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Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural
to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such
navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metro-
politan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of
a limit associated with cognitive overload and caused by a large amount of information that needs to be processed.
In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for
determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which
represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not
consist of more than 250 connection points to be easily readable. We also show that including connections with
other transportation modes dramatically increases the information needed to navigate in multilayer transportation
networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit.
Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, conse-
quently, the traditional view of navigation in cities has to be revised substantially.
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INTRODUCTION

The number of “megacities”—urban areas in which the human pop-
ulation is larger than 10 million—has tripled since 1990 (1). New York
City (NYC), one of the first megacities, reached that level in the 1950s,
and the world now has almost 30 megacities, which together include
roughly half a billion inhabitants. The growth of such large urban
areas usually also includes the development of transportation infra-
structure and an increase in the number and use of different transpor-
tation modes (2, 3). For example, about 80% of the cities with human
populations larger than 5 million have a subway system (4). This
leads to a natural question: Is navigating transportation systems in
very large cities too difficult for humans (5)? Moreover, how does
one quantitatively characterize this difficulty?

It has long been recognized that humans have intrinsic cognitive
limits for processing information (6). In particular, it has been sug-
gested that an individual can maintain relationships only on the order
of 150 stable relationships (7, 8). This “Dunbar number” was first pro-
posed in the 1990s by the British anthropologist Robin Dunbar by
extrapolating results about the correlations of brain sizes with the typ-
ical sizes of social groups for various primates. Although it is still con-
troversial, these results have been supported by subsequent studies of,
for example, traditional human societies (9) and microblogging (10).

When navigating for the first time between two unfamiliar places
and having a transportation map as one’s only support, a traveler has
to compare different path options to find an optimal route. In contrast
to the schematization of partially familiar routes (11), here a traveler
does not need to simultaneously visualize the whole route; it is suffi-
cient to identify and keep track of the position of the connecting
stations on a map. Therefore, a first important point to consider is that
humans can track information for a maximum of about four objects in
their visual working memory (12). This implies that a person can easily
keep inmind the key locations (origin, destination, and connection points)
for trips with no more than two connections (which corresponds ex-
actly to four different points). In addition, recent studies on visual
search strategies (13, 14) have shown a transition in search strategies be-
tween the simple cases of the Stuttgart and Hong Kong metropolitan
networks and the case of Paris, which has one of the most complicated
transportation networks in the world. The time needed to find a route
in a transportation network grows with the complexity of its map, and
the pattern of eye fixations also changes from following metro lines to
a random scattering of eye focus all over the map (13). A similar tran-
sition from directional to isotropic random search has been observed for
the visual search of hidden objects with an increasing number of distrac-
tors (15). The ability to manage complex “mental maps” is thus limited,
and only extensive training on spatial navigation can push this limit with
morphological changes in the hippocampus (16). Human-constructed
environments have far exceeded these limits, and it is interesting to ask
whether there is a navigation analog for the Dunbar number and whether
there exists a cognitive limit to human navigation ability such that it
becomes necessary to rely on artificial systems to navigate in transporta-
tion systems in large cities. If such a cognitive limit exists, what is it? In
this paper, we answer this question using an information-processing per-
spective (6) to characterize the difficulty of navigating in urban transpor-
tation networks. We use a measure of “information search” associated with
a trip that goes from one route to another (17). In most networks, many
different paths connect a pair of nodes, and one generally seeks a fastest
available path (which is not necessarily unique) that minimizes the total
time to reach a destination. However, it tends to be more natural for
most individuals to instead consider a “simplest path,” which has the
minimal number of connections (see Fig. 1) (18).

Rosvall et al. (17) proposed a measure for the information needed
to encode a shortest path from a route s to another route t. However,
1 of 7

http://advances.sciencemag.org/


R E S EARCH ART I C L E

 on M
arch 11, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

the amount of necessary information can depend strongly on the ini-
tial and final nodes, and we consider a trip from an origin node i in
route s to a destination node j in route t. This trip is embedded in real
space; among all of the possible simplest paths (17), we pick a fastest
path p(i, s; j, t), which can differ from an actual fastest path between i
and j (see Fig. 1A). In computing the travel time of a trip, we neglect the
contribution of walking and waiting times (2). However, the choice of a
simplest path already tends toward the minimization of such transfer
costs, which strongly influence a traveler’s decisions (19).

The total information needed for determining a fastest simplest
path is

S i; s; j; tð Þ ¼ −log2
1

ks
∏

n∈pði;s; j;tÞ
1

kn − 1

 !
ð1Þ

where p(i, s; j, t) is the sequence of routes needed for connecting i in
route s to j in route t. The term ks is the number of routes connected
to s. At each node along a path, n ∈ p(i, s; j; t), with n ≠ t, and one has
a choice between kn − 1 routes. The idea behind Eq. 1 is that when
tracking a trip along a map (with the eyes or a finger), the connections
that one has to exclude represent—similarly to the number of distractors
in visual search tasks (15)—the information that has to be processed
and thus temporarily stored in working memory (20). One can there-
fore construct the measure of entropy (Eq. 1) as a proxy for the accu-
mulated cognitive load that is associated with a trip, and it is analogous
to the total amount of load experienced during a task (21). For this
reason, this measure of entropy seems to be appropriate for estimating
the information limit associated with the observed transition in the
visual search strategy (13, 15).

From a map user’s perspective, the existence of several alternative
simplest paths is not necessarily a significant factor, as one only needs
Gallotti, Porter, Barthelemy Sci. Adv. 2016; 2 : e1500445 19 February 2016
a single simplest path for successful transportation from the origin to
the destination. Consequently, we use the entropy in Eq. 1 rather than
the one proposed by Rosvall et al. (17). (See Materials and Methods
for further discussion.) To produce a single summary statistic for a
path, we average S(i, s; j, t) over all nodes i ∈ s and j ∈ t (we denote
this mean using brackets 〈 · 〉) to obtain

Sðs; tÞ ¼ 〈Sði; s; j; tÞ〉 ð2Þ
which is the main quantity that we use to describe the complexity of a
trip (see fig. S1) and which will allow us to extract an empirical upper
limit to the information that humans are able to process for navigating.
RESULTS

We use the measure Sðs;tÞ to characterize the complexity of the 15
largest urban metropolitan systems in the world. From these results,
we extract an empirical upper limit (about 8 bits) to the information
that humans are able to process for navigating. We then apply this
threshold in calculations for multimodal transportation networks
and demonstrate that most trips in large cities exceed human cognitive
limits.

Information threshold
The values of Sðs;tÞ in a network tend to grow with the number C of
connections that appear in a simplest path, as well as with the mean
degree 〈k〉 of the nodes in the dual space (see figs. S2 and S3). Note
that the latter is related to the total number of connections in a net-
work. Adding new routes can thus have a negative impact from the
perspective of information. Although new routes can be useful for
shortening the simplest paths for some (s,t) pairs, new connections
BA

Fig. 1. Fastest and simplest paths in primal and dual networks. (A) In the primal network of the New York City (NYC) metropolitan system, a simplest
path (light blue) from 125th Street on line 5 (dark green) to 121st Street on line J (brown) differs significantly from a fastest path (gray). There is only one

connection for the above simplest path (Brooklyn Bridge–City Hall/Chambers Street) in Lower Manhattan. In contrast, the above fastest path needs three
connections (5→F→E→J). We compute the duration of this path using travel times from the Metropolitan Transportation Authority (MTA) Data Feeds (see
Materials and Methods). We neglect walking and waiting times. (B) In the dual space, nodes represent routes [where ACE, BDFM, and NQR are service
names (49)], and edges represent connections. A “simplest path” in the primal space is defined as a shortest path with the minimal number of edges in the
dual space (light-blue arrow). It has a length of C = 1 and occurs along the direct connection between line 5 (dark-green node) and line J (brown node).
The above fastest path in the primal space has a length of C = 3 (gray arrows) in the dual space, as one has to change lines three times. [We extracted the
schematic of the NYC metropolitan system from a map that is publicly available on Wikimedia Commons (45).]
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simultaneously increase the mean degree of a network and can make it
more difficult to navigate in a network. We thus want to estimate the
maximal possible information that an individual can reasonably pro-
cess to navigate in a transportation system. For that purpose, we con-
sider the 15 largest metropolitan networks in the world (with respect
to having the most stations). The characteristics of metropolitan net-
works were examined in previous papers (4, 22–27), and navigation
strategies have been considered in transportation networks (28–30).
For each network, we consider the shortest simplest paths with C =
2 connections. This corresponds to paths that use three different lines:
such a path starts from a source route s, connects to an intermediate
route r, and then connects to a destination route t. There are two dis-
tinct reasons for this choice: (i) visual working memory has a limit of
four objects (12), and (ii) in most of the 15 cities, two connections cor-
respond to the diameter of the dual network. From a map user’s per-
spective, after having checked that each pair of consecutive stations is
connected by a direct line, the locations to keep in mind are the origin,
the destination, and the connecting stations. These nodes correspond
to the places that one has to “highlight” on a map to record the tra-
jectory. The capacity of visual working memory thus allows one to
easily keep in mind only trajectories with two connections, leading
to a total of four stations. The value 2 is also the diameter of the dual
network in most of the metropolitan systems. In such situations, all
pairs of nodes can be connected by paths with at most two connec-
tions, staying below the working memory limit of humans.

In Fig. 2A, we show the cumulative distribution of entropies
Sðs; tjC ¼ 2Þ for these two-connection paths. We find that the NYC
metropolitan system is the largest and most complex metropolitan sys-
tem in the world; it has a maximal value of Smax ≈ 8.1 ≈ log2(274) bits.
The Paris transportation system reaches a similar value when one takes
into account the light rail and tramway system in the multilayer metro-
rail-tramway (MRT) network displayed in the official metro map (31).
Gallotti, Porter, Barthelemy Sci. Adv. 2016; 2 : e1500445 19 February 2016
Navigation in such large networks is not trivial (14), and an eye-
movement behavioral transition has been observed in systems that are
too large (that is, when there are too many connections) (13). The
value Smax for trips with two connections thus provides a natural limit
above which human cognitive capabilities are challenged and for
which it becomes extremely difficult to find a simplest path. We thus
make the reasonable choice to take Smax as the cognitive limit for
public transportation: humans need an information entropy of
Sðs;tÞ≤Smax to be able to navigate in a network successfully without
assistance from information-technology tools.

To gain a physical understanding of the cognitive limit Smax, we
estimate Sðs; tjC ¼ 2Þ for a regular lattice (similar to the one in Fig.
3) with N lines that are each connected with N/2 other lines (that
is, kr = N/2 for all r). This choice of a lattice is justified by the results
presented by Roth et al. (4), indicating that most large metropolitan
transportation networks consist of a core set of nodes with branches
radiating from it. The core is rather dense and has a peaked degree dis-
tribution, so it is reasonable to use a regular lattice for comparison. In the
dual space of the regular lattice, the degree ks of route s is equal to N/2.
For a path from route s through route r to route t, we thus obtain

Sðs; tjC ¼ 2Þ ¼ log2½ksðkr − 1Þ�≈ log2ð〈k〉2Þ ¼ log2 ∑
N

i¼1
ki=2

 !
ð3Þ

where 〈k〉 denotes the mean degree. The last equality in Eq. 3 comes from
the relation for the total degree of a regular lattice: ∑Ni¼1 ki ¼ 〈k〉N ¼
2〈k〉2. The key quantity for understanding Smax is therefore the total num-

berKtot ¼ ∑N

i¼1 ki=2 of undirected connections in the dual space (see table

S1). As we indicated in Eq. 3, this is identical to the square of the mean
degree 〈k〉2 in a lattice. For Paris, for example, we obtain 〈k〉 ≈ 9.75,
which leads to 9.752≈ 95 connections for the corresponding lattice. The
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Fig. 2. Information threshold. (A) Cumulative distribution of the information needed to encode trips with two connections in the 15 largest metropolitan
networks. The largest value occurs for the NYC metropolitan system (red solid curve), which has trips with a maximum of S ≈ 8.1 bits. Among the 15
max

networks, the Hong Kong (red dashed curve) and Beijing (black solid curve) metropolitan networks have the smallest number of total connections and need
the smallest amount of information for navigation. The Paris MRT (Metropolitan, Light Rail, and Tramway) network (orange dashed-dotted curve) from the
officialmetromap (33) includes three transportationmodes (which aremanaged by two different companies) and reaches values that are similar to those for
the (larger) NYC metropolitan system. (B) Information threshold versus total number of connections in the dual space. This plot illustrates that the average
amount of information needed to encode trips with two connections is strongly correlated with the total number of connections in the dual network, as can
be predicted for a square lattice (seeMaterials andMethods). See table S1 for the definitions of the abbreviations. The color code is the same as in (A), and the
red solid line represents the square-lattice result Sðs; tjC ¼ 2Þ ¼ log2ðKtotÞ. This relationship permits one to associate the information threshold Smax with
the cognitive threshold T ¼ 2Smax , which one can interpret as the maximum number T of intraroute connections that can be represented on a map.
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actual Paris metropolitan network has a total of 78 connections, and the
difference comes from the fact that the real network is not a perfectly
regular lattice. At this stage, it is important to make two remarks. First,
the apparently paradoxical fact that the total information grows with size
for regular lattices while, intuitively, the complexity of finding a path
stays constant is specific to the case in which there is an “algorithm”
to find the route. Indeed, in perfectly regular rectangular (that is, Carte-
sian) grids, one needs to make at most two turns to find a desired route.
Second, drawing a parallel with an individual navigating a bifurcating
tree from the root to a terminal node while traversing eight bi-
furcation points (and thus 255 internal nodes), the value of 8 bits
as a limit appears to be consistent with Miller’s “magic number” (6, 32).
This “Miller law” also limits the number of binary decisions that can
be memorized in sequence to a value that has been observed to be
about 7 ± 2.

In Fig. 2B, we test Eq. 3 with the 15 largest metropolitan networks.
Our calculation shows that the total degree in the dual space, which is
related to the total number of connections in a network, is the main
factor for understanding the information entropy of these systems. We
also test this relation for the temporal evolution of the Paris metropolitan
network, and we show that the number ∑N

i¼1 ki=2 of connections scales
as (N/2)2 for the historical growth from N = 1 to N = 14 routes (see fig.
S4). Equation 3 allows us to translate the information limit of 8 bits into
a limit on the number T of intraroute connections S = log2(T). The
value of T also corresponds to the number of distractors to be ex-
cluded for the most complex trips (with C(s,t) = 2). This process of
exclusion thus demands progressive information integration, which
causes cognitive overload. Evidence for the existence of such a cogni-
tive threshold is the change in search strategy observed in eye-tracking
experiments (13, 15). The value T ≈ 250 represents the worst-case
scenario in the world’s largest metropolitan network (i.e., in NYC).
It thus overestimates the values at which the transition occurs. Indeed,
the Paris MRT network, for which the strategy change was observed in
Burch et al. (13), has Ktot ≈ 162. The quantity T has a similar order of
magnitude as the Dunbar number, an extensively studied cognitive limit
for the size of a friendship circle andwhich seems to lie in the range between
100 and 200. See Gonçalves et al. (10) for a recent discussion of this topic.

Effects of multimodal couplings on the information
In our discussion above, we estimated the cognitive threshold for the
most complex paths in the 15 largest metropolitan networks. We now
consider the effects of including other transportation modes (for ex-
Gallotti, Porter, Barthelemy Sci. Adv. 2016; 2 : e1500445 19 February 2016
ample, buses and trams). The effects of intermodal coupling are sig-
nificant (2, 33), and the natural framework is a multilayer network
(34, 35), which associates each transportation mode with a different
“layer” in a network and where interchanges (that is, connection points)
between different modes are represented by interlayer edges. As we
discussed in Materials and Methods, a major difficulty is obtaining
data for different modes for a given city, as this type of data is not
easily available. However, we were able to combine multiple data
sources for large cities on three different continents: NYC, Paris,
and Tokyo (see table S2).

The distribution of Sðs; tÞ is a superposition of peaks associated
with different values of C (see fig. S2). By comparing the distribution
of Sðs; tÞ for the (monolayer) bus network and the full multilayer
transportation network, we can distinguish two competing effects of
multimodality: (i) it tends to reduce the number C of connections and
thereby reduces S, and (ii) it increases S because new routes increase
the node degrees in the dual space (see fig. S3). However, these two
contributions do not compensate for each other. In Fig. 4, we show
the cumulative distribution FðSðs; tÞÞ of information entropy values
for the NYC, Paris, and Tokyo multimodal (that is, multilayer) trans-
portation systems. We present the corresponding probability densities
in fig. S5.

We find that fewer than approximately 17% (we obtain this max-
imum value for Tokyo) of the trips are below the threshold Smax.
These results imply that more than 80% of the trajectories in the
complete public transportation networks of these major cities require
more information than the most complicated trajectory in the largest
Fig. 4. Information entropy of multilayer networks. The solid curves
represent the cumulative distributions of Sðs;tÞ for multilayer networks that

include a metro layer for NYC, Paris, and Tokyo. (We associate one layer
with bus routes and another layer with metro lines.) Most of the trips re-
quire more information than the cognitive limit Smax ≈ 8.1. The fractions of
trips under this threshold are as follows: 15.6% for NYC, 10.7% for Paris, and
16.6% for Tokyo. The dashed curves are associated with all possible paths
in a metro layer. In this case, the amount of information is always under the
threshold, except for Paris, which includes trips with C = 3 (see table S3).
Note that the threshold value lies in a relatively stable part of all three
cumulative distributions, suggesting that our results are robust with respect
to small variations of the threshold.
Fig. 3. Primal (left) and dual (right) networks for a square lattice. In
this example, the lattice has N = 8 routes. Each route has k = N/2 = 4 con-

nections, so the total number of connections is Ktot = k2 = 16. In the dual
network, the four east–west routes (A to D) and the four north–south
routes (E to H) yield a graph with a diameter of 2.
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metropolitan networks. As shown in the Supplementary Materials, the
other 20% corresponds to pairs of nodes for which a trip has essentially
one connection (for NYC) or at most two connections (for Paris and
Tokyo), as the simplest paths that carry a small amount of information
are those that avoid traversing too many major hubs (see table S4 and
fig. S6). The number of connections acting as distractors in the case of
the Paris MRT is already so large that it has a crucial impact on route
search [it takes roughly 30 s, on average, for such a search (14)], and
the complexity of the bus layer (and therefore of the coupled metropol-
itan and bus system) will therefore exceed human cognitive capacity.
Consequently, traditional maps that represent all existing bus routes
have a very limited utility. This result thus calls for a user-friendly
way to present and use bus routes. For example, unwiring some bus-
bus connections lowers the information and leads to the idea that a
design centered around the metro layer could be efficient. However,
further work is needed to reach an efficient, “optimal” design from a
user’s perspective.

Finally, someone can choose to take a simplest path that is not
necessarily also a shortest path. When extracting information from a
map, an individual is performing a task based on a heuristic. Such a
heuristic could limit the set of objects and details that receive focused at-
tention. This, in turn, limits the set that is perceived and remembered
(36). For example, one can try to find an optimal path by separately
considering different transportation modes. This approach may be cog-
nitively easier than considering all modes, though the price to pay for such
a strategy includes a greater chance of settling for a suboptimal tra-
jectory (which is neither simplest nor shortest), as an optimal trajectory
is, by definition, computed on a full multilayer transportation network.
 on M
arch 11, 2021

ciencem
ag.org/
DISCUSSION

Human cognitive capacity is limited, and cities and their transporta-
tion networks have grown to a point that they have reached a level of
complexity that is beyond humans’ processing capability to navigate in
them. In particular, the search for a simplest path becomes inefficient
when multimodality is important and when a transportation system has
too many interconnections. This occurs because interconnections play
two crucial roles in the search for a path: they are both targets and dis-
tractors. The identification of possible interchange points is a key and
extremely time-consuming process in a route-finding task (13). As with
the case of hidden objects (15), one can represent the difficulty of the
search using the number of distractors, which for a map are all possible
interchanges. We have found that, in the largest cities, the addition of
bus routes with maps that are already too complicated to be used easily
by travelers implies that the cognitive limit to urban navigation is ex-
ceeded for multimodal transportation systems.

We have estimated the cognitive threshold value to be on the order
of T ≈ 250 connections (that is, approximately 8 bits), which represents
the worst-case scenario for the most complex trips in the largest met-
ropolitan networks. This exceeds the behavioral transition, beyond
which humans have difficulty navigating on their own (15). This result
has some experimental support (13, 14), and we hope that our paper
will encourage more experimental investigations to achieve a better
understanding of how the complex content of multilayer networks
limits the unassisted use of available information.

The quantity T has a similar interpretation and a similar order of
magnitude as the Dunbar number, and our results can thus be con-
Gallotti, Porter, Barthelemy Sci. Adv. 2016; 2 : e1500445 19 February 2016
strued as evidence to suggest the existence of a “transportation Dunbar
number” for processing complex maps. Although the value of T repre-
sents an upper bound, it allows us to demonstrate the existence of a huge
gap between the amount of information that humans can easily process
(Ktot≲ 250) and the actual amount of information on multimodal trans-
portation networks in large cities (Ktot ≳ 1800; see table S2). Indeed, the
growth of transportation systems has yielded networks that are so entan-
gled with each other and so complicated that a visual representation on a
map becomes too complex and ultimately useless. Our results imply that
maximizing the number of intersections between lines, which minimizes
transfers, is contrary to the goal of having an easily usable transportation
system. The information-technology tools provided by companies and
transportation agencies to help people navigate in transportation systems
will soon become necessary in all large cities. Our analysis highlights the
fact that humans need to integrate an excessive amount of information
for urban navigation, and we therefore need to seek new solutions that
will help them navigate in megacities. Redesigning maps and represen-
tations of transportation networks (37), as well as improving
information-technology tools (38) that help to decrease the amount
of information to a level below the human processing threshold, thus
appears to be crucial for an efficient use of services provided by trans-
portation agencies.
MATERIALS AND METHODS

Data for the world’s 15 largest metropolitan
transportation networks
The data that we used were extracted fromWikipedia and can be found
online (39). The data describe the lines in the metropolitan networks as
they were in 2009 and were used in a previous publication (4). The data
for each metropolitan system yield a spatial network (40). Each station
has geographical coordinates, and the edges connect consecutive
stations on a metro line. The diagnostic that we used to determine a
shortest simplest path is the sum of the traveling times between stops.

Paris
The data that we used to construct the Paris multilayer transportation
network (34, 35) were obtained from the Régie Autonome des
Transports Parisiens (RATP) (41) and the Société Nationale des Che-
mins de fer Français (SNCF) (42). Both data sets are in GTFS (General
Transit Feed Specification) format. We extracted the bus layer from
RATP data. To reproduce all of the information available in the Paris
Metro map (31), we merged the metro and tramway data from the
RATP with the light rail and tramway data from the SNCF. This ag-
gregation yielded what we call the “MRT” layer, which we used as a
single metro layer. We distinguished services that went in opposite di-
rections or toward different branches, and we were able to identify
them as a particular route because they shared the same short name. We
used the services that were available on 26 May 2014 (a Monday), and we
excluded any bus route that was completely subsumed by another route.

The RATP data provide extremely detailed transfer times between
stops. We used this information to reconstruct connections between
routes. With the exception of connections in the central station Châtelet–
Les Halles, we ignored transfers that take longer than 8 min and
considered the two corresponding nodes as different entities. By study-
ing the cumulative distribution for the walking distances in these con-
nections data, we found that the 99th percentile corresponds roughly
5 of 7
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to dw = 250 m. More precisely, F(250 m) ≈ 0.986. Motivated by this
calculation, we allowed a maximum walking distance of dw = 250 m
for the coarse-graining procedure that we needed to construct the
multilayer networks in NYC and Tokyo.

The transfer data for Paris allow a more accurate method than the
data for NYC and Tokyo. We constructed a transfer network in which
(i) a transfer is defined between two stops and (ii) two stops are lo-
cated in the same geographical position. We associated a single node
with each connected component of the transfer network, and each
isolated stop constitutes a single node. We weighted the edges using
travel times. Relatively large connection areas emerged from our choices.
They correctly reflect possible choices on the Paris Metro map that are
suggested to travelers (31). Intrastation walking paths are represented as
white edges.

Finally, we also coupled nodes if they were closer than dw = 250 m to
each other and either (i) they both came from the RATP data and were
labeled with the same name or (ii) at least one node came from the
SNCF data (where transfer times between lines were not provided). Intra-
route connections are possible if routes share the same node. A trip length
is equal to the sum of the mean travel times between consecutive stops.

New York City
We constructed the NYC multilayer network with data from the Metro-
politan Transportation Authority (MTA) Data Feeds (43), which provide
a snapshot of their services on different days using the GTFS format
(44). We used the services that were available on 1 December 2014 (a
Monday). For the metro layer, we excluded six routes [which correspond
to services (45)] that represent shuttles or other special services.

For the bus layer, we integrated the data from the five NYC
boroughs with the multiborough data from the subsidiary MTA Bus
Company. We performed a coarse-graining procedure in which (i) we
coupled bus stops to metro locations if they lie within a walking dis-
tance of dw = 250 m and then (ii) combined bus stops into a single
entity if the distance between them is less than dw. We therefore
allowed intraroute connections if two routes share the same stop
(where coupled stops count as a single stop). As with Paris, a trip
length is given by the sum of the mean travel times between consec-
utive stops. We extracted the NYC metro schematic of Fig. 1 from a
map that is publicly available in Wikimedia Commons (46).

Tokyo
The Tokyo metro data set, which we extracted from Wikipedia and
can be found online (39), allowed us to study another of the world’s
largest metropolitan networks. The bus data for Tokyo (for 2010) are
provided freely by the Japanese Ministry of Land, Infrastructure,
Transport, and Tourism (47). We used only the Toei bus lines (48),
which serve central Tokyo.

This data set associates stops with bus routes but gives no infor-
mation on the topology of the line. We reconstructed an approximate
topology by generating a minimal spanning tree (49) among all stops
of a route. We defined the intraroute connections using the same coarse-
graining procedure as for NYC.We again combined nodes that are with-
in a walking distance of dw = 250 m from each other. We had no
information on the travel times along the edges, so we estimated them
from the trip length and used typical transportation speeds from the bus
and metropolitan systems in the Paris data. Because one can approxi-
mate each layer’s speed using a log-normal distribution, we used the
log average v ¼ exp〈logðvÞ〉 as the typical speed associated with each
Gallotti, Porter, Barthelemy Sci. Adv. 2016; 2 : e1500445 19 February 2016
mode of transportation. The values that we found were vB≈ 14.0 km/hour
for the bus layer and vM ≈ 23.4 km/hour for the metro layer.

Definitions of paths and information entropy
From the perspective of information processing, one can quantify the
difficulty of navigating in an urban transportation network using a
measure of “search information” S (17). This measure represents the
amount of information that is needed to encode a path from a route s
to a route t that follows a simplest path. We defined “simplest path” as
a shortest path in the dual space of a transportation network. In the
present context, “dual space” [which is also sometimes called an
“information network” (17)] is the network in which the nodes repre-
sent routes and the edges represent possible intersections (or connec-
tions between different lines) among those routes. There can be many
degenerate simplest paths between two routes, and one can define the
information entropy computed on these paths to be (17)

SD s; tð Þ ¼ −log2 ∑
fpðs;tÞg

1

ks
∏

n∈fpðs;tÞg

1

kn − 1

 !#"
ð4Þ

where the set {p(s,t)} includes all D(s,t) degenerate simplest paths be-
tween a route s and a route t. The quantity ks indicates the total number
of connections that emanate from a route s. On a path, one has a choice
between kn − 1 routes (that is, excluding the route from which the path
emanates).

When one is seeking an optimal trajectory, degeneracy is not nec-
essarily a significant factor, and we focused on a trip from a node i to
another node j in real space. Among all of the degenerate simplest
paths, we picked a shortest one p(s, t, i, j) and considered its entropy

Sði; s; j; tÞ ¼ log2ðksÞ þ ∑
n∈fpðs;t;i;jÞg

log2ðkn − 1Þ ð5Þ

Averaging over all nodes i ∈ s and j ∈ t yields the main quantity that
we used in the main text

Sðs; tÞ ¼ 〈Sðs; t; i; jÞ〉 ð6Þ

In theory, it is also possible to weight this mean using real flows. Un-
fortunately, for this particular case, traditional data sources are insuf-
ficient, as they tend to describe the mobility of commuters, who do
not necessarily rely on maps for their daily journeys.

If we assume that all of the degenerate paths contribute equally
to the entropy, then we obtain the following approximate relation
between the entropies

Sðs; tÞ≈SDðs; tÞ þ log2½Dðs; tÞ� ð7Þ
Deviations from the (approximate) equality (7) indicate differences
between the various degenerate paths (see fig. S7).

From a map user’s perspective, the existence of several alternative
simplest paths is not necessarily a significant factor, as one only needs
a single simplest path for successful transportation from an origin
to a destination. The natural choice is a fastest simplest path, which
is generally unique for real values of travel times. Consequently,
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we used the entropy in Eq. 1 rather than the one proposed by Rosvall
et al. (17).
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