact, the variance (VAR),
covariance (COV), mean, and standard deviation (Std. D)
indicators are presented. For the final performance test of
the model, the Wilcoxon Signed Rank Test is presented and
discussed [42].

C. BENCHMARKING
For comparative analysis with the proposed method, LSTM
and ANFIS were used. Variations in these models were made
for a complete assessment. The LSTM is a recurrent neural
network architecture, used in the field of deep learning. The
LSTM can process entire strings of data and for this reason,
it is well applied for chaotic time series and anomaly detec-
tion [43]. For a complete analysis of LSTM, 3 optimizers
were used, being: stochastic gradient descent with momen-
tum (SGDM), root mean square propagation (RMSProp), and
adaptive moment estimation (ADAM).

The stochastic gradient descent algorithm can oscillate
along the steepest descent path towards the optimum, to solve
this, a moment term is added to the parameter update to
reduce this oscillation [44]. The LSTM with the SGDM
optimizer is a promising algorithm and will be compared in
this paper [45].

The RMSProp uses the learning rates that differ by parame-
ter and can automatically adapt to the loss function being opti-
mized. Thus, the algorithmmaintains a moving average of the
element-wise squares of the parameter gradients. The ADAM
optimization method calculates adaptive learning rates for
each parameter [46].

The structure of the ANFIS is a combination of a fuzzy
inference system and a neural network, some methods of
cluster organization can be used for this model. Considering
a Subtractive Clustering Structure (SCS), which requires a
separate dataset and different arguments, it is possible to
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extract the sets of rules that can identify the behavior of the
time series [47].

The Fuzzy C-Means (FCM) inference system automati-
cally selects the number of clusters and randomly distributes
the coefficients for each sample in the dataset. The FCM
repeats this procedure until it reaches convergence, which
means that each cluster must be calculated considering its
membership level [48].

A summary of the entire procedure performed for this
paper is presented in Figure 5, the project was separated into
3 stages. The first stage was carried out through a research
project with the local electric utility.

FIGURE 5. Project flowchart.

In this research project, the locations with reported failures
were indicated by the electric utility, and an inspection team
conducted a field analysis in these electric power grids. After
the identification of failures, the components were removed
and replaced by the electric utility.

In the second stage, the defective components were taken
to the high voltage laboratory where they were tested under
controlled conditions. These components were evaluated, and
the signal was recorded. The last stage is the evaluation of the
proposed method to the signal recorded of the contaminated
insulator that the focus of this paper.

For a complete assessment of the model, some configura-
tion parameters were evaluated, the first parameter evaluated
was the size of the data set for training and testing the net-
work, then the kernel function (as base-leaner) was evaluated,
we evaluated the use of Wavelet to extract the feature and
noise reduction, finally, with the best configuration found,
a statistical analysis was performed.

IV. ANALYSIS OF APPLIED METHOD
In this section, the evaluation results of the proposed algo-
rithm will be presented. Initially, an analysis of the conse-
quences of possible variations of the model with raw data will
be carried out; then the analysis will be presented applying the
Wavelet transform to extract characteristics. Subsequently,

statistical analysis to the configuration for the best model and
a comparative benchmarking is performed.

A. PARAMETER CHANGE ASSESSMENT
The first comparative analysis assesses the size of the division
of training dataset in relation to the test, considering the
holdout approach. In this respect, the training (Train) data is
not used for network testing (Test). In fact, Table 1 illustrates
the results for a stacking ensemble, in which the base-learner
is the SVR with linear kernel, while the meta-leaner is the
SVR with Gaussian kernel.

TABLE 1. Training and testing size evaluation.

In this preliminary assessment, it can be seen that the
values of R2 are low for all combinations of datasets. The
best results from MAPE and R2 were found using 70 % of
the data for training and 30 % of the data for testing, so this
configuration was used for the following analyzes. There was
little variation in the RMSE, with the maximum difference in
this metric being only 1.6 %.

Table 2 shows the performance for some stacking ensemble
structures, according to the setting defined in Table 1. The
variation in the kernel functions did not generate major dif-
ferences in terms of RMSE. The use of more than 2 layers
made the algorithm considerably slower for convergence and
did not represent significant improvements in the forecast,
therefore, these results are not considered.

TABLE 2. Performance measures for different structures.

Using the SVR with Polynomial (POLY) kernel as base-
learner, in general, allowed to achieve good results regarding
RMSE and R2. However the MAPE and MAE values were
among the worst results in these comparison. The use of
2-layers with the linear (LINE) kernel function (as base-
leaner) and Gaussian (GAUS) kernel function (as meta-
learner) generated the best result in the calculation of MAPE
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and MAE. Furthermore, this configuration had a satisfactory
RMSE and R2 result, so this configuration was defined as the
standard model stacking ensemble.

B. WAVELET ENSEMBLE LEARNING RESULTS
The use of correct WPT structure allows achieving better
accuracy in respect of forecasting, once that to consider an
inadequate configuration can result in loss of the signal char-
acteristic. Moreover, The variation in the number of nodes
results in a significant change in the WEC response. In fact,
Table 3 presents the results for the hybrid proposed model,
which considers a stacking ensemble with Linear and Gaus-
sian kernels, in layers-0 and 1, for different WPT settings.

TABLE 3. Results of applying WEC in different configurations.

The best configurations of the WPT were found with 1, 3,
and 7 nodes. Using 2, 4, 5, 6, or more than 7 nodes, there
was a loss of characteristics, so these values were discarded.
The variation of levels in the Wavelet transform did not result
in visually perceptible changes in the WEC response. The
best predictability result was obtained using 7 nodes, with
considerably lower RMSE, and with higher R2.
Considering that RMSE is a measure of error and R2 is a

measure of accuracy, the lower the RMSE and the higher the
R2 is a better result in this assessment. Changing the number
of levels did not generate such representative variations in
these parameters. The best MAPE was obtained with 6 levels
and the best MAEwas obtained with 5 levels. The application
of the WPT with 7 nodes, for the considered signal, can
be viewed in Figure 6, for a better view, it’s presented in a
window of 1,000 samples.

According to results of Table 3, considering the presented
performance criteria, the WPT composed of 3 levels and
7 nodes configuration was the one that presented the best
result and, therefore, the statistical analysis for the global
evaluation of the algorithm will be performed with this
configuration. Using this configuration, coupled with stack-
ing ensemble which considers linear and Gaussian kernels,
as base and meta-learners, respectively, the forecast result
compared to the observed signal is shown in Figure 7.
All changes in the levels were considered, with the excep-

tion of values less than 3 and greater than 6. Due to the
variation in the number of nodes, it is necessary to have at

FIGURE 6. Wavelet energy coefficient applied to the raw signal.

FIGURE 7. Raw signal of contaminated insulator.

least 3 levels for the algorithm to compute the transform and
values greater than 6 do not represent major changes, so they
are disregarded. As can be seen in Table 3, the application of
the Wavelet transform through the WEC generated consider-
ably superior results in terms of reducing error and improving
accuracy. This fact confirms that the hybrid algorithm is supe-
rior to the application of classical techniques to the problem
under analysis.

The application of the Wavelet transform proved to be
an excellent alternative to be used with the Ensemble
Stacking for signal forecasting [8]. As presented in these
results, the WEC must be tested in its variations, considering
that an improper configuration can result in loss of signal
characteristics.

C. BENCHMARKING RESULTS
Using the ADAM optimizer, the best results were obtained
for RMSE, MAE, and R2, as can be seen in Table 4. The
LSTM had the best accuracy of 55.52 %, which is lower than
the average result of 99.80 % presented in Table 6 for the
proposed algorithm. The variation in the number of hidden
units did not represent an improvement that overcomes the
Hybrid Wavelet Ensemble Stacking. To standardize the ana-
lyzes, the hyperbolic tangent activation function was used,
which is suitable for LSTM [43]. The use of 10 hidden units
resulted in lower accuracy results for all optimizers.

VOLUME 9, 2021 66393



S. F. Stefenon et al.: Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting

TABLE 4. Long short-term memory results.

The results for the error assessment metrics were also
worse than Hybrid Wavelet Ensemble Stacking, with the
RMSE being 0.0341 compared to 0.0019. The best MAE
obtained with the LSTM was 1.0219×10−4 and the best
MAPE was 0.4452, which are also inferior to the proposed
method. The SGDM and RMSProp optimizers were inferior
to the ADAM optimizer in all RMSE and R2 results.
The size of the dataset used for this analysis was the same

as the other methods evaluated, in which 70 % of the data for
training and 30 % of the data for the test were standardized.
In the SCS and FCM, each output variable has one output
membership function for each fuzzy cluster. For comparison
purposes, all the clustering outputs types were Sugeno system
types.

Possible configurations in the models have been tested and
are presented in Table 5. For SCS, the Influence Radius (IR)
was varied, the network did not converge to values less than
0.2 and greater than 0.5. In FCM the variation was made
in the number of clusters, and with 1 cluster the network
does not converge and with more than 14 clusters there is no
improvement in results.

TABLE 5. Adaptive neuro-fuzzy inference system results.

Despite resulting higher RMSE values than LSTM, ANFIS
was more stable, with little variation in this measure. The best
value of R2 for ANFIS was also lower than the result of the

LSTM. Comparing to the HybridWavelet Stacking Ensemble
proposed in this paper, both techniques were inferior to the
accuracy and error values.

The only result that was superior to the proposed method
was the MAPE using some FCM configurations for the
ANFIS model, however, it is not possible to state that this
value has a great influence on the analysis, since there is great
variation in the MAPE results for this benchmarking. Fur-
thermore, the most important metrics for time series analysis
are RMSE and R2, which were superior using the proposed
method in this paper.

D. STATISTICAL EVALUATION
Statistical analysis is used to assess the robustness of the algo-
rithm, when the algorithm is suitable for the problem, there
should be no great variability in the statistical results. In fact
for the proposed wavelet stacking ensemble, this assessment
is shown in Table 6, for 50 independent runs.

TABLE 6. Hybrid wavelet stacking ensemble statistical results.

The variance in RMSE, MAE, and R2 is low, only MAPE
has a bigger variance of the resulting values, this also occurs
with standard deviation andwith covariance. Considering that
the main metrics used in the literature to evaluate the time
series are RMSE and R2 [49], it can be said that there is little
variability in the results showing that the proposed algorithm
is stable.

For a comparative analysis in relation to variation of the
algorithm, we present in Table 7 a statistical evaluation of the
ANFIS model and in Table 8 of the LSTM model, both from
the best configuration found for the models in question.

TABLE 7. ANFIS statistical results.

As can be seen, despite the low variance in the ANFIS
results, this model presents considerably less accuracy when
compared to the proposed method. The same statement can
be made in relation to the LSTM model, which shows to be
robust with low variance, however with greater error and less
accuracy than the proposed model. Comparatively, the LSTM
model had better results than the ANFIS model in the statis-
tical analysis, having a higher accuracy average and lower
variance values for accuracy.

According to the non-parametric Friedman test, the fore-
castingmodels achieved errors statistically different forMAE
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TABLE 8. LSTM statistical results.

TABLE 9. Wilcoxon signed rank test.

(chi-squared = 82.84, df = 2, p-value < 2.2e-16), MAPE
(chi-squared = 55.96, df = 2, p-value = 7.054e-13), R2 (chi-
squared= 96.16, df= 2, p-value< 2.2e-16), and RMSE (chi-
squared = 96.16, df = 2, p-value < 2.2e-16). Considering
the Wilcoxon signed rank test, the Ensemble approach have
errors statistically lower than the ANFIS and LSTM. Also,
the p-value of comparisons is presented in Table 9.

V. FINAL DISCUSSION
The results of applying the proposed algorithm were promis-
ing, considering that it is possible to reach an average deter-
mination coefficient of 0.9980. Comparatively, the results of
the proposed algorithm are much higher than the application
of Ensemble Stacking without using the Wavelet transform,
which had a result of only 0.2367. This shows that the hybrid
algorithm had a better response than the application of the
classic technique.

The application of the proposed technique can become a
very promising tool for the evaluation of the electrical system,
as, as presented in this work, it is possible tomake a prediction
with good accuracy of a signal with many nonlinearities. The
proposed method can be applied to other applications, not
only related to insulators.

The use of the proposed method proved to be better than
LSTM and ANFIS in several metrics for the forecasting
of time series covered in this paper. For the LSTM, even
with the variation in the optimizer and the number of hidden
units, the results were lower. Themodification in the structure
of the ANFIS model also did not result in higher values
than the Hybrid Wavelet Stacking Ensemble presented in this
paper.

The ultrasonic signal evaluated in this paper can be used
for other equipment in the high voltage electrical power
networks. Being equipment that has a high capacity to

differentiate adverse conditions and prevent failures in the
electrical system may result in power outages.

In future works, the proposed method presented in this
paper can be extended to other components of the network,
in order to analyze the partial discharges that occur in various
equipment of the electrical system.
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