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Abstract— Localization plays an essential role in many 

ubiquitous computing applications. While the outdoor 

location-aware services based on GPS are becoming 

increasingly popular, their proliferation to indoor 

environments is limited due to the lack of widely available 

indoor localization systems. The de-facto standard for indoor 

positioning is based on Wi-Fi and while other localization 

alternatives exist, they either require expensive hardware or 

provide a low accuracy. This paper presents an investigation 

into localization system that leverages signals of broadcasting 

FM radio stations. The FM stations provide a worldwide 

coverage, while FM tuners are readily available in many 

mobile devices. The experimental results show that FM radio 

can be used for indoor localization, while providing longer 

battery life than Wi-Fi, making FM an alternative to consider 

for positioning. 

Keywords-indoor localization; fingerprinting; FM radio; 

Wi-Fi; GSM. 

I.  INTRODUCTION 

Localization is an important area in ubiquitous 
computing, having been rooted in the early days of context-
awareness research. One of the first definitions of context [1] 
refers to location as one of the four pillars of context in 
addition to time, activity and identity. Despite the relatively 
long tradition, localization remains an active area of research 
[2]. The focus of this research has been increasingly shifting 
towards indoor localization. This is because the wide 
adoption of the Global Positioning System (GPS) in mobile 
devices, combined with Wi-Fi and cellular networks have, in 
large part, solved the problem of outdoor localization. 
However, numerous ubiquitous computing applications rely 
on indoor positioning, where the GPS signal is too weak. 

Despite the substantial research and development efforts, 
the existing indoor positioning systems remain unsuitable for 
wide adoption. Wi-Fi-based positioning is the de-facto 
standard for indoor localization. However, Wi-Fi-based 
systems have a number of issues, including high power 
consumption, limited coverage, and are prone to interference 
[3]. Other indoor positioning alternatives, based on RFID, 
infrared, ultrasound or ultra-wide band (UWB), require 
specialized hardware and dedicated infrastructure, resulting 
in high costs for wide adoption. The positioning systems 

based on cellular networks, in turn, provide a good coverage 
and can use the existing infrastructure, but suffer from low 
positioning accuracy. 

Considering these issues, we describe and evaluate an 
alternative approach for indoor localization based on 
frequency modulated (FM) radio. Our localization system 
relies on the existing infrastructure of broadcasting FM 
stations as signal sources and embedded FM radio modules 
on client devices. 

Current research literature shows that FM positioning 
using broadcasting stations has been investigated in outdoors 
context only [4, 15]. The low accuracy achieved outdoors 
discouraged investigation of FM for indoor localization. This 
may also explain the low number of publications in this area 
and no reported work on the use of FM for indoor 
positioning.  

However, the results of outdoor localization cannot be 
directly projected onto indoor scenarios, as these 
environments are notably different with regard to signal 
propagation [5]. Furthermore, the performance of FM radio 
for indoor localization cannot be predicted from other 
technologies, such as Wi-Fi or GSM. This is because FM 
radio uses significantly lower frequencies (100 MHz) than 
GSM (0.9 GHz) or Wi-Fi (2.4 GHz) leading to different 
signal propagation and resulting in the following properties: 

i) FM radio signals are less affected by weather 
conditions, such as rain or fog, in comparison to Wi-Fi or 
GSM [6, 8]; ii) low-frequency radio waves are less sensitive 
to terrain conditions, such as woodland and tree foliage [7] 
while, GSM and Wi-Fi signal propagation can be affected 
even by the movement of leaves [7]; iii) amount of 
attenuation of radio waves, caused by building materials is 
directly proportional to the operating frequency [10] 
therefore, FM signals penetrate walls more easily in 
comparison to Wi-Fi or GSM. This ensures high availability 
of FM positioning signals in indoor settings; iv) the FM 
wavelength of around 3 m (from 2.78 m to 3.43 m in Europe 
and US) interacts differently with most indoor objects in 
comparison to the wavelength of 0.12 m of Wi-Fi waves. At 
low frequencies, when the obstacles are small compared to 
the wavelength, they do not interact significantly with the 
electromagnetic fields of the wave [10]. However, when the 
size of an obstacle is close to the wavelength, interaction 
becomes strong, resulting in complex interference patterns 



[10]. This means that majority of small indoor objects are 
transparent to long FM radio waves, but interact and cause 
interference with shorter Wi-Fi and GSM waves; v) overall, 
FM radio is a popular and well-established technology. 
Broadcasting FM stations provide almost ubiquitous 
coverage, in populated areas worldwide. FM receivers are 
already embedded in many mobile devices, they have low 
power consumption and do not interfere with sensitive 
equipment or other wireless technologies. These properties 
make FM radio an interesting technology to investigate for a 
positioning system. 

In the rest of this paper, we provide an overview of the 
indoor positioning systems based on Wi-Fi and cellular 
network signals, as well as the existing FM-based 
localization systems. Then we detail our positioning 
approach based on broadcasting FM stations. We evaluate its 
performance on different scale environments and at different 
time frames and provide a comparison to Wi-Fi and GSM 
systems. Finally we analyze the impact of FM, Wi-Fi and 
GSM localization modes on mobile device’s battery life. 

II. RELATED WORK 

A. Wi-Fi 

IEEE 802.11 standard for wireless networks is a popular 
basis for indoor positioning systems. Their popularity among 
the research community can be explained by frequently 
available network infrastructure, Wi-Fi enabled mobile 
devices, good localization performance and their use in 
ubiquitous computing applications. Wi-Fi networks are 
deployed in many office buildings and homes, and 
positioning systems can exploit the already available 
beacons. 

The RADAR project [9] pioneered Wi-Fi positioning. 
This work used received signal strength (RSS) fingerprinting 
approach and achieved 2.94 m median error [9]. Ferris et al. 
[12] designed a Wi-Fi localization system using Gaussian 
processes in conjunction with graph-based tracking. They 
modeled users moving through the rooms on the same floor, 
as well as more complicated patterns of moving, such as 
going up and downstairs. The average error of test data was 
2.12 meters. Work in [13] used advanced probabilistic 
methods and Wi-Fi based positioning reached an accuracy of 
1.2 m. 

Brunato and Battiti [14] compared the performance of 
Wi-Fi fingerprinting localization using several machine 
learning methods, such as multi-layer perceptron (MLP), 
support vector machine (SVM) and k-nearest neighbor 
(kNN). The SVM approach demonstrated the best median 
accuracy of 2.75m. Notably, the median performance of a 
simple unweighted kNN classifier was only 0.16 m less than 
the SVM’s result; the 95th percentile errors were equal. 

While the accuracy degradation is typical for 
fingerprinting based systems, the impact of each factor 
varies, and is dependent on signal frequency: when the 
obstacles are small in comparison to wavelength, their 
interaction with the wave is negligible [10] and vice versa. 
Therefore, environmental factors have smaller impact on 
lower-frequency FM radio waves. However, most indoor 

radio wave propagation measurements have been done for 
frequencies above 1 GHz [5] and there is a lack of 
experimental results for lower frequencies. 

B. Cellular networks 

In comparison to Wi-Fi, cellular networks, such as GSM 
and CDMA, provide significantly better coverage. However, 
for a long time they were not considered for indoor 
localization due to the low accuracy achieved in outdoor 
settings [17, 19, 22].  

The first results for indoor GSM positioning performance 
have been published in [17]. The proposed approach 
employed so-called wide fingerprints, which include the 
RSSI readings from 6 strongest stations, extended (widened) 
by RSSI data from up to 35 weaker GSM channels. The 
experimental results for different buildings have 
demonstrated a median accuracy from 3.4 m to 11 m with six 
strongest stations, and from 2.5 m to 5.4 m with wide 
fingerprints. In 3 out of 7 tests the GSM accuracy with wide 
fingerprints was better than the Wi-Fi positioning 
performance. 

C. FM radio 

There are only few papers dedicated to FM radio based 
positioning. The first paper describing a localization system 
based on FM radio signals was presented by Krumm et al. 
[21]. It was an outdoors-only system that employed a 
prototype wristwatch device with an FM receiver. The 
device was able to distinguish six districts of Seattle using 
the signals broadcast from public FM stations. The authors 
were able to identify the correct district in 80% of the cases. 
A Bayesian algorithm with data smoothing, combined with 
signal propagation modeling, enabled the system to locate 
the user with 8 km median accuracy [4]. 

Fang et al. [15] presented a comparison of FM and GSM 
outdoor localization within 20 reference points in an urban 
area of 1 km2. Using the data collected with a professional 
spectrum analyzer, the authors demonstrated that with six-
channel fingerprints the GSM accuracy was better than that 
of FM; however, when the number of FM channels was 
increased to 11 the situation reversed (FM error was below 
20 m in 67% of cases). In a rural area however, GSM signals 
were weaker and 5-channel FM positioning outperformed the 
8-channel GSM based system; the FM positioning error was 
within 35 m with 67% probability. The reported data does 
not allow for direct comparison of FM accuracy in urban and 
rural areas for an equal number of channels. The authors also 
investigated temporal stability of FM signals and reported 
better temporal stability of FM signal than the GSM signal 
[15].  

More recently [16], the same group evaluated the 
positioning performance of multiple wireless technologies 
(FM, GSM, DVB, Wi-Fi) for both outdoor and indoor 
settings. However, FM measurements were performed only 
outdoors and thus FM positioning was not included into 
comparison to other indoor localization systems. 

All the systems described so far utilize the differences of 
signal strength between different locations. The two main 
sources of signal attenuation (leading to spatial variation of 



fingerprints) in outdoor settings are: free-space propagation 
loss (in order of 20log(d), where d is travel distance) and 
shadowing by terrain and buildings [10]. In [15], the distance 
between test points was about 100 m, and free-space 
propagation loss contributed about 40 dB to the signal 
strength differences between locations. At indoor scales, 
however, the free-space propagation loss is negligible and 
the main source of spatial signal variation is fading, caused 
by large indoor obstacles and multipath propagation [10]. 
Therefore, since current FM positioning systems rely on 
outdoor-only propagation phenomena, their results cannot be 
simply extrapolated to indoor scenarios.  

Another approach for FM localization utilizes the phase 
of the stereo pilot tone – a stable 19 kHz signal contained in 
all stereo FM transmissions. Giordano et al. [20] proposed an 
FM based outdoor localization system which leverages 
differences of FM stereo pilot phase, as received by the 
mobile unit and a fixed observer. The authors claimed the 
accuracy “on the order of 10–20 m depending on channel 
conditions” [20].  However, the origins of these numbers are 
questionable, since the authors have not provided an 
experimental proof of the claimed performance. Moreover, 
there are experimental indications that the pilot tone, 
although transmitted with a good stability, is distorted by 
multipath propagation [26] and non-linear effects in the 
receiver [13]. For instance, typical peak-to-peak pilot phase 
fluctuations reported in [26] were about 2 µs, which 
corresponds to about 600 m distance for a 19 kHz pilot tone. 
Such low accuracy is clearly insufficient for indoor 
positioning. 

As the literature review shows, the previous research 
work on FM positioning has focused mainly on outdoor 
localization using broadcast FM signals and special receivers 
(prototype wristwatch [4] and professional spectrum 
analyzer [15]). This paper, in contrast, focuses on indoor 
positioning, using off the shelf mobile devices. There is only 
one work that investigated indoor positioning using FM 
radio signals [11]. The described system is based on a set of 
low-power FM transmitters installed indoors. This paper, in 
contrast, presents a positioning system that uses broadcasting 
stations located outdoors for indoor positioning. According 
to literature review and to the best of our knowledge, this is 
the first study to use broadcasting FM radio stations for 
indoor localization. 

III. FM POSITIONING 

Our approach on FM radio based localization is based on 
a well-known signal fingerprinting method [9, 14]. This 
method includes two stages: calibration and localization. The 
calibration phase comprises the acquisition of signal 
characteristics (typically RSSI) from stationary transmitters 
(beacons) at predefined points, which are used to build a 
database that matches the collected values (fingerprints) with 
their corresponding locations. During the localization phase, 
the mobile device acquires a signal fingerprint and the 
positioning system utilizes the calibration data, coupled with 
appropriate algorithms to determine the best match for a 
location where the fingerprint most likely belongs.  

For localization we used three well-known methods: k-
nearest neighbor (kNN), support vector machine (SVM) 
classifiers, and Gaussian processes (GP) regression [9, 12, 
14]. 

A. Experimental setup 

The positioning experiments have been performed in two 
separate indoor environments of different scales: an office 
(12×6 m) [11] and a university building floor along its 
corridor (50×25 m), similar to the approach in [9]. Signal 
fingerprints were simultaneously acquired by three 
smartphones: two Samsung Omnia2 and one HTC Artemis; 
each device used its standard headset as antenna. Two 
datasets per each environment have been collected on 
different days. Before each data acquisition session, the list 
of active FM channels, broadcasting content, was 
automatically acquired using receiver’s channel detection 
functionality. Only the stations simultaneously present in 
both training and testing dataset were considered for analysis 
(50 stations for room-level and 45 for the floor-level 
environment). At each location, 10 RSSI samples were 
collected for each FM channel and their mean values were 
used in the fingerprint. In the room-level environment, signal 
fingerprints have been collected in all the accessible 
locations defined by a 1 m grid (due to the furniture, 33 
locations were measured). In the building floor environment, 
fingerprints were acquired with 1.6 m interval along the main 
corridor (dashed line in Figure 1); in total, 94 locations were 
measured. In both settings, the experimenter was always 
facing in the same direction. Localization accuracy results 
obtained using the same device are shown in the section that 
follows. 

B. Same-device localization results 

The positioning accuracy of the system was first 
evaluated using independent datasets collected with the same 
device and evaluated using kNN, SVM and GP methods. All 
the collected RSSI values were normalized in the range of 0 
to 1. The performance results of the FM positioning system 
using broadcasting FM stations are presented in Figure 2. At 
the room level, 40% of locations were successfully 
recognized by the SVM classifier (0 m error distance), while 

 

Figure 1. Floor-level experimental environment. Dashed 

rectangle (50×25 m) represents the data collection path. 



the best median positioning error of the system was 0.6 m 
(SVM) and the 90th percentile error was 2.6 m (GP). In the 
floor-level environment, the best results were demonstrated 
by the kNN approach, which accurately recognized 52% of 
locations; with 90% probability, the error was below 24 m. 
The GP method demonstrated a poor performance, due to 
continuous nature of regression resulting in majority of the 
two-dimensional location estimates to fall inside the data 
collection rectangle rather than on it (see Figure 1).   

While a detailed analysis of the results will follow in 
Section III.F, the presented performance can be preliminary 
attributed to the high number of FM beacons used, despite 
the significant distance from the transmitters. There is 
evidence in the literature to suggest that wider fingerprints, 
collected from a large number of beacons, result in better 
positioning performance [15, 17]. In order to test the impact 
of number of beacons on positioning accuracy, we carried 
out a set of experiments to evaluate the effect of number of 
stations on localization accuracy. 

C. Accuracy vs. number of stations 

This section describes a number of approaches to FM 
station selection and evaluates how the number of stations 
(fingerprint width) affects the positioning accuracy. 

1) Heuristic-based approach 
Initially, we briefly experimented with several station 

selection criteria, which would enable identification of the 
most efficient (in terms of localization performance) stations. 
One criterion was to select N strongest stations, while the 
other criterion was to select N weakest stations. However, 
none of these methods was able to demonstrate a consistent 
advantage in all environments. 

 These findings are somewhat in contradiction with the 
results previously demonstrated for outdoor FM positioning. 
Fang et al. [15] have found that in outdoor scenarios 
selecting stations with stronger signals leads to better 
positioning accuracy than for weak-signal stations. To 
understand the reasons for this inconsistency, we analyzed 
the difference between indoor and outdoor positioning using 
broadcasting beacons. In the outdoor scenario, the distances 
between test points are relatively large (100–150 m in [15]). 
At these distances the transmission of nearby stations with 
strong signal are subject to significant path loss (Figure 3).  

 In indoor environments, however, the distances between 
test points are orders of magnitude smaller (1–2 m in our 
tests), and the path loss has minimal effect on signal 
propagation (see Figure 3). In this case, the variance of FM 
signal RSSI in indoor locations is due to walls and other 
large obstacles that equally affect all stations transmitting 
from the same direction, regardless of their signal strengths. 
Therefore, in indoor scenarios stronger stations have no 
advantage over weaker stations in terms of positioning 
performance. A further analysis of this phenomenon is 
presented in Section III.F. 

2) Statistical approach 
Although the previous approach did not suggest a 

definite criterion for station selection, it would be useful to at 
least assess the extent to which the number of stations 
influences the localization performance. In order to estimate 
this relationship, we used a statistical approach and evaluated 
FM localization performance on N randomly selected non-
repeating channels. For each value of N, 500 localization 
tests have been run. Fingerprint recognition was performed 
by the kNN method, as the computational time of other 
methods was prohibitive for large number of trials. 

The experimental results in Figure 4 demonstrate a 
dependence of median error on the number of stations used 
for positioning. The results confirm hypothesis that 
localization accuracy consistently improves when increasing 
the number of stations used for fingerprinting. Moreover, the 
stations contribute to the performance unequally: for 
example, in the room environment, five selected stations 
were able to provide zero median error, in contrast to the 
average 1.8 m for randomly chosen stations.  
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Figure 2. FM positioning accuracy for different methods. 
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Figure 3. RSSI difference caused by path loss at indoor and 
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Therefore, appropriate selection of broadcasting FM stations 
can reduce the fingerprint width (and acquisition time) with 
only minor degradation of positioning accuracy. Moreover, 
reducing the number of scanned stations enables faster 

acquisition of fingerprints and decreases the overall 
computational requirements of the positioning system. For 
our test devices, by decreasing the number of stations from 
50 to 5, we reduce the acquisition time from 10 s to 0.7 s; 
however, this increases the average median error by only 1 m 
(Figure 4a). While floor-scale FM localization would 
typically require more stations, a careful selection of stations 
would still reduce fingerprint acquisition time, although to a 
lesser extent. 

D. Handling device diversity 

All the experimental results reported so far relied on data 
collected with the same device. However, fingerprints 
collected by different devices can be considerably different 
due to the diversity of hardware and software designs, 
manufacturing processes and fluctuations of the components’ 
parameters. Therefore, even devices of the same model, put 
in the same conditions, may report different RSSI values. 
Measurements in Figure 5 show that two devices of identical 
model, report different RSSI values, shown as RSSI1 and 
RSSI2 in the “same model” scatter plot. Clearly, having 
differences between fingerprints collected during the system 
calibration phase and fingerprints acquired for localization, 
may severely impact the localization accuracy. 

The literature suggests several approaches to address this 
problem, such as estimation of a cross-device RSSI mapping 
function or switching to different fingerprint types [23-25]. 
In this paper, we compare three approaches to cross-device 
location sensing. The first method (labeled “basic”) does not 
take device diversity into account and uses raw RSSI 
fingerprints directly (as demonstrated in [9]). The second 
method (“ratio”) relies on hyperbolic fingerprints proposed 
by Kjaergaard and Munk [23]. A hyperbolic fingerprint is 
composed of pairwise ratios of RSSIs instead of raw values. 
In [23] such fingerprints were shown to improve the 
localization accuracy of kNN and Bayesian classifiers. 
Finally, the third method (“correlation”) originates from the 
work of Tsui et al. [24], which assumes that while raw 
fingerprints collected by different devices might be rather 
distant in the signal space, they are still highly correlated 
(similar in shape). Instead of Euclidean distance, this method 
employs Pearson’s correlation coefficient as a measure of 
similarity between fingerprints. 

To evaluate cross-device performance of FM 
localization, we trained a kNN classifier using a dataset 
collected by one of the Omnia2 smartphones, and then tested 
it with datasets collected on a different day with HTC 
Artemis and another Omnia2 device (“different models” and 
“same model” titled graphs in Figure 6, respectively).  

Figure 6 presents cross-device, over-time performance of 
FM localization system. At a room level, device 
heterogeneity plays a minor role: the same-model 
performance is comparable to the same-device results 
(Figure 6a); for different device models, the classification 
rate of the basic method drops by 12%, while the other 
performance metrics remain comparable to the same-device 
reference (Figure 6b). At a larger scale, the degradation of 
cross-device performance becomes more evident. For basic 
localization approach, which does not take device diversity 
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Figure 4. Median error of FM positioning vs. number of 

stations in room-level (a) and floor-level (b) environments. 
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into account, the classification rate drops from 52% (same-
device) to 37% (same model, Figure 6c) and even 28% 
(different models, Figure 6d).  

The localization methods devised for handling cross-
device differences demonstrated diametrically opposite 
results with respect to each other. The hyperbolic 
fingerprinting approach demonstrated performance similar to 
the basic approach (in same-model tests) or even lower 
performance (for different-model tests). The best cross-
device performance was demonstrated by the “correlation” 
approach, which estimated fingerprint similarity using 
correlation coefficient instead of Euclidean distance. This 
method was able to achieve a cross-device FM localization 
performance comparable to the baseline (same-device) tests 
both at room and floor scales (see Figure 6). 

The reasons behind different performance of the 
described approaches originate from how they estimate 
cross-device RSSI mapping. The ratio method takes into 
account only the coefficient parameter of the linear RSSI 
mapping between devices, but not the bias [23, 24]. 
However, a non-zero RSSI mapping offset between different 
models of experimental devices is present and can be seen in 
Figure 5. Moreover, the ratio method boosts fingerprint 
width by including all pair-wise RSSI ratios; thus, eventual 
mapping errors and outliers are duplicated a number of 
times, which decreases the classification accuracy below the 
basic performance reference. In contrast, Pearson’s 
correlation coefficient implicitly considers both parameters 
of a linear fit and is less sensitive to eventual outliers, 

explaining the high performance of the correlation based 
approach. 

E. Comparison to Wi-Fi and GSM 

This section presents a comparison of FM localization 
accuracy with Wi-Fi and GSM based systems. Wi-Fi is the 
de-facto standard of indoor localization, while GSM and FM 
share similar infrastructure characteristics with respect to the 
stations being outside of the test environment. 

Due to the factors influencing the performance of a 
positioning system, such as room layout and hardware 
characteristics, it is very difficult to directly compare the 
positioning performance results acquired in different 
environments. Therefore, to ensure a fair comparison, Wi-Fi, 
GSM and FM RSSI fingerprints were collected 
simultaneously, in the same environment, during the 
experiments described in the previous sections. For each -
location, 10 Wi-Fi RSSI samples were acquired with 1 s 
interval. In total there were 15 different Wi-Fi beacons in the 
room-level dataset and 65 in the floor-level dataset. Average 
fingerprint widths per location were 10 and 21, respectively; 
many of Wi-Fi beacons had very low signal levels and were 
visible only in few locations. GSM RSSI fingerprints for 7 
nearby GSM base stations were collected only by the HTC 
Artemis smartphone, because Omnia2 devices do not 
provide access to GSM module. For each test point, 3 GSM 
samples were recorded with 5s interval, which was the 
maximum update rate of device’s GSM information. This 
resulted in total of 30 different cell IDs in the room dataset 
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Figure 6. Performance of an FM localization system trained on data from one Omnia2 device and tested on different day with 

another Omnia2 (“same model” graphs) and with HTC Artemis (“different models” graphs) smartphone. Dashed line presents the 

reference performance: testing with the same Omnia2 device that was used for training. 



and 46 cell IDs in the floor-level dataset; average fingerprint 
widths were 8 and 7 beacons per location, respectively. As 
described before, the FM fingerprints contained 10 RSSI 
samples from 50 FM stations for the room level and 45 FM 
stations for the floor level. All the collected RSSI values 
were normalized in 0…1 range and consequently the 
fingerprints at each location were averaged to obtain a single 
fingerprint for each wireless technology; missing RSSI 
readings were ignored in the averaging procedure. RSSI 
values for the beacons that were not visible at a location 
were set to zero. Localization performance has been 
evaluated with the kNN approach using same-device 
different-day datasets. 

The results are presented in Figure 7. In the room 
environment, FM demonstrated the lowest median error 
(0.9 m) in comparison to other localization technologies. At 
higher probability levels, FM performance was comparable 
to Wi-Fi (4.0 m at 95% probability). For the GSM approach, 
median error was comparable to Wi-Fi, however at higher 
probabilities GSM accuracy was lower in comparison to 
other technologies. 

At larger scale environment, the ranking of the 
positioning systems notably changes. While Wi-Fi accuracy 
remains almost the same (3.6 m at 95% probability), the 
performance of the localization technologies based on 
external infrastructure drops significantly. Although the FM-
based system was able to correctly recognize 52% of 
locations, its 95

th
 percentile error increased to 34.6 m. The 

GSM approach, in turn, showed even higher degradation of 
performance (48 m at 95

th
 percentile). GSM results are 

consistent with a previous report about 6-strongest-cell GSM 
indoor localization [17]. 

Therefore, the above results demonstrate that while Wi-
Fi fingerprinting exhibits stable performance in both settings, 

FM localization provides higher accuracy in small confined 
environments, while at a larger scale the performance drops. 
In the section that follows we analyze possible reasons of 
such behavior. 

F. Analysis of results 

The signal fingerprinting approach relies on the fact that 
radio signals vary depending on location. This dependency, 
however, includes several components, main of which are 
large-scale and small-scale variations [5,18]. Large-scale 
variations are caused by the fact that the signal intensity is 
inversely proportional to the square of transmitter-to-receiver 
distance (free-space path loss) [10, p. 11]. Small-scale 
variations, in turn, happen due to multipath propagation of 
the radio signals caused by radio wave interactions 
(reflection, diffraction, interference) with indoor objects [5]. 
Small-scale variations occur at distances comparable to wave 
length (~0.12 m for Wi-Fi, ~3 m for FM). 

Now, we consider the role of small-scale and large-scale 
variations in FM and Wi-Fi based indoor localization. 

Wi-Fi access points are typically installed within the 
indoor environment (building) where they are used; they 
have a limited transmission power and limited coverage. 
Therefore, Wi-Fi RSSI can noticeably change within few 
meters due only to free-space path loss [18]. In turn, small-
scale variations of Wi-Fi signals (~12 cm wavelength) can be 
considered as a noise superimposed on the large-scale 
variations (see Figure 8a). Thus, in both experimental 
environments Wi-Fi localization relied mainly on large-scale 
variations and therefore demonstrated similar performance in 
room and floor scale. 

FM radio stations, in contrast, have significantly higher 
transmission power and coverage. They are typically located 
at a considerable distance from listeners, so that received 
signals correspond to the almost flat tail of the free-space 
path loss curve (see Figure 8a). As a result, even substantial 
changes in distance vary the free-space path loss only 
slightly; so, large-scale variations of ambient FM radio 
signals are minimal at indoor distances of several meters. In 
contrast, small-scale variations play a significant role in 
small indoor areas, such as rooms, due to the large wave 
length of FM radio waves (~3 m). In a small confined area, 
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Figure 7. Comparison of FM, Wi-Fi and GSM positioning 

accuracy. 
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Figure 8. An example of spatial RSSI distribution for Wi-Fi 

and FM radio waves in a large-scale (a) and  

small-scale (b) indoor environment. 



the small-scale variations create unique enough signal 
distribution patterns, which results in high accuracy of the 
fingerprint-based localization (Figure 8b). In larger 
environments, however, the patterns of small-scale variations 
are ambiguous (Figure 8a) and the localization performance 
decreases. 

In terms of signal variation, GSM base stations are 
similar to FM stations: they are situated at a considerable 
distance from the mobile devices, and have a medium 
coverage. Thus, large-scale variations of GSM signals are 
likely to be more expressed than for FM, but less than for 
Wi-Fi. The small-scale variations of GSM signals have a 
scale of 0.3 m (for 900 MHz GSM band), and signal patterns 
might become ambiguous even in a rather small area. On the 
other hand, a regular GSM phone reports RSSI of up to 7 
strongest nearby stations, while FM fingerprints may contain 
dozens of channels and thus provide better localization 
accuracy (see Section III.C). 

IV. POWER CONSUMPTION 

In typical ubiquitous computing applications, available 
battery power is a major limitation that determines sampling 
rate, data collection length and general usability of an 
application. Therefore, modules with low power 
requirements not only increase the amount of data that can be 
collected, but also allow long-term monitoring, while having 
a minimal impact on user’s device. Considering the 
importance of power consumption, we measured the battery 
life of a mobile device in FM and Wi-Fi localization modes. 

The experiments were carried out on a Samsung Omnia2 
device. During the tests, the phone periodically acquired 
location fingerprint and stored it in a database. It was not 
possible to acquire GSM RSSI because the device did not 
provide an access to the phone module. However, the base 
stations are automatically queried by the GSM module for its 
internal operation and no special software-initiated scanning 
is required (in contrast to FM and Wi-Fi). Therefore, battery 
life in GSM mode was estimated by leaving the device with 
enabled GSM module at a place with a medium signal level. 
During the tests, the device was kept in an “unattended” 
power state [27], with screen and unused wireless modules 
turned off. The tests started with a fully charged battery and 
continued until the device run out of power and turned itself 
off. The baseline battery performance was acquired with all 
the wireless modules switched off. 

Figure 9 presents the results of battery life measurements 
in FM and Wi-Fi fingerprinting modes for different time 
intervals between consecutive fingerprints. It was not 
possible to evaluate Wi-Fi performance with 1 s update 
period, as the Wi-Fi driver became unstable at high sampling 
rates and often crashed. From the general trend, however, it 
is evident that the result would have been less than 7.4 h, 
which is still significantly below the 27.9 h demonstrated by 
FM with 3 beacons. With 10 or more seconds between scans, 
the FM reaches its maximum performance, providing only 
1.3 h (3%) shorter battery life in comparison to the baseline. 
In contrast to FM, Wi-Fi puts a significant load on the 
battery, and demonstrates only 7.4 h and 12.6 h battery life 
with 10 s and 20 s interval, respectively. 

Overall, FM demonstrates superior power efficiency, 
providing 2.6 to 5.5 times longer battery life than Wi-Fi and 
closely approaching the baseline maximum. 

V. CONCLUSION 

This paper presented an investigation and evaluation of 
FM broadcasting stations as an alternative for indoor 
localization. The experimental results shown have 
demonstrated the feasibility of indoor localization using 
broadcasting FM radio stations. We have provided an 
experimental evaluation of limitations of external 
infrastructure (such as FM or GSM) when the localization 
area increases, and complemented it with an analysis of the 
location fingerprints dependence on signal wave lengths. We 
have also experimentally verified that FM receivers have 
significantly lower power consumption than Wi-Fi modules 
and provide 2.6 to 5.5 times longer battery life in localization 
mode. While FM radio technology in our experiments 
required headphones to serve as an antenna, this is not a 
fundamental limitation since certain devices (such as 
portable MP3 players) are typically used with headphones; 
moreover, FM tuner chips are sensitive enough to be used 
with embedded antennas [28]; and finally, there are already 
devices on the market with internal FM antennas (for 
example, Nokia 5030). 

This work is the first to investigate indoor localization 
using FM broadcasting stations and thus a number of future 
research directions remain to be followed, including the 
influence of user facing direction, device holding position or 
antenna configuration on RSSI readings. 
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