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Abstract

Recent task-oriented dialogue systems learn
a model from annotated dialogues, and
such dialogues are in turn collected and
annotated so that they are consistent with
certain domain knowledge. However, in
real scenarios, domain knowledge is subject
to frequent changes, and initial training
dialogues may soon become obsolete,
resulting in a significant decrease of the
model performance. In this paper, we
investigate the relationship between training
dialogues and domain knowledge, and
propose dialogue domain adaptation, a
methodology aiming at adapting initial
training dialogues to changes intervened
in the domain knowledge. We focus on
slot-value changes (e.g., when new slot-
values are available to describe domain
entities) and define an experimental setting
for dialogue domain adaptation. First, we
show that current state-of-the-art models
for dialogue state tracking are still poorly
robust to slot-value changes of the domain
knowledge. Then, we compare different
domain adaptation strategies, showing that
simple techniques are effective to reduce the
gap between training dialogues and domain
knowledge.

1 Introduction

Conversational agents are receiving great
attention in recent years, both in research and
applications (McTear, 2020), mainly because
of the progress achieved by neural approaches
in modeling dialogue phenomena (Louvan
and Magnini, 2020), (Balaraman et al., 2021).
Particularly, we focus on task-oriented dialogue
systems (Young et al., 2010), which are able to
assist a user for specific tasks (e.g., booking a
restaurant, taking an appointment, execute
commands) in a certain conversational domain.
Such data-driven dialogue systems typically
learn a model from annotated training dialogues

(e.g., (Budzianowski et al., 2018), (Du et al.,
2020), (Price, 1990)), and such dialogues, in
turn, are collected and annotated according to
a certain domain scenario (e.g., restaurants in a
certain town, songs in a certain music data-set,
etc.). Once the model is trained, it is applied
to understand new conversations in the same
domain, or in a similar domain.

However, in real scenarios, domain knowledge
is subject to frequent changes, and initial
training dialogues may soon become obsolete,
resulting in a significant decrease in the model
performance. It is common that new domains
(e.g., RESTAURANT) are added or removed for
a certain conversational scenario, as well as
slots, slot-values and instances. Such situations
require the capacity of the dialogue system
to adapt its behaviours to domain knowledge
changes. Depending on the complexity of
the changes that occur, domain adaptation of
data-driven systems can be approached in two
directions: (i) improving the model robustness,
and (ii) adapting the training dialogues to
the new situation. While the first direction
has been largely explored through several
techniques, including transfer learning (Louvan
and Magnini, 2019), and zero-shot learning
though schema-guided models (Wu et al., 2019a;
Kim et al., 2020; Zhang et al., 2019; Heck
et al., 2020; Balaraman and Magnini, 2021), and
delexicalization (Henderson et al., 2014a,b; Yu
et al., 2020), in this paper we take the second,
less investigated, perspective, focusing on the
relation between training dialogues and domain
knowledge.

We have defined a new experimental setting
for dialogue domain adaptation, where, given
an initial conversational domain (KB-SOURCE),
available training dialogues (D-SOURCE) are
adapted to be as much as possible consistent to a
modified knowledge base (KB-TARGET), resulting



in new set of dialogues (D-TARGET). Then,
we use a state-of-the-art model for dialogue
state tracking and assess the performance of
different adaptation strategies against a gold
standard of manually adapted target dialogues.
We run a number of experiments showing that:
(i) current state-of-the-art models are very poorly
robust to changes over the domain knowledge;
(ii) a particular class of domain changes, i.e.,
slot-value changes, can be effectively addressed
through simple dialogue domain adaptation
techniques, which operate substitutions over
D-SOURCE. Finally, as part of our study,
we highlight that current component-based
evaluation settings for task-oriented dialogue
systems (i.e., slot filling, intent detection,
dialogue state tracking, utterance generation) are
not sensible to correctness of system responses,
which, instead, is crucial to assess domain
adaptability.

The paper is structured as follows. Section
2 provides basic background in task-oriented
dialogue systems. Section 3 defines the
conversational adaptation task, while in Section
4 we introduce the proposed dialogue domain
adaptation approach. Section 5 introduces the
new experimental setting, and Section 6 provides
the results of our experiments and discusses
them.

2 Task-oriented Dialogue Framework

This section provides background related to task-
oriented dialogue systems, particularly about
how domain knowledge is managed and about
dialogue state tracking.

2.1 Domain Knowledge

According to most of the recent literature
(Budzianowski et al., 2018; Bordes et al., 2017;
Mrkšić et al., 2017), we assume a task-oriented
dialogue between a system and an user,
composed of a sequence of turns {t1, t2, ...tn}.
The goal of the dialogue is to retrieve a set of
entities (possible empty) in a domain knowledge
base (K B) that satisfy the user needs. A domain
ontology O provides a schema for the K B , and
typically represents entities (e.g., RESTAURANT,
HOTEL, MOVIE) according to a pre-defined
set of slots S (e.g., FOOD, AREA, PRICE, for the
RESTAURANT domain), and values that a certain
slot can assume (e.g., EXPENSIVE, MODERATE

and CHEAP, for the slot PRICE). On the basis
of the entities defined in the domain ontology,
the application knowledge base, K B , is then
populated with instances of such entities. As in
most of the literature, we distinguish informable
slots, which the user can use to constraint the
search (e.g., AREA), and requestable slots (e.g.,
PHONENUMBER), whose values are typically
asked only when a certain entity has been
retrieved through the dialogue.

At each turn in the dialogue, both the user
and the system may refer to facts in the K B , the
user with the goal of retrieving entities matching
his/her needs, and the system to propose entities
that can help the user to achieve the dialogue
goals.

2.2 Dialogue State Tracking

In a task-oriented system a dialogue state tracker
(DST) maintains a distribution over the dialogue
states based on the dialogue history. A dialogue
state di for a turn ti is typically represented as a
set of slot-value pairs, such as {PRICE=MODERATE,
FOOD=ITALIAN}, meaning that at ti the system
assumes that the user is looking for an Italian
restaurant with a moderate price.

After being collected through Wizard of Oz,
turns of each dialogue are annotated with the
corresponding dialogue state, consisting of an
intent and a set of slot-value pairs. The following
is an example of the annotation provided in a
portion of a MultiWOZ 2.0 dialogue:

USER: I would like a moderately priced
restaurant in the west part of town.
INFORM(PRICE=MODERATE,
AREA=WEST )

SYSTEM: There are three moderately priced
restaurants in the west part of town. Do
you prefer Indian, Italian or British?
REQUEST(FOOD)

USER: Can I have the address and phone
number of the Italian location?
INFORM(PRICE=MODERATE,
AREA=WEST, FOOD=ITALIAN)
REQUEST(ADDRESS, PHONE-NUMBER)

3 Dialogue Domain Adaptation: Task
Definition

In this section we define dialogue domain
adaptation (DDA) and its core properties. In



Figure 1: Example of dialogue domain adaptation. Words in bold indicate slot-values that have been adapted.

our setting we assume an initial conversational
domain, represented in a KB-SOURCE, and
corresponding annotated training dialogues D-
SOURCE. Then, as in real application scenarios,
we assume that a number of changes occur in KB-
SOURCE, such that a new conversational domain
KB-TARGET needs to be considered. Dialogue
domain adaptation consists in the capacity to
automatically produce new annotated dialogues
D-TARGET, such that they maintain both the
linguistic structure and the linguistic variability
of the initial D-SOURCE dialogues, while, at the
same time, being consistent with the new KB-
TARGET.

Figure 1 provides a concrete example of DDA.
Here we have a source dialogue, taken from
the MultiWOZ data-set of restaurant booking
conversations, mentioning restaurants in a
certain region. Notice that it is implicitly assumed
that the system responses are true facts in a
KB-SOURCE (e.g., if the system says What about
Eraina?, it means that KB-SOURCE contains a
restaurant named Eraina). However, this might
not be true in KB-TARGET, where the Eraina
restaurant might not exist anymore. The target
dialogue in Figure 1 is basically the same dialogue
as the source dialogue, although adapted to be
consistent with a KB-TARGET. DDA focuses
on the automatic generation of such D-TARGET

dialogues starting from D-SOURCE dialogues.

In the rest of the section we consider three core
characteristics that affect DDA: domain changes,
dialogue internal coherence, and KB-dialogue
adherence.

3.1 Domain Changes

DDA strongly depends on the amount and types
of changes that differentiate KB-SOURCE from
KB-TARGET. Intuitively, the more the changes,
the more the difficulty to adapt D-SOURCE to
dialogues consistent to KB-TARGET.

As described in Section 2, we assume that
domain knowledge is represented through a
domain ontology, providing a schema that
describes entities with slots and corresponding
slot-values, and through a knowledge base,
providing instances of domain entities.
Accordingly, changes in domain knowledge may
occur in four cases: (i) a domain is introduced
or removed (e.g., adding HOTEL); (ii) a slot for a
domain is introduced or removed (e.g., adding
PARKING among the slots for RESTAURANT); (iii)
a slot-value for an existing slot is introduced or
removed (e.g., adding TUSCAN as slot-value for
the slot FOOD of the RESTAURANT domain); (iv)
an instance for a certain domain is introduced
or removed (e.g., adding a new restaurant like
BELLA NAPOLI with its features). In a concrete
situation, such changes may occur either in an
incremental way, as small changes of the domain
knowledge reflecting modifications of the world,
or as a consequence of a domain shift, when, for
instance, a dialogue system is moved from one
city to another.

In this paper we focus on slot-value changes,
and we assume that, while moving from KB-
SOURCE to KB-TARGET, both domains, slot names
and number of instances are kept without any
change.



3.2 Dialogue Internal Coherence

Human collected dialogues (as D-SOURCE

dialogues) possess an internal coherence that
needs to be preserved in D-TARGET dialogues. As
an example, in the source dialogue in Figure 1,
we assume that the Eraina restaurant mentioned
by the system is coherent with the request of the
user for a european restaurant. We assume that
co-reference between anaphoric expressions and
their references (e.g., those on the D-SOURCE)
are kept consistent within the scope of a
dialogue. Similarly, language variations (e.g.,
using different spellings for referencing the same
entity) should be used consistently in the same
dialogue.

Moreover, the semantic annotations of the
dialogues need to respect the references of the
utterance, even when anaphoric expressions
occur. For example, if the user says I want
to book a table on the same day as my train
arrival, the annotation for "booking-day" has to
be consistent to the referent mentioned in the
previous part of the conversation.

3.3 KB-Dialogue Adherence

The core assumption behind dialogue domain
adaptation is that system utterances have to
be as much as possible aligned with domain
knowledge, meaning that the system responses
should correspond to true facts in the domain
knowledge. As an example, in Figure 1,
the D-SOURCE dialogue reports that there
are 5 restaurants in KB-SOURCE with certain
characteristics, while the corresponding D-
TARGET turn has been adapted reporting 4
restaurants in the KB-TARGET.

When the dialogue collection is carried on
manually, KB-Dialogue adherence is supposed
to be checked by humans, so that each system
utterance is coherent to the KB. However, human
mistakes may occur, for instance in case crowd
workers in a Wizard of OZ setting make wrong
queries to the domain KB. The relevance of KB-
Dialogue adherence in our experimental setting
will be discussed in Section 5.

4 Substitution-based DDA

We approach the dialog domain adaptation task
described in section 4 through the substitution of
slot-values in D-SOURCE with slot-values selected
from KB-TARGET. Figure 2 depicts the elements

of our experimental setting, highlighting the
relationships between them.

The dataset D-SOURCE consists of both
training and test dialogues, with the latter
possibly containing a certain number of slot-
values that are unseen in the training set. D-
SOURCE dialogues are collected in a strong
connection with KB-SOURCE, which has been
quantified through a KB-Dialogue adherence
measure. Given a certain KB-TARGET, which
differs from KB-SOURCE for a proportion of
slot-values estimated by the KB-overlap, the KB
mapping defines the substitutions that need to
be done for every slot-value, and, on the basis of
this mapping, the adaptation process generates
the D-TARGET data-set.

Figure 2: Scheme of dialogue domain adaptation
methodology.

4.1 D-TARGET Generation

Starting from an annotated D-SOURCE dialogue,
a KB-SOURCE and a KB-TARGET, the creation of a
D-TARGET dialogue follows a general substitution-
based procedure.
For each slot-value found in D-SOURCE,
according to the semantic annotations provided
in the dataset, the first step consists of checking
whether the slot-value is known in KB-SOURCE.
If it is known, then we try to substitute it with
a corresponding slot-value in the KB-TARGET,
otherwise we keep it as it is in D-TARGET.
In order to check whether the slot-value is known
in KB-SOURCE, we compare the source slot-value
with all slot-values in KB-SOURCE that have the
same slot-name, applying a similarity function
based on a variation of the Gestalt Pattern
Matching algorithm (Black, 2004). We used a



threshold for deciding when to consider two slot-
values as equal or different. The threshold has
been determined by using a data-set of positive
and negative examples and empirically finding
the value that best separates the two sets (e.g.,
with the similarity value of 0.6, 10 slot-value pairs
are classified as equal while they are different,
and 8 pairs are classified as different while they
are the same).
If at least one slot-value in KB-TARGET with
similarity above the threshold is found, then we
apply a mapping function that selects a target
slot-value vt to be used for substitution. We have
defined three mapping functions.

RANDOM-DIALOGUE. For every slot-value vi in
a D-SOURCE dialogue, this mapping function
randomly chooses one value from all the slot-
values in the dialogue, both from User and
System, that have the same slot-name as vi . Then,
the randomly chosen slot value is assigned to vt .

RANDOM-KB. For every slot-value vi in KB-
SOURCE, this mapping function randomly
chooses one value from all the slot-values in the
KB-TARGET that have the same slot-name as vi .
Then, the randomly chosen slot value is assigned
to vt .

FREQUENCY-KB. For every slot-value vi in KB-
SOURCE, this mapping function chooses a value
in KB-TARGET that has the same slot-name
as vi , on a frequency mapping (e.g., “indian”
may correspond to “italian” if the proportion of
instances for the two slot-value is similar). Then,
the chosen slot value is assigned to vt .
In order to generate a D-TARGET dialogue, we
then go through all the slot-values in D-SOURCE

and for each of them we check if there is a vt

mapping. If a mapping is found, we perform the
substitution, otherwise we leave it as it is.

4.2 KB Overlap

We use Knowledge Bases Overlap as a measure
that determines how much KB-SOURCE is
equivalent to KB-TARGET. In order to assess
this, all unique possible values for every slot of
the domains in one KB need to be compared
to all the unique values of the same slot for the
other KB. For instance, if the slot is "restaurant-
area", KB-SOURCE may have values ["north",
"south", "east", "west"], while KB-TARGET may
have values ["centre", "north", "south"]. In such

case, the equal values for the slot would be 2, and
the total different values would be 5, resulting in a
KB overlap of 40%. In other words, the KB overlap
indicates the percentage of changes that need to
be done for changing from one KB to another.

4.3 Estimating KB-Dialogue Adherence

In accordance to what has been defined in
paragraph 3.3, we intend the KB-Dialogue
Adherence as the extent by which a dialogue is
consistent to the content of the KB. In order to
estimate this, we distinguish two cases:

• Case 1: the slot-values of one instance
mentioned in the utterance correspond to
the description of the instance in the KB
(e.g., "The Old Cambridge is an expensive
restaurant in the centre").

• Case 2: the system states a certain number of
instances that meet certain conditions, and
the KB actually contains the same number
of instances (e.g. "There are 15 hotels with 4
stars in the north").

The adherence for each case is given by the
percentage of the system’s utterances that
complies with the respective condition, and the
total KB-dialogue adherence is then calculated by
averaging the two cases.

4.4 Unseen Slot-value Ratio

Given a dialogue data-set split into training and
test set, the unseen slot-value ratio measures
the number of slot-values that are present in
the test set dialogues, but that are not present
in the training set dialogues. This is an
important indicator, which significantly affects
the performance of a model, as, for every unseen
slot-value, the model has to make a prediction
over something for which it had not been trained
on.

5 Experimental Setting

This section describes the experiments
that we carried on to test dialogue domain
adaptation based on slot-value substitutions.
The experimental setting includes an initial
KB-SOURCE and corresponding D-SOURCE

dialogues; a set of handcrafted test D-SOURCE

dialogues; few substitution algorithms that we
experimented to produce different D-TARGET

dialogues; and a state-of-art dialogue state



tracker to check the performance of different
adaptation strategies.

5.1 KB-SOURCE and D-SOURCE

Our experimental setting is derived from the
MultiWOZ 2.3 data-set (Han et al., 2020).
Experimental D-SOURCE dialogues consists of
the 10,438 MultiWOZ dialogues, with an average
of 11.06 turns per dialogue, collected with the
technique of the Wizard of Oz and spanning
over 7 domains: Train, Attraction, Restaurant,
Hotel, Police, Taxi, Hospital. Through dialogues
the user asks information about things to do
in Cambridge, such as restaurant or hotel
reservation, request for train timing, information
about an attraction, etc. The MultiWOZ
knowledge base (i.e., our KB-SOURCE) presents
an average of 525 instances per domain and 8.5
slots per instance.

Domain
Slot
Type

Slot-
value
union

Inter-
section

Overlap
%

Attrac.
inf. 24 20 83.33
all 862 139 16.13

Hosp.
inf. 118 0 0.00
all 239 0 0.00

Hotel
inf. 18 18 100
all 361 83 22.99

Police
inf. 2 0 0.00
all 7 1 14.29

Rest.
inf. 47 15 31.91
all 1173 129 11.00

Train
inf. 1226 184 15.01
all 5703 699 12.26

All by
slots

inf. 1435 237 16.52

all 8345 1051 12.59

All by
domains

inf. 2846 454 38.38

all 15828 1963 12.78

Figure 3: Slot-value overlap between Cambridge KB-
SOURCE and Pisa KB-TARGET .

5.2 KB-TARGET

We decided to experiment DDA on
a conversational domain with similar
characteristics as MultiWOZ, simulating an

application for the city of Pisa, in Italy. Pisa
presents a number of characteristics that are very
similar to Cambridge, such as the dimension,
the presence of an important University with
many departments spread all over the city, and
the characterization of being a touristic city.
The information necessary to create the Pisa
KB-TARGET has been taken from a number of
publicly available data-sets1. Starting from the
MultiWOZ KB, as discussed in Section 3, we
focused on slot-value changes, i.e., preserving all
information but slot-values. The overlap between
the resulting Pisa KB-TARGET and the initial
Cambridge KB-SOURCE is shown in Table 3. We
show both the breakdown slot-value overlap for
single domains, as well as the aggregate overlap
by slots and domains. Overall, 12.59% of the
slot-values overlaps, indicating that the domain
shift from Cambridge to Pisa has produced a
drastic change in term of slot-values.

5.3 Test D-TARGET Dialogues

We created a Pisa test set (Pisa-T), using the
test portion of the FREQUENCY KB Pisa data-set,
which has then been manually revised with the
aim of creating an error free data-set with respect
to the Pisa KB, for what regards system messages.
This means that every system utterance should
tell the truth relatively to what is contained in the
KB.
Test dialogues have been produced according
to a semi-automatic procedure. First we apply
substitutions to the original MultiWOZ test
dialogues according to the frequency strategy
described in section 4.1. In order to perform
these corrections, we automatically identified the
dialogues that showed a lack of adherence, and
we adjusted them manually, both for the system
utterances and for the semantic annotations,
making sure that all test dialogues comply with
the information reported in the respective KBs.

5.4 DDA Substitution Algorithms

We intend to compare different DDA substitution
algorithms against the no-adaptation situation
(i.e., the original MultiWOZ). We created three
different training datasets that have been used
for running experiments against the manually
constructed test set.

1http://www.datiopen.it



No Adaptation Cambridge (NO ADAPT.). This
is the original dataset from MultiWOZ 2.3. It is
the baseline for our experiments, as no dialogue
adaptation has been applied.

Random Selection from Dialogues (RANDOM-
D). This substitution strategy is intended to
preserve as much as possible the linguistic variety
of D-SOURCE in D-TARGET. The dataset has been
created in two steps: first, a preliminary Pisa data-
set has been created with a frequency strategy,
then all the slot-values in the dialogue have been
randomly shuffled.

Random Selection from KB (RANDOM-KB).
This substitution strategy is intended to take
advantage of the alignment between KB-SOURCE

and KB-TARGET, although with a basic random
selection of target slot-values. This strategy
does not preserve linguistic variety in D-SOURCE.
Starting from the Cambridge dialogues, the
substitutions have been done taking one random
slot-value from KB-TARGET, only when the
original slot-value was present in the KB-SOURCE.

Frequency-based Selection from KB (FREQ.
KB). This substitution strategy is intended to
take full advantage of the alignment between
KB-SOURCE and KB-TARGET, choosing target
slot-values that maximise their frequency in
KB-SOURCE. This strategy does not preserve
linguistic variety in D-SOURCE. Starting from
the Cambridge dialogues, the substitutions have
been done taking one slot-value, decided on
the basis of a frequency strategy, from the KB-
TARGET, only when the original slot-value was
present in the KB-SOURCE.

5.5 DST Model and Evaluation Metrics

We compare the substitution strategies presented
in Section 5.4 according to their capacity to
provide training data for a dialogue state tracker.
For all of our experiments we used the dialogue
state tracking algorithm TRADE (Wu et al., 2019a).
The algorithm is optimized for being used on
multi-domains datasets like MultiWOZ, and it
has actually been evaluated on this data-set (in
its first version) for assessing the performance
during the development of the algorithm.
The main evaluation metric is joint goal accuracy,
largely used for DST, defined as the set of
accumulated turn level goals up to a given turn in
the dialogue. It indicates the model performance

in predicting all slots in a given turn correctly
and it is computed by the fraction of turns in a
dialogue where all slots in a turn are predicted
correctly.

6 Results and Discussion

Table 1 shows a summary of the results that we
obtained from our experiments. We started from
the original MultiWOZ 2.3 data-set, referred as
"Cam" in the Table, based on the Knowledge Base
"Cam-KB". We obtained a Joint Goal Accuracy of
0.490 for "Cam", which is aligned with the value
reported for TRADE on MultiWOZ 2.3 (Wu et al.,
2019b).
The NO ADAPT. experiment aimed at reproducing
a zero adaptation situation, training a model on
D-SOURCE and testing it on D-TARGET, which in
our case was based on a KB-TARGET that differs of
around 88% from the KB-SOURCE (see paragraph
4.2). As expected, the value for the unseen slots
is much higher (more than 12 times) compared
to the original setting. This contributed to a
decrease of almost 75% in the Joint Goal Accuracy
performance.
The remaining experiments were ran on three
different D-TARGET datasets, created on the basis
of different strategies, as explained in Section
5.4. RANDOM-D was made by substituting every
source slot-value with a slot-value that was taken
randomly from a list of all unique slot-values that
are present in the dialogue. This means that for
every substitution, there was the same chance of
picking a very frequent value - such as "Indian
food" - than picking a value that occurs only once
- such as "south Caribbean spicy food". For this
reason the Joint Goal Accuracy is very low, even
if significantly better than in the no adaptation
setting. A major improvement, however, happens
when we use data-sets that are based on an
adapted strategies based on the KB.
The RANDOM-KB strategy, in fact, has a Joint Goal
Accuracy slightly lower than the original Cam
experiment, while the frequency-based strategy
even exceeds Cam with an goal accuracy over
50%. The difference in performance between
these last two data-sets can be explained by
considering that with RANDOM-KB we randomly
changed the assignment of the slot-values to be
substituted once for every dialogue, which can be
beneficial for the model capability of generalizing,
but that does not allow it to maximize the



Strategy Training Test KB
Unseen

slot-values
Joint

Accuracy
KB train

adherence
KB test

adherence

—- Cam Cam-T Cam-KB 1.22% 0.490 87.99% 91.66%

NO ADAPT. Cam Pisa-T Pisa-KB 15.19% 0.131 39.22% 100%

RANDOM-D Pisa Pisa-T Pisa-KB 2.27% 0.239 42.91% 100%

RANDOM-KB Pisa Pisa-T Pisa-KB 4.78% 0.461 39.25% 100%

FREQ. KB Pisa Pisa-T Pisa-KB 4.8% 0.502 83.96% 100%

Table 1: Results of the dialogue domain adaptation experiments. All experiments use the TRADE model. The
first row corresponds to the original MultiWOZ 2.3 dataset tested over itself. The second row is the same data-
set tested over our Pisa dataset, which has been manually ensured to be perfectly fitted to the KB-TARGET, and
which has also been used for testing the other adaptation strategies.

learning for the specific configuration of the test
set. On the other hand, FREQUENCY KB has been
built with the same strategy of the test set, thus
substituting for every slot-value one value from
the KB-TARGET that has similar frequency than
the value in the KB-SOURCE.

6.1 Linguistic Variability

The different substitutions approaches that we
have adopted, radically diverge in the linguistic
variability they produce in D-TARGET. If, on
one side, for the RANDOM-D dialogues we
substitute slot-values that are taken from the
dialogue, this way preserving their variability
(e.g., typos, synonyms, abbreviations, etc.), on the
other side, for the RANDOM-KB and FREQUENCY

KB, we always substitute slot-values that are
present in the KB, which are only in their
normalized version. This way we flatten the
linguistic variability, and significantly reduce
the total number of unique slot-values in the
dialogue. This aspect is clearly highlighted
by the different values for the Unseen Ratio.
While RANDOM-D, which has a high number
of variances for every slot-value (even if not
as high as in Cam), produces a percentage of
2.27, RANDOM-KB and FREQUENCY KB show an
Unseen Ratio percentage of more than the double.
By substituting all possible variances of a slot-
value with one unique value, in fact, the portion
of slot-values that are not seen in the training,
but that instead are present in the test, strongly
increases.

7 Conclusion

Domain knowledge in conversational agents is
subject to frequent changes, and this leads to
the necessity of continuously updating training
dialogues in order to keep them consistent with
domain knowledge. As collecting conversational
dialogues by hand requires a significant effort,
approaches for automatically updating are
required. In this paper we have proposed
dialogue domain adaptation, a methodology for
operating changes to an initial training dialogue,
so that it becomes adherent to a modified domain
knowledge. The experiments that we conducted
reveal a twofold evidence: they demonstrate
that zero adaptation results in a significant
loss in DST performance, and they show that
simple substitution-based adaptation methods
bring instead effective results. Moreover, the
experiments on different adaptation methods
showed diverse phenomena. While the best
performance is obtained using a frequency
strategy - which maps the most frequent slot-
value of the source domain to the most frequent
slot-value of the target domain - a random
strategy based on KB values performed slightly
worse, and a severe drop in the results occurred
when using a random strategy based on dialogue
values. Linguistic variability is perhaps an
important factor that emphasises this difference,
and it will be an interesting topic to be explored
in further works.
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