
  

  

Abstract— The level of social activity is linked to the overall 

wellbeing and to various disorders, including stress. In this 

regard, a myriad of automatic solutions for monitoring social 

interactions have been proposed, usually including audio data 

analysis. Such approaches often face legal and ethical issues 

and they may also raise privacy concerns in monitored subjects 

thus affecting their natural behaviour. In this paper we present 

an accelerometer-based speech detection which does not 

require capturing sensitive data while being an easily 

applicable and a cost-effective solution.  

I. INTRODUCTION 

The association between the overall wellbeing and 
behavioral patterns of individuals has been long established. 
Everyday routines, which include sleep, nutrition, exercise, 
socializing are factors that affect various health outcomes [1]. 
In particular, the correlation between social activity and 
health has been the subject of scientific investigation for 
more than a century [2]. It was demonstrated that subjects 
with a low quantity of social relationships are less healthy, 
psychologically and physically, while manifesting higher 
risks for tuberculosis, accidents, and psychiatric disorders 
such as schizophrenia [3]. On the other hand, recent studies 
showed that an increased amount of social interactions can 
improve depressive symptoms [4] [5]. Individuals who 
maintain a certain level of social engagements are shown to 
be more successful in coping with stress, and in the case of 
the elderly, they are highly functional and independent [1]. 
However, while people demonstrate awareness of the general 
recommendations regarding physical activity and diet, they 
typically neglect other factors that impact wellbeing, such as 
social activities [1]. In this regard, the participation in social 
interactions constitutes an important aspect that should be 
monitored and assessed. 

The standard methods for monitoring social interactions 
in health sciences rely on self-reports and recall surveys that 
suffer from several limitations including: 1) difficulties in 
recalling activities that occurred in the past, 2) a high effort 
for continuous long-term monitoring, 3) self-reports are 
subjective and may be affected by the current mood [6]. An 
alternative approach of engaging human observers to record 
communications in groups is inefficient particularly if the 
interactions occur in various physical locations or if the size 
of the group is large [7]. In this paper, we refer to social 
interaction as co-located, face-to-face interactions, excluding 
electronically mediated interactions such as chat, social 
networking and other kinds of electronic communication. 
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The last dozen years have brought automatic sensing 
methods for recognizing human behavior, based on 
improvements in computational power and miniaturization of 
sensing technology. Sensor-based monitoring paradigm is 
considered to be a breakthrough in the evolution of social 
behavior analysis due to its potential to overcome limitations 
of self reporting and observational methods [8]. Recognizing 
the occurrence of social interaction in an automatic way is 
typically based on sensing proximity of subjects and/or on 
detecting speech activity. Since solely physical proximity 
does not always provide enough evidence for inferring social 
interaction [9] (for example, two colleagues sitting across 
from each other in the office and not interacting), methods 
for detecting social interactions usually include audio data 
analysis. This requires the activation of microphone that is 
either mounted in a monitored area or embedded in a mobile 
device (the mobile phone [10] or specialized device such as 
Sociometer [7]). The limitations of these approaches include 
sensitivity to false positives since nearby conversations can 
be unintentionally picked up and activating microphone 
typically raises privacy concerns. Even though privacy 
sensitive recording techniques can be applied, the fact that 
microphone is activated still may raise concerns with the 
subjects, thus affecting their natural behavior. Furthermore, 
in a number of situations (for example, in public spaces or in 
the case of monitoring patients) audio data cannot be 
obtained due to legal or ethical issues [11]. A few alternative 
methods aimed to infer speech activity based on mouth 
movement, fidgeting, or gestures [11] [12] detected using 
video machine system. However, this restricts application 
scenarios to limited areas that are covered with the camera 
system while, like in the case of microphone, such approach 
may also raise privacy and ethical concerns. These reasons 
prompted us to investigate different ways for detecting 
speech activity in a mobile manner (not limiting application 
only to certain areas) aiming to provide an alternative to 
microphone-based methods commonly used by the systems 
for sensing social interactions. 

Our method for detecting speech activity is based on 
identifying another manifestation of speech different than 
voice, namely the vibration of vocal chords. The phonation-
caused vibrations spread from the area of larynx to the chest 
level, representing the exhibition of speech activity which 
can be automatically detected through the use of 
accelerometer. In the area of speech analysis, non-acoustic 
sensors were used so far to investigate speech attributes [13] 
[14], speech encoding [14], to augment communication 
possibilities in patients with special needs  [15], however to 
the best of our knowledge there is no work which used 
accelerometers to detect the status of speech in social 
interactions. Relying on an off-the-shelf accelerometer 
attached at the chest level, we developed an easily applicable 
and cost-effective solution to recognize speech activity, 
considering that accelerometers are widely available and 
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accepted sensors which have found their 
research and everyday life. Our approach 
recording of sensitive data thus it is not expected to raise 
ethical issues and privacy concerns in comparison to
microphone or video based approaches.  

II. ACCELEROMETER TO DETECT SPEECH 

A. Methodology 

Vocal chords (also known as vocal folds) are muscles 
within larynx that vibrate when air from lungs passes through 
thus producing voice [16]. The fundamental frequency of 
vocal chords vibrations depends on a variety of factors 
including age, gender and individual differences 
the age of 20 the predicted fundamental frequency remains 
approximately 100Hz for male and 200Hz for female adults 
[17]. Therefore, identifying vibrations of these fundamental 
frequencies produced by vocal chords during phonation 
pertains to speech activity detection and 
assess whether the characteristics of commercial 
accelerometer can suit this purpose. Since placing
the neck (close to the larynx area) may be obtrusive, the chest 
surface was selected as a suitable body position
already being used to place various sensors including cardio, 
respiratory and kinematic sensors. Sundeberg 
a number of factors that contribute to the chest vibrations 
during phonation and examined the distribution of 
displacement amplitude over the chest wall surface, 
demonstrating that the vibrations can be detected all over the 
chest with the highest displacement amplitude located in the 
central part of the sternum, which is the area 
place the sensor on Figure 1. This position is also convenient 
for attaching a sensor with an elastic band (similar
attaching respiratory or cardio sensors) minimi
interference with typical daily routines. 

Figure 1.   Area on the chest for placing accelerometer

B. Our Approach 

The concept of using an accelerometer for recognizing 
speech activity is based on detecting phonation
vibrations at the chest level, targeting frequency range 
approximately between 100Hz and 200Hz. On the other 
hand, it is important to examine if there are potential sources 
in everyday life that produce components in the same range 
of frequencies which can be confused with speech activity. 
One may note that daily physical activities are not expected 
to overlap with vocal chords vibrations in the freq
domain since they typically occupy frequency ranges lower 
than 20 Hz [18]. However, this investigation is focused on 
the following two aspects. Firstly, it will be evaluated 
whether the characteristics of off-the-shelf accelerometers 
(i.e. not specifically designed for detecting small vibrations) 
are sufficient for recognizing speech activity and discriminate 
it from other components in the frequency spectrum. This 
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lly designed for detecting small vibrations) 
are sufficient for recognizing speech activity and discriminate 
it from other components in the frequency spectrum. This 

concern refers mostly to low amplitudes of the chest wall 
vibrations [13] that may be similar to noise level, imperfect 
contact between the sensor and the chest, and physiologic
and acoustic differences between genders 
across all individuals. Secondly, it will be investigated 
whether other sources of vibrations encountered in everyday 
life including elevator, car, bus, train or airplane, whose 
engines provide components in higher frequency ranges that 
may result in false positives for speech detection

To evaluate the approach of detecting speech activity 
based on analyzing frequency spectrum of data acquired from 
an off-the-shelf accelerometer attached to the 
(Figure 1), the accelerometer produced 
in our experiments (coming as a part of an ECG device 
thus it was not specifically adapted to
vibrations).The specifications are the following: the range of 
±1.5 and ±6g, sensitivity of 800mV/g at 1.5g and a maximal 
sampling rate of 512Hz. According to the Nyquist
sampling theorem, the ceiling boundary frequency 
component that can be detected using this accelerometer is 
256 Hz, which fulfils the requirements for 
application (since the fundamental frequencies of vocal 
chords are approximately 100Hz for males and 200Hz for 
females). To analyze the frequency domain of
time series (square roots of the sum of the values of each axis 
x, y and z squared), the method relied on 

Transform (DFT) defined for a given sequence 

… N-1 as the sequence , r = 0, 1, … 

Frequency spectrum was analyzed in MatLab applying 
the Fast Fourier Transform (FFT) to calculate the DTF and 
then the power spectral density was computed

As expected, low amplitudes of the chest wall vibration 
were similar to the noise level thus making it difficult to 
distinguish accelerometer readings that contained speech 
from those that contained noise, only by analyzing the 
frequency spectra. In order to tackle the problem of noise, a 
simple noise cancelling strategy [21]
consists of summing frequency spectra in time
is based on the assumption that the signal components are 
always focused in the same frequency range in contrast to 
noise that is, in this case, more random. Considering time 
frames for performing power spectral density analysis, the 
best accuracy was achieved by analyzing a sum of power 
spectral densities computed separately for five consecutive 2
second long time series (corresponding to 1024 samples in 
this case). Hence, each 10-seconds frame was represented 
with the power spectral density that was a 
densities computed for each 2 seconds. 
was to recognize the presence of spectral components that 
correspond to speech with the resolution of 10 seconds. 
Processing data in 10-second time frames resulted in the 
highest accuracy regardless of the duration of the speech i.e. 
whether there was only one word spoken or a continuous talk 
of 10 seconds. Decreasing the resolution corresponded to 
lower ratio between speech amplitudes and noise levels while 
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processing data in longer time units was more likely to fail in 
detecting shorter durations of speech. 

We investigated various classification algorithms (namely 
SVM, Naïve Bayes, Naïve Bayes with kernel density 
estimation and k-NN) and parameters for characterizing the 
spectral density (namely mean, maximal, minimal, and 
integral values regarding different frequency ranges). It 
turned out that Naïve Bayes with kernel density estimator 
applied on the two parameters – integral and mean values of 
the components between 80 Hz and 256 Hz, provided the 
highest classification accuracy. Note that the classification 
selection, a choice of signal parameters, frame size for 
calculating power spectral density and the resolution cannot 
be generalized since they strongly depend on the 
accelerometer’s characteristics. In the following, we report 
the accuracy of our approach. 

III. EVALUATION RESULTS 

In total, 21 subjects participated in the speech activity 
detection experiment (11 males, 10 females; 31.8±7.6 years 
old). Each subject was asked to read out loud the article from 
the latest newspapers for at least two minutes, while having 
the accelerometer attached to the chest with an elastic band. 
We evaluated the performance of our approach separately for 
each subject through cross-validation of two sets, one 
including the frequency spectra of 10-second frames 
containing subject’s voice and the other including only 
spectra of accelerometer data samples recorded during mild 
physical activities without voice. 10 out of 11 male and 9 out 
of 10 female voices were successfully recognized, 
demonstrating that in large majority of the cases the 
accelerometer was sufficient to distinguish the frequency 
spectra of readings with and without voice despite the 
imperfect skin-sensor contact and individual subjects’ 
characteristics. 

In addition, we created a set of accelerometer data that 
contained speech activity of 19 subjects excluding 2 subjects 
that were not previously detected (overall, 2 minutes each 
subject, that is 38 minutes, divided in 10-second time frames) 
and accelerometer readings that contained physical 
movements without voice (approx. 2 hours of accelerometer 
readings that included sitting, standing and normal speed 
walking in 10-second data resolution). This was done so that 
we can build a generic speech detection model. The voice 
recognition accuracy was estimated through leave-one-out 
method of sequentially selecting accelerometer readings that 
corresponded to one subject/one activity as a test unit while 
using the rest of the set for building the model (training set 
for Naïve Bayes with KDE classification). The voice was 
correctly recognized in 93% of cases while mild physical 
activities without voice induced false positives in 19% 
(TABLE I. a). The same model was used to test 
accelerometer readings acquired in more intensive activities 
such as fast walking or running which resulted in 29% rate of 
false positives (TABLE I. b). Furthermore, we investigated 
whether some sources that may be encountered in everyday 
life including elevator (5min of data), car (30min of data), 
bus (30 min of data), train (20min of data) or airplane (1 hour 
of data) whose engines provide components in higher 
frequency ranges result in false positives in speech detection. 

It turned out that elevator, train and airplane do not present an 
additional issue for the speech recognition, causing the same 
rate of false positives as physical movements performed in 
normal conditions (TABLE I. a and TABLE I. c) while 
travelling in a car or a bus increases the occurrence of false 
positives to the rate of 32%. In addition to phonation there 
are other causes of vocal chords vibrations, which can be 
incorrectly classified as speech activity such as coughing or 
mumbling; however, their occurrence is less frequent and 
typically negligible in comparison to speech.  

Our approach demonstrates that the speech activity can be 
reliably detected in typical daily situations except in vehicles 
(such as car or bus) whose engine frequencies may result in a 
higher rate of false positives. However, this may be mitigated 
by using a different type of the accelerometer.  

TABLE I.  A) VOICE/MILD ACTIVITIES, B) VOICE/INTENSIVE 

ACTIVITIES, C) VOICE/SOURCES OF HIGHER FREQUENCIES 

a) Voice Detected No Voice Detected 

Voice  93% 7% 

Mild 

Activities 

19% 81% 

     

b) Fast Walking / 

Running 

No voice detected  

(true negatives) 

71% 

Voice detected (false positives) 29% 

 

c) Elevator Bus/ 

Car 

Train Airpla

ne 

No voice detected 

(true negatives) 

80% 68% 81% 79% 

Voice detected  

(false positives) 

20% 32% 19% 21% 

 

IV. CONCLUSION 

We presented the approach of detecting speech activity 
using an off-the-shelf accelerometer intended to identify 
another manifestation of speech which is different than voice, 
namely the vibrations of vocal chords. Our approach does not 
require recording of sensitive data thus it is not expected to 
raise privacy concerns in comparison to typical microphone-
based methods. Such an approach represents an easily 
applicable and a cost effective mobile solution for 
recognizing speech activity, considering that accelerometers 
are widely used sensors (being already commonly used for 
detecting a number of activities). The shape of already 
accepted commercial accelerometer-based solutions can suit 
also the speech recognition purpose (such as Fitbit [22]). 

The association between the level of social activity and 
the health status of individuals has been long established both 
on a theoretical and empirical basis [3]. It has been shown 
that social isolation can lead to a myriad of disorders, which 
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even presents a major risk factor for mortality [3]. In this 
regard, monitoring social activity becomes an important 
aspect for the overall wellbeing (both physical and 
psychological) assessment. We envision that the 
accelerometer-based speech detection can complement 
methods for automatic recording of social interactions, being 
an alternative to audio data analysis which may raise privacy 
concerns in subjects thus affecting their natural behaviour. 
Furthermore, considering the fact that accelerometers were 
previously used for monitoring physical activity and sleep 
(both in research [6] and in commercial applications [22]), 
which are important aspects of wellbeing, our approach can 
also complement wellbeing applications by monitoring in the 
same time the amount of speech. Encouraging healthier 
lifestyle through such applications is based on the concept of 
providing people with self-monitoring tools aiming to 
increase the awareness of their own daily routines and 
consequently their wellbeing. 

ACKNOWLEDGEMENT 

This work was supported by EU FP7 INTERSTRESS 
project – http://interstress.eu 

 

REFERENCES 

[1] N. Lane, M. Mohammod, M. Lin, X. Yang, and H. Lu, “BeWell: 

A Smartphone Application to Monitor, Model and Promote 

Wellbeing,” in 5th International Conference on Pervasive 

Computing Technologies for Healthcare (PervasiveHealth2011), 

2011. 

[2] E. Durkheim, Suicide. The Free Press, New York, 1897. 

[3] J. S. House, K. R. Landis, and D. Umberson, “Social relationships 

and health.,” Science (New York, N.Y.), vol. 241, no. 4865, pp. 

540-5, Jul. 1988. 

[4] V. Isaac, R. Stewart, S. Artero, M.-L. Ancelin, and K. Ritchie, 

“Social activity and improvement in depressive symptoms in 

older people: a prospective community cohort study.,” The 

American journal of geriatric psychiatry official journal of the 

American Association for Geriatric Psychiatry, vol. 17, no. 8, pp. 

688-696, 2009. 

[5] H. B. Bosworth, J. C. Hays, L. K. George, and D. C. Steffens, 

“Psychosocial and clinical predictors of unipolar depression 

outcome in older adults.,” International Journal of Geriatric 

Psychiatry, vol. 17, no. 3, pp. 238-246, 2002. 

[6] M. Rabbi, T. Choundhury, S. Ali, and E. Berke, “Passive and In-

situ Assessment of Mental and Physical Well-being using Mobile 

Sensors,” in 13th International Conference on Ubiquitous 

Computing (UbiComp’11), 2011. 

[7] T. Choudhury and a. Pentland, “Sensing and modeling human 

networks using the sociometer,” Seventh IEEE International 

Symposium on Wearable Computers, 2003. Proceedings., no. 

1997, pp. 216-222, 2004. 

[8] N. N. Eagle, “Machine Perception and Learning of Complex 

Social Systems,” Massachusetts Institute of Technology, 2005. 

[9] D. Wyatt, T. Choudhury, J. Keller, and J. Bilmes, “Inferring 

Colocation and Conversation Networks from Privacy-sensitive 

Audio with Implications for Computational Social Science,” in 

ACM Transactions on Intelligent Systems ans Technology, 2010. 

[10] D. Wyatt, T. Choudhury, and J. Bilmes, “Inferring colocation and 

conversation networks from privacy-sensitive audio with 

implications for computational social science,” ACM 

Transactions on Intelligent Systems and Technology (TIST), vol. 

2, no. 1, 2011. 

[11] M. Cristani, A. Pesarin, and A. Vinciarelli, “Look at who’s 

talking: Voice activity detection by automated gesture analysis,” 

in Workshop on Interactive Human Behavior Analysis in Open or 

Public Spaces, 2011. 

[12] R. Rao and T. Chen, “Cross-modal prediction in audio-visual 

communication,” in IEEE international Conference on Acoustics, 

Speech, and Signal Processing. ICASSP-96., 1996, pp. 2056–

2059. 

[13] J. Sundberg, “Chest wall vibrations in singers.,” Journal Of 

Speech And Hearing Research, vol. 26, no. 3, pp. 329-340, 1983. 

[14] T. H. Falk, J. Chan, P. Duez, G. Teachman, and T. Chau, 

“Augmentative communication based on realtime vocal cord 

vibration detection.,” IEEE transactions on neural systems and 

rehabilitation engineering : a publication of the IEEE 

Engineering in Medicine and Biology Society, vol. 18, no. 2, pp. 

159-63, Apr. 2010. 

[15] T. F. Quatieri et al., “Exploiting Nonacoustic Sensors for Speech 

Encoding,” Language, vol. 14, no. 2, pp. 533-544, 2006. 

[16] “Medicine Net.” [Online]. Available: 

http://www.medterms.com/script/main/art.asp?articlekey=6224. 

[Accessed: 15-Nov-2011]. 

[17] I. Titze, “Physiologic and acoustic differences between male and 

female,” J. Acoust. Soc. Am, pp. 1699-1707, 1989. 

[18] M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler, 

“Accelerometry: providing an integrated, practical method for 

long-term, ambulatory monitoring of human movement,” 

Physiological Measurement, vol. 25, no. 2, p. R1-R20, Apr. 2004. 

[19] “Shimmer - Wireless Sensor Platform for Wearable 

Applications.” [Online]. Available: http://www.shimmer-

research.com/p/products/sensor-units-and-modules/wireless-ecg-

sensor . [Accessed: 15-Nov-2011]. 

[20] “Linear Systems, S.M. Tan, The University of Auckland, Chapter 

9 The Discrete Fourier transform,” pp. 1-8. 

[21] B. Widrow, J. G. Jr, and J. McCool, “Adaptive noise cancelling: 

Principles and applications,” Proceedings of the IEEE, vol. 63, 

no. 12, pp. 105-112, 1975. 

[22] “Fitbit.” [Online]. Available: http://www.fitbit.com/. [Accessed: 

10-Mar-2012].  

 

2115


