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a b s t r a c t 

The relationship between structure and function is of interest in many research fields involving the study of 

complex biological processes. In neuroscience in particular, the fusion of structural and functional data can help 

to understand the underlying principles of the operational networks in the brain. To address this issue, this paper 

proposes a constrained autoregressive model leading to a representation of effective connectivity that can be 

used to better understand how the structure modulates the function. Or simply, it can be used to find novel 

biomarkers characterizing groups of subjects. In practice, an initial structural connectivity representation is re- 

weighted to explain the functional co-activations. This is obtained by minimizing the reconstruction error of 

an autoregressive model constrained by the structural connectivity prior. The model has been designed to also 

include indirect connections, allowing to split direct and indirect components in the functional connectivity, and 

it can be used with raw and deconvoluted BOLD signal. 

The derived representation of dependencies was compared to the well known dynamic causal model, giving results 

closer to known ground-truth. Further evaluation of the proposed effective network was performed on two typical 

tasks. In a first experiment the direct functional dependencies were tested on a community detection problem, 

where the brain was partitioned using the effective networks across multiple subjects. In a second experiment the 

model was validated in a case-control task, which aimed at differentiating healthy subjects from individuals with 

autism spectrum disorder. Results showed that using effective connectivity leads to clusters better describing the 

functional interactions in the community detection task, while maintaining the original structural organization, 

and obtaining a better discrimination in the case-control classification task. 
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. Introduction 

Investigation of how structure influences function is present in sev-

ral fields. For example, how the function of a protein can be predicted

y its sequence and structure is a common issue in proteomics ( Lee et al.,

007; Watson et al., 2005 ). Network representation can aid this task

y bridging diverse types of data across different domains ( Oh et al.,

014 ). Indeed, networks are present at many scales from cell type-

pecific metabolic or regulatory pathways within neurons to the inter-

ctions between cortical areas, which are the focus of this paper. The

uman brain is a complex network characterized by spatially intercon-

ected regions that can be activated during specific tasks or at rest. As a

onsequence, integration of segregated regions (communities) is emerg-

ng as the most likely structural organization explaining the complexity
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f brain function (see e.g. Hermundstad et al., 2013 ). More specifically,

unctional connectivity refers to covarying activity between spatially seg-

egated brain regions measured in time series data. Structural connectiv-

ty refers to the physical tracts connecting brain regions generally esti-

ated in-vivo by diffusion weighted images. Effective connectivity , which

ombines structural and functional information, refers to the influence

hat one neural system exerts over another, either at neuronal or brain

egion level ( Friston, 2011; Hahn et al., 2019 ). In this context, we pro-

ose a model that redefines (sparsifies) structural connectivity based on

unctional information, to subsequently give a representation of effec-

ive connectivity. In this way, effective connections are the connections

hich are used to biophysical transfer activities between brain areas. 

Indeed, a deeper understanding of the relationship between the

unctional activity in different brain regions and the structural net-
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Fig. 1. Simplistic representation of the possible propagation path from one re- 

gion to another (created by using Biorender.io). Λ(0) represents a direct connec- 

tion, while Λ(2) depicts a 2-step indirect connection. 
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ork highlighted by using tractography can convey useful information

bout brain underlying principles. While in Fukushima et al. (2018) and

ermundstad et al. (2013) it has been shown that there is a signif-

cant overlap between neuroanatomical connections and correlations

f brain functional signals, it is yet to be fully understood how the

hole-brain network interacts during specific tasks or at rest, explain-

ng all structural and functional aspects especially in terms of causality.

 predictive framework based on multiple sparse linear regression was

sed to predict functional series from structural data ( Deligianni et al.,

013 ), and a platform called the “virtual brain ” was designed to sim-

late brain activity in injured and healthy subjects ( Jirsa et al., 2010 ).

ith the aim of highlighting the relationships between function and

tructural connectivity, a different approach relies on a Bayesian frame-

ork to estimate the functional connectivity using a structural graph as

 prior ( Hinne et al., 2014 ). However, results generating functional con-

ectivity from structural information have been so far challenging, due

o the fact that certain high correlations appear between brain regions

ot directly linked by structural connections. To overcome this limita-

ion approaches based on causal graphs ( Chicharro and Panzeri, 2014;

ajapakse and Zhou, 2007 ) and on propagators and neural field theory

 Robinson, 2012 ) were proposed. 

Even more restricting works have criticized the view of effective con-

ectivity as biophysical transfer of activity between brain areas, since

unctional activities might arise decoupled by structure and biophysical

ransfer for reasons yet unknown ( Medaglia et al., 2018; Preti and Van

e Ville, 2019; Tyszka et al., 2011 ). Currently, there are still ongoing

ontroversies on the definition of causal interaction between brain re-

ions due to possible confounding properties each model can involve

 Reid et al., 2019 ). Despite the criticisms of those models being mostly

easures of temporal correlations ( Bielczyk et al., 2018; Etkin, 2018 ),

mong the methods expressively based on causal interactions, the most

opular are the dynamic causal model (DCM) ( Friston, 2011 ) and the

ranger causality ( Granger, 1969 ). DCM uses an explicit model of re-

ional neural dynamics to capture changes in regional activations and

nter-regional coupling in response to stimulus or task demands. Sta-

istical inference is used to estimate parameters related to directed in-

uences between neuronal elements. While this is a powerful method

o study effective connectivity, its main limitation is the combinatorial

omplexity on the number of modeled regions and connections, which

imits its applicability to only few regions. Nevertheless, attempts to

eneralize to brain-wide have been proposed ( Razi et al., 2017 ). 

Although not directly, Granger causality also quantifies the causal in-

uence and the flow of information between regions. Despite the slow

ynamics and the regional variability of the hemodynamic response,

aking Granger causality a controversial method for the analysis of

unctional magnetic resonance images (fMRIs), it has been used to iden-

ify the dynamics of Blood-Oxygen-Level Dependent (BOLD) signal flow

etween brain regions ( Goebel et al., 2003; Liao et al., 2011 ). Notwith-

tanding, spurious influences might be obtained due to the fact that

he hemodynamic activity and the underlying neuronal activity have

ifferent temporal resolutions, resulting in different propagation times

nd delays ( Rangaprakash et al., 2018 ). Fortunately, a proposed solu-

ion is to perform a deconvolution to remove the hemodynamic actitiv-

ties from the BOLD signal before performing causal analysis ( Wu et al.,

013 ). Recent works have criticized both DCM and Granger causality

eing predictors of events identifying temporal correlation and not true

iological causalities ( Bielczyk et al., 2018; Etkin, 2018 ). Nevertheless,

CM and Granger causality are pragmatic and well defined measures of

ausal influence, and have delivered many insights in neuroscience and

hysiology ( Deshpande et al., 2008; Friston, 2011; Goebel et al., 2003 ).

espite the criticisms, they are still the most used models of causal in-

erence. 

On the other hand, looking at the structural connectivity, the re-

ult of any tractography algorithm might be imprecise, introducing false

ositive connections ( Chen et al., 2015 ). Refining the fiber tracking by

eeping only the fibers that are supposed to be used during tasks or
2 
esting-state might be a way to reduce false positives. The method we

ropose aims at estimating the coefficients of a Granger causality taking

nto considerations functional and structural data. This is achieved by

ltering the structural connectivity by using a multivariate autoregres-

ive (MAR) model constrained in a novel manner: by preserving and

e-weighting the structural connections that are required to parsimo-

iously reproduce the measured BOLD dynamics. 

A MAR model is a random process specifying a linear dependence of

ariables from their previous values and from a stochastic term. Thank

o this, Granger causality does not suffer an excessive computational

omplexity. Nonetheless, in case of a large number of regions involved

n the analysis, the model is affected by cancellation issues and high

ensitivity to noise ( Stokes and Purdon, 2017 ). Moreover, the computed

oefficients do not necessarily correspond to existing structural connec-

ions. This makes it cumbersome to perform a whole-brain analysis in-

olving many brain regions. Furthermore, Granger causality approach

as not yet used structural connectivity in a multivariate manner. 

Taking inspiration from the aforementioned limitations, this paper

resents an extension of the MAR model introducing a constrained MAR

CMAR), which uses the structural connectivity as a prior to bound the

earch space during parameter fitting. This fusion of structural connec-

ivity and functional time-series aims at representing an effective brain

onnectivity, addressing a whole-brain analysis thanks to the sparse rep-

esentation of the connectivity matrix. In its simple form the constrained

odel identifies putative direct structural connections implicitly using

unctional signal. To include indirect connections as shown in Fig. 1 , the

odel can be expanded through neural field theory inspired propagators

 Robinson, 2012 ) also based on tractography. 

. Overview 

In the Method section we first describe the used datasets, followed by

he preprocessing steps and finally the technical details. This paves the

ay to the Results section where experiments on simulations, default

ode network (DMN), classification of autism spectrum disorder (ASD)

ersus typically developing (TD) subjects and effective community de-

ection are then reported. Some useful background for those experiments

s reported in the following paragraphs. 

.1. Default mode network 

Among brain networks DMN, which is a set of brain regions more ac-

ive during rest rather than a goal directed task, has emerged for its pos-

ible role in allocating attention, self-referential processing, and memory
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 Demertzi et al., 2019 ; Greicius et al., 2003 ). Moreover, some of those

MN regions can belong to different large scale intrinsic networks as

hown in whole-brain studies on resting-state ( Yeo et al., 2014 ). After a

imulation experiment, DMN regions are used as a proof of concept for

he method. 

.2. Autism spectrum disorder 

Autism is a developmental disorder characterized by repetitive, re-

tricted behavior and deficits in communication and social interactions

 Fishman et al., 2015 ). The neurobiology of ASD is still unclear, and

he discrimination from TD subjects using neuroimaging is still difficult

o perform ( Yahata et al., 2016 ). Nevertheless, connectome-based clas-

ifiers for ASD and TD individuals have been recently introduced also

haracterizing local and global graph metrics of structural and func-

ional networks ( Rudie et al., 2013; Yahata et al., 2016 ). We applied

ur method on ASD dataset to validate the discriminant power of the

btained representations. 

.3. Community detection 

Clustering group of nodes within brain networks is relevant since it

an show meaningful behavior of sub-graphs across multiple samples,

here those subgraphs are often called modules, clusters or communi-

ies. This is a characteristic that exists in other several real world systems

ncluding social, biological, and political systems ( Fortunato, 2010 ). In

euroscience the related question is on how neural units cluster into

ensely interconnected groups that provide coordinated activities such

s perception, action, and adaptive behaviors ( Meunier et al., 2010 ).

oreover, the principle of modularity characterizes the fundamental

rganization of human brain functional connectivity during learning

 Bassett et al., 2011 ), and sparsely inter-connected modules allow faster

daptation of the system in response to changing environmental condi-

ions ( Meunier et al., 2010 ). Therefore, in this context of parsimony, our

roposed approach can lead to the identification of sparser community

hich can relate better functional and structural information. 

. Methods and data 

The aim of the proposed method is to combine structural brain con-

ectivity and functional brain activity. To reach this goal we resort to

 multivariate autoregressive model properly modified in order to al-

ow for the estimation of the temporal brain activation biased by the

tructural connectivity. In all our experiments we used the Power atlas

efining 264 putative functional regions of interest (ROIs) ( Power et al.,

011 ). More specifically we used the version with non-overlapping ROIs

see below). A functional atlas has been chosen given the need to map

unctional series. The experiments have been conducted on publicly

vailable datasets described below for which the ethical approval has

lready been granted. 

.1. Nathan Kline Institute-Rockland dataset 

To estimate the connectome communities and analyze the DMN, a

arge dataset obtained by the 1000 connectomes initiative was used.

his comprised 200 right-handed healthy subjects from the Nathan Kline

nstitute-Rockland dataset ( Nooner et al., 2012 ), and publicly available

t the url http://fcon_1000.projects.nitrc.org/ . For each subject, resting

tate fMRI (rs-fMRI), diffusion weighted imaging (DWI) and T1 were

cquired by using a Siemens (Munich, Germany) Magnetom scanner and

o-registered. rs-FMRI data were acquired with the eyes open, using a

 Tesla scanner, with TR/TE times as 1.4s/30ms, flip angle 65 ◦, and

sotropic voxel size of 2 mm, for a total scan duration of 10 minutes. DWI

olumes were acquired with a 1.5 Tesla scanner by using 35 gradient

irections and TR/TE 2.4s/85ms, flip angle 90 ◦, and isotropic voxel-size

f 2.5 mm. The T1 weighted MRI data were acquired with the same 1.5
3 
esla scanner, using as TR/TE times 1.1s/4.38ms, flip angle 15 ◦, and

sotropic voxel-size of 1 mm. 

.2. Autism brain imaging data exchange II dataset 

To perform the case-control classification task, the experiments were

erformed on the San Diego State University cohort of the ABIDE-II

ataset publicly available ( Fishman et al., 2015 ). This cohort was cho-

en among the others of the ABIDE-II dataset as it has been aquired at

 resolution high enough to perform tractography ( Di Martino et al.,

017 ). This final dataset included 26 ASD and 21 TD subjects. For

ach subject, rs-fMRI, DWI and T1-weighted were acquired and co-

egistered. Imaging data were acquired on a GE (Milwaukee, WI) 3T

R750 scanner. For a detailed description of the experimental proto-

ols refer to Fishman et al. (2015) . Briefly, rs-fMRI volumes were ac-

uired using a single-shot gradient-recalled, echo-planar pulse sequence,

n one 6:10 min eyes-open scan consisting of 185 whole-brain volumes

t TR/TE = 2s/30 ms, flip angle 90 ◦, and isotropic 3.4 mm voxel-size.

he DWI volumes were acquired with a dual spin echo excitation using

R/TE = 8.5s/84.9 ms, flip angle 90 ◦, and 1 . 88 × 1 . 88 × 2 mm 

3 voxel-size.

otal diffusion-weighted scan time was about 9 min. T1-weighted inver-

ion recovery spoiled gradient echo sequence were acquired at TR/TE

 8.1s/3,172 ms, flip angle 8 ◦, and isotropic 1 mm voxel-size. 

.3. Pre-processing and connectome construction 

FMRI data were pre-processed according to a standard pipeline: mo-

ion correction, mean intensity subtraction, pass-band filtering with cut-

ff frequencies of [0.005-0.1 Hz] and skull removal. To account for po-

ential noise from physiological processes such as cardiac and respira-

ory fluctuations, eight covariates of no interest were identified for in-

lusion in our analyses as nuisance variables ( Saad et al., 2013 ). For

his aim, regressors for white matter (WM), cerebrospinal fluid (CSF),

nd the 6 motion parameters for each individual were estimated. Spatial

moothing with Gaussian Kernels was not performed, though we aver-

ged the voxels values to define the ROI values. Global signal was not

egressed to avoid spurious anticorrelations ( Murphy and Fox, 2017 ).

o further reduce the effects of motion, correction for frame-wise dis-

lacement was carried out as described in Power et al. (2012) . For both

atasets, the DWI data were cleaned by eddy current interference, and

he skull has been removed. Linear registration has been applied be-

ween the Power atlas ( Power et al., 2011 ) and the T1 reference volume

y using linear registration with 12 degrees of freedom. The Power’s

tlas defines 264 non-overlapping functional ROIs. Each ROI is a 5 mm

phere around a peak voxel of significant activation during cognitive

asks calculate with a meta-analytic approach on the neuroimaging lit-

rature on this topic. This atlas is to date considered one of the most

ccurate for functional mapping (as shown e.g. in Gordon et al., 2014 ).

Tractographies for all subjects were generated processing DWI data

ith the Python library Dipy ( Garyfallidis et al., 2014 ). In particular,

e used the constant solid angle Q-ball model, and a deterministic algo-

ithm called Euler Delta Crossings was used stemming from 2,000,000

eed-points and stopping when the fractional anisotropy was smaller

han < 0 . 05 . This low threshold was chosen to allow the fibers to enter

he small ROIs of the chosen atlas. Tracts shorter than 30 mm or in which

 sharp angle (larger than 75 ◦) occurred were discarded. It is important

o mention that the choice of more common parameters, as an angle

hreshold of 60 ◦ or fractional anisotropy threshold of 0.2, would not al-

ow in the used data the fiber bundles from the posterior cingulate to

nter the prefrontal cortex, compromising the DMN analysis. The final

esult yielded about 250,000 fibers. To construct the connectome, the

raph nodes were determined using the 264 regions in the Power atlas.

pecifically, the structural connectome was built counting the number

f tracts connecting two regions, for any pair of regions. The same re-

ions were used to compute the functional activity just averaging the

oxel activity in each area. 

http://fcon_1000.projects.nitrc.org/
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.4. Structurally constrained autoregressive model 

A multivariate autoregressive model of order 𝑛 (MAR ( 𝑛 ) ) is a stochas-

ic process defining 𝑟 variables 𝐲( 𝑡 ) as linearly dependent on their own

revious values and a stochastic term: 

( 𝑡 ) = 

𝑛 ∑
𝑖 =1 

𝐀 𝑖 𝐲( 𝑡 − 𝑖 ) + 𝛜, (1)

here the 𝑟 -by- 𝑟 coefficient matrices 𝐀 𝑖 are the model parameters and 𝜖

s the additive Gaussian noise. The weight matrices 𝐀 𝑖 describes the lin-

ar dependencies between the 𝑟 timeseries [ 𝑦 1 , … , 𝑦 𝑟 ] 𝑇 ; therefore, they

an be intended as a functional connectivity matrix at different time

ags. The subscript 𝑖 indicates the order or the time lag. The aim of the

roposed method is to infer a functional connectivity justified by the

tructural connectivity, so that the functional activity of the brain can be

escribed only using the direct physical connections between the brain

egions. To obtain this result, we resort to a set of constraints on the

bove MAR model, which force the MAR model to only fit the parame-

ers associated to existing structural connections. In this way the signal

n a brain region is described by a linear combination of the function of

tructurally connected regions only: 

̂
 𝐢 = 𝐀 𝑖 ⊙ 𝐁 (2)

here ⊙ denotes the Hadamard or element-wise product, and 𝐁 is an

ndicator matrix obtained by the structural connectivity 𝐀 init , defined

s 

 𝑢𝑣 = 

{ 

0 if the 𝑢𝑣 element of 𝐀 init is 0 
1 otherwise. 

This 𝐁 matrix is used as a structural bias into the model, constraining

ach 𝐀 𝑖 to have zero elements where no structural connectivity appears.

iven an initial structural connectivity matrix 𝐀 init and the functional

ignal in a column-vector 𝐲 for all 𝑇 time-frames, an effective connectiv-

ty matrix can be determined minimizing a reconstruction error of the

AR model in Eq. (1) subject to the structural constraint in Eq. (2) as

ollows: 

 = 

1 
2 

𝑇 ∑
𝑡 = 𝑛 

‖‖‖‖‖𝐲( 𝑡 ) − 

𝑛 ∑
𝑖 =1 

( 𝐀 𝑖 ⊙ 𝐁 ) 𝐲( 𝑡 − 𝑖 ) 
‖‖‖‖‖
2 

2 

. (3)

he effective connectivity matrix is therefore the matrix �̂� 𝑖 that mini-

izes the reconstruction error above. The choice of the model order 𝑛

an be defined by Akaike information criterion ( Akaike, 1974 ), or em-

irically in cross-validation settings. In our experiments we adopted this

atter approach to choose the order of the CMAR model. As observed em-

irically, relaxing the constraints, which we introduced in our method,

as leading to lower prediction error, though it was introducing struc-

ural connections which were not biologically plausible. 

However, the model described so far can only relate direct struc-

ural connections to functional series. To overcome this limitation,

q. (3) is modified including propagators that iterate through several

teps through the connectome inspired by the neural field theory propa-

ators ( Robinson, 2012 ). According to the propagator formulation of

eural interaction introduced by Robinson (2012) , firing neural rate

ithin a brain network 𝐐 can be computed as the sum of external electri-

al activity 𝐍 and by the firing rates coming from other neurons. Those

ates can be directly evoked or incorporate activity coming from synap-

ic path 𝚲: 𝐐 = 𝚲𝐐 + 𝐍 . More specifically, the 𝑚 steps of propagation can

e defined by the sum 𝚲 = 𝚲( 𝟎 ) + 𝚲( 𝟐 ) + 𝚲( 𝟑 ) + ⋯ + 𝚲( 𝐦 ) (following the

otation of Robinson, 2012 ). An example of this propagation from one

egion to another of the brain is depicted in Fig. 1 . In our implementa-

ion we neglected the external input 𝐍 . Conversely to partial correlation

 Zalesky et al., 2012 ), this multi-step formulation is based on physical

onnections. Despite the temporal resolution difference between firing

ate and BOLD signal, the same assumption of propagation can be made

or the BOLD signal case given the relationship to a neuronal stimulus

 Drysdale et al., 2010 ). This will also be comparable to the multi-steps in
4 
ausal graphs ( Chicharro and Panzeri, 2014 ), to connectome spreading

ynamics ( Mi š i ć et al., 2015 ), and to the formulation of indirect Granger

ausality ( Dhamala et al., 2008 ). Given those tools, Eq. (3) can be refor-

ulated taking into account higher-order effects as downstream effects

f the direct interactions. The matrices 𝚲( 𝟎 ) and 𝚲( 𝟐 ) from the propaga-

or context, for the sake of consistent notation, are here formulated as

 

( 𝟎 ) and 𝐀 

( 𝟐 ) . Therefore, for the first order of indirect connections the

econstruction error becomes 

 = 

1 
2 

𝑇 ∑
𝑡 = 𝑛 

‖‖‖‖‖𝐲( 𝑡 ) − 

𝑛 ∑
𝑖 =1 

(
𝐀 

(0) 
𝑖 

⊙ 𝐁 + 𝐀 

( 𝟐 ) 
𝐢 ⊙ 𝐁 

(2) 
)
𝐲( 𝑡 − 𝑖 ) 

‖‖‖‖‖
2 

2 

. (4)

n practice, 𝐀 

(0) 
𝑖 

comprises the coefficients of effective connectivity re-

ated to direct connections, and for the purely direct case it is initially

et as the structural connectivity 𝐀 𝑖𝑛𝑖𝑡 . A further coefficient matrix is in-

roduced to weight the indirect connection of first order, and the matrix

 

(2) comprises the indirect structural connections of first order likewise

 for the direct connections. For low resolution networks 𝐁 

(2) can be

asily given by the complement of 𝐁 , since the first order indirect con-

ections will cover the remaining brain connections. When no upper

ndex is given as 𝐀 𝐢 , we are referring to the purely direct case. The rea-

on why the structural matrix is also used as initial guess, it is only given

y the fact that it is believed to be a decent initial guess in the gradi-

nt descent context, though there are no arguments against using other

alues including random estimates. 

To obtain the effective connectivity matrix (or matrices) we first fit

he model parameters by using a gradient descent approach. The direc-

ion of the gradient can be computed for all matrices 𝐀 𝑗 of a specified

rder for the direct connections as follows: 

𝛛𝐄 

𝛛𝐀 𝐣 
= − 

𝑇 ∑
𝑡 = 𝑛 

[ 

𝐲( 𝑡 ) − 

𝑛 ∑
𝑖 =1 

( 𝐀 𝑖 ⊙ 𝐁 ) 𝐲( 𝑡 − 𝑖 ) 

] 

𝐲 ′( 𝑡 − 𝑗) ⊙ 𝐁 . (5)

nd the update rule is therefore 𝐀 𝑗 = 

(
𝐀 𝑗 + 𝜂 ⋅ 𝛛𝐄 ∕ 𝜕𝐀 𝑗 

)
, where 𝜂 is the

earning rate. 

For the multistep case 𝐀 

(0) and 𝐀 

(2) the gradient direction can be

omputed deriving according to the individual matrices, leading an ex-

ression similar to (5) . In the reported experiments we used 5000 it-

rations during the gradient descent, and a learning rate 𝜂 = 3 ⋅ 10 −5 .
ccording to our model, the initial condition is limited by the structural

onnectivity matrix 𝐀 init , likewise for the indirect case. We tried differ-

nt normalizations of the matrix (as binarization and division for the

aximum value) and the same minimum was reached, even if differ-

nt speed of convergence has been observed. A further improvement is

iven by deconvolving the BOLD signal to use a more appropriate neural

esponse. Assuming a common HRF is shared across the various spon-

aneous point process events at a given voxel, the BOLD signal can be

een as the result of the convolution of neural states 𝑠 ( 𝑡 ) and HRF ℎ ( 𝑡 ) : 

 ( 𝑡 ) = 𝑠 ( 𝑡 ) ⊛ ℎ ( 𝑡 ) + 𝜖( 𝑡 ) , (6)

here 𝜖( 𝑡 ) represents additive noise. Once calculated ℎ ( 𝑡 ) , we can obtain

n approximation of the neural signal 𝑠 ( 𝑡 ) from the observed data using

 Wiener filter ( Wu et al., 2013 ). We conducted our experiments first

y using the initial preprocessed BOLD time series and then again using

he estimated neural response after the deconvolution �̃� ( 𝑡 ) . In this view,

he previous optimizations should be seen substituting 𝑦 ( 𝑡 ) with 𝑠 ( 𝑡 ) . 
Once optimal effective connectivity matrices 𝐀 𝑖 for each subject are

btained, Granger causality can be computed defining the connectome

s a directed graph. Several ways to compute Granger causality both

n the frequency and time domain were proposed. The most known is

he reduced model ( Geweke, 1984 ), where error of linear dependence

or two multiple time series is measured quantifying the causality of

ne against the other. As shown by Stokes and Purdon (2017) , fitting

 reduced model for spectral Granger causality can lead to a strong

ias or very large variability depending on the choice of the order. In

ur implementation, we computed the Granger causality matrix repre-

enting causality given the ratio of residuals (prediction error using or
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ot a driver ROI), by using the F.H. Lin toolbox available at the URL

ttps://github.com/fahsuanlin/fhlin _ toolbox . 

.5. Simulations and default mode network analysis 

For the simulations we used the same ground-truth and settings of

he reference paper for the NetSim, a well-known evaluation of network

odelling methods for fMRI ( Smith et al., 2011 ). Briefly, we used 50

imulations given by 5 nodes/processes ( 𝑌 1 , 𝑌 2 , 𝑌 3 , 𝑌 4 , 𝑌 5 ) 10 minutes

ong and obtained as described in Smith et al. (2011) , defined by us-

ng repetition time 3s and standard deviation of the haemodynamic re-

ponse function (HRF) 0.5s. Fig. 3 (a) depicts the defined ground-truth

ausal inferences. Mean and standard deviation of the coefficients for

he 50 simulations as well as the mean simulated BOLD signal are de-

icted in the Supplementary Figs. 3 and 4, respectively. Following the

onclusions of ( Smith et al., 2011 ), we used in this experiment the model

rder 1 for the Granger Causality. 

The DMN analysis was used to prove that the proposed method pro-

uces sensible results in line with current literature. More specifically,

n these experiments starting from a whole-brain structural connec-

ivity and related resting-state fMRI series, effective connectivity was

onstructed, and then the specific effective connections were analyzed.

oreover, the proposed method was compared to DCM considering all

ossible causality directions. The optimal DCM was obtained according

o the Bayesian information criterion (BIC). 

Normal prior with default settings for the evolution model of the

CM were used ( Daunizeau et al., 2014 ). We considered indistinctly ex-

itatory and inhibitory causality jointly. Further limitations of the DCM

ere related to the fact that resting-state does not have a specific driv-

ng input as in other DCM models ( Adams et al., 2013 ). We overcame

his limitation by using a stochastic DCM ( Daunizeau et al., 2014 ) that

dds time-dependent fluctuations in neuronal states. 

.6. Classification of autism spectrum disorder and typically developing 

ubjects 

To test the descriptive power of the effective connectivity computed

y using the proposed approach, we carried out a classification task dis-

riminating between ASD and TD individuals, using all three types of

onnectivity: functional, structural and effective. We investigated the

ost significant connections obtained through the weights of a trained

upport vector machine (SVM) ( Crimi et al., 2017 ). Those were the

eights larger than the 95 𝑡ℎ percentile or smaller than the 5 𝑡ℎ percentile

f a random weight distribution which represents the null hypothesis.

he null hypothesis SVM weights were obtained by performing 1000

andom permutations of the labels of the two groups. 

.7. Effective brain community detection 

To assess whether the proposed method produces effective connec-

ivity information characterizing the structural connectivity enriched

ith functional information, a community detection analysis was per-

ormed, by using a group-wise graph clustering algorithm recently pro-

osed in Crimi et al. (2016) , both on the set of structural connectivity

atrices and on the effective connectivity matrices. 

Given a set of connectivity matrices  = { 𝐖 𝑧 } representing undi-

ected weighted graphs with positive weights, each normalized graph

aplacian is built as 𝐋 = 𝐃 

− 𝟏 𝟐 ( 𝐃 − 𝐖 ) 𝐃 

− 𝟏 𝟐 , where 𝐃 is the diagonal de-

ree matrix of 𝐖 . However, in general, the connectivity matrices result-

ng from the above CMAR model computed for each subject are asym-

etric (i.e., edges are directed), thus, they were converted to undirected

raphs aiming at maintaining the properties of the original graphs es-

imated from CMAR. To this aim, a symmetrization based on random

alk was applied ( Malliaros and Vazirgiannis, 2013 ). 

More specifically, given a directed graph 𝐌 , the transition matrix of

he random walk can be defined as 𝐏 = 𝐃 

− 𝟏 
𝐨𝐮𝐭 𝐌 , where 𝐃 𝐨𝐮𝐭 is a diagonal
5 
atrix built using nodes’ out-degree. The symmetric graph can be there-

ore defined as 𝐌 𝐬𝐲𝐦 

= 

1 
2 ( 𝚷𝐏 + 𝐏 ′𝚷) , where 𝚷 is a the diagonal matrix

hat defines the probability of a walker to stay in each node in a sta-

ionary distribution, defined as 𝚷 = 

𝑑 out 
𝑚 

, where 𝑑 𝑜𝑢𝑡 is the vector of the

ut-degree of each node and 𝑚 is the number of nodes. Thank to this new

epresentation, the pipeline described in Crimi et al. (2016) can be ap-

lied, generating the normalized graph Laplacians for each subject, per-

orming the joint diagonalization of multiple Laplacians to find a unique

igenspace and, finally, applying spectral clustering on the smallest joint

igenvectors. 

In order to decide the number of clusters, as usual in spectral cluster-

ng, we looked at the spectral gap of the mean approximated eigenval-

es. Supplementary Fig. 2 in the supporting information depicts mean

pproximated eigenvalues where a gap between the 8th and 9th values

s visible. This was assessed both visually and computationally. The clus-

er functional separation (CFS) among the brain nodes was defined as

he average ratio between the intra- and inter-cluster cross-correlation.

s follows: 

𝐹 𝑆 = 

1 
𝑘 

𝑘 ∑
𝑠 =1 

∑
𝑖<𝑗∈𝐶 𝑠 

𝑤 𝑖𝑗 ∑
𝑖<𝑗∈𝐶 𝑠 

𝑤 𝑖𝑗 + 

∑
𝑖 ∈𝐶 𝑠 

∑
𝑗∈𝐶 𝑡 ≠𝐶 𝑠 

𝑤 𝑖𝑗 

(7)

here 𝑤 𝑖𝑗 is the functional cross-correlation of the time-series for nodes

 and 𝑗. 

. Results 

The validation of the proposed method has been performed first

y using simulations, a simplified task consisting of the analysis of re-

ationship between the areas of the DMN. Then, a classification task

 Crimi et al., 2017 ) aiming at discriminating autistic and typically de-

eloping children has been carried out, and finally a brain community

etection framework has been used jointly to the proposed model. When

ossible, a comparison to the well-known DCM approach was carried

ut. The DMN and effective community detection experiments were per-

ormed by using the diffusion tensor and fMRI volumes of 200 healthy

ubjects from the Nathan Kline Institute-Rockland dataset ( Nooner et al.,

012 ). The classification experiment has been carried out from data of

he ABIDE-II dataset ( Fishman et al., 2015 ). 

.1. Structurally constrained autoregressive model 

Fig. 2 depicts an example of initial structural tractogram and final ef-

ective connectivity diagram, given by chord diagrams where each node

epresent a ROI. In the effective network some connections are canceled

ut resulting in a less dense chord diagram. Those results are for the case

onsidering both direct and indirect connections, respectively Λ(0) 
𝑖 

and
(2) 
𝑖 

in Fig. 1 . Although not clearly visible when comparing visually ad-

acency matrices, the initial structural connectomes were composed by

n average of binary connections 𝜇𝑠 = 8198 against the average binary

ffective connections 𝜇𝑒 = 3169 across the whole dataset. A comparison

f the proposed approach when using only the direct structural connec-

ions and when considering also the indirect connections, showed that

sing the latter was producing a lower reconstruction error though most

f the influence is already given by the direct connections, as shown in

ig. 5 (a). Moreover, the difference in the last iterations were statistically

ignificant (t-score: -3.5183, p-value: 0.0016, CI : 1.0e+03 ∗ [-2.3537;-

.6177]). In our experiments we defined reconstruction error as the dif-

erence between a predicted and real functional series given a connec-

ivity matrix and the value of a previous time point (as in Eqs. (3) and

4) ). We optimized the weights for the direct and indirect connections

eparately. Namely, we obtain the coefficients first for the direct con-

ections and then for the indirect connections. This was done since a

arallel optimization was shown to be slower due to the fact that the

wo processes compete with each other. Lastly, by using the estimated

eural signals instead of the BOLD signal further improvements are ob-

ained as shown in Fig. 6 . 

https://github.com/fahsuanlin/fhlin_toolbox


A. Crimi, L. Dodero, F. Sambataro et al. NeuroImage 239 (2021) 118288 

Fig. 2. Example of initial structural connectivity matrix (top) and final effective connectivity matrix using the multistep version described in this paper (bottom) for 

the same subject, as chord diagrams for the 264 ROIs ( Power et al., 2011 ) in which the brain is partitioned, with visibly a less dense diagram for the final effective 

connectivity. Color-code does not represent ROIs but connections between them. The ROIs defined as uncertain in ( Power et al., 2011 ) are not labeled. 

6 



A. Crimi, L. Dodero, F. Sambataro et al. NeuroImage 239 (2021) 118288 

Fig. 3. (a) Ground-truth simulated causalities. (b) Difference between the 

ground-truth and the estimated causal matrix by the proposed method and DCM 

for 50 independent simulations, each simulation mismatch reported along the 

x-axis. For each simulation we reported the mismatch per model, and it was 

visible that DCM had more mismatch from the preferred model, the higher the 

data point, the more mismatch the model produced. 
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Fig. 4. (a) and (b) are respective graphical representations of the resulting 

Granger causality and DCM for the DMN experiment. The reported acronyms are 

’mPFC’ = medial PreFrontal Cortex, ’PCC’ = Posterior Cingulate Cortex, ’L’ = Left, 

and ’R’ = Right. This reflects structural and functional expected connections de- 

picted in (c): Sagittal example of structural tracts connecting the functional re- 

gions of interest selected as related to the DMN. Those ROIs are obtained as a 

subset of the DMN ROIs of the Power atlas according to the coordinates speci- 

fied in ( Shirer et al., 2012 ), if necessary more than one ROI of the Power atlas 

was merged. The PCCs are depicted as red, mPFCs are depicted as green and the 

fusiform gyri in cyan. 
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Fig. 5 (b) highlights the beneficial effect of using more time points

n the MAR model for the autism dataset ( Fishman et al., 2015 ). As ex-

ected, the higher the order of MAR model the better was the reconstruc-

ion error of the signal, though at some point the improvements were

ot worthwhile. In particular, it was noted that the reconstruction error

f CMAR(2) is always significantly smaller than CMAR(1). However, in

ll our experiments, going beyond order 2 did not improve further the

econstruction error compared to CMAR(2). This is probably related to

he type of signal. Indeed BOLD signal in used fMRI recordings has a

ampling rate that compared to the underlying brain activity makes it

seless to go beyond two time steps. 

Once the final effective connectivity matrix is computed, it can be

sed to quantify the Granger causality. Supplementary Figure 1 in the

upporting Information depicts the average of the resulting autocovari-

nce matrices of the Granger causality, where non-zero elements repre-

ent causality from one region to another. As for the resulting effective

onnectivity matrix, in the causality matrix some regions have a strong

nfluence compared to other which have been further cancel out. Some

xpected asymmetry in the resulting matrices was also observed. The

dentified causalities appeared as a subset of the effective connectivity

etected by the proposed model. As empirically observed, removing the

tructural constraint and in lieu using sparsity regularization ( Valdés-

osa et al., 2005 ) was leading to a lower reconstruction error, but it was

ntroducing connections that were anatomically implausible. 

.2. Simulations and default mode network analysis 

After initial analysis on reconstruction error, the first experiments

ere performed by using simulations and real data but limited to the

MN. The results were compared to those obtained by using a physio-

ogically defined model in contrast to the proposed data-driven model:

he resting-state DCM ( Daunizeau et al., 2014 ) 

For the simulations we used the same ground-truth and settings of

he reference paper for the NetSim, a well-known evaluation of net-

ork modelling methods for fMRI ( Smith et al., 2011 ). Briefly, reproduc-

ng their work, we used the simulations given by 5 temporal processes

 𝑌 1 , 𝑌 2 , 𝑌 3 , 𝑌 4 , 𝑌 5 ) 10 minutes long. Those processes are related by

ausal inferences represented by the directed graph shown in Fig. 3 (a).

he generated time series and the connectivity matrix without causal

nformation were then used by the proposed algorithm (only direct con-

ections and first order), and by the optimal DCM according to the

ayesian log model evidences. The difference between the estimated

ausal inferences and the ground-truth are shown in Fig. 3 (b). The dif-

erence was computed by counting the number of causal directions that

ere quantified wrongly. If one algorithm was estimating only opposite

irection than the ground-truth, the difference was quantified as ’2’. If

or one edge one method estimated bidirectional causality but only one
7 
as correct, the difference was quantified as ’1’. It was noted that for

oth the proposed model and DCM the causal inference 𝑌 1 → 𝑌 2 was

enerally estimated incorrectly but the DCM was having even more pro-

ounced differences from the ground-truth. Comparing the two models

y using t -test the mismatch had a statistical difference of t-score of 1.75

CI = [ -2.5254; -1.1776], degrees of freedom: 98, p-value = 0.041624).

Afterward, we assessed whether the most important structural con-

ections relating the functional areas of DMN were maintained after

he optimization of the connections with our CMAR model and Granger

ausality. For this purpose, we analyzed a subset of DMN areas and the

onnections that relate each other. We focused on some DMN regions

hat are not directly structurally connected, though they show some ac-

ivity simultaneously ( Greicius et al., 2003 ): frontal middle gyrus, pos-

erior cingulate cortex, and fusiform gyrus; all both left and right. The

roposed model has been used on a whole dataset by using these areas

howing that they persist after the autoregressive model, and still iden-

ify areas that are physically connected and used functionally as shown

n the example in Fig. 4 (a). The resulting effective connectivity DMN

as compared for completeness to the optimal DCM which was selected

mong all the models having all possible direction combinations. By ne-

lecting the commisural connections, the possible models to be tested

ere 27. We report the selected optimal DCM depicted in Fig. 4 (b). An

xample of tractography among those ROIs for one subject is shown in

igure 4 (c). Carrying out a brain-wide CMAR optimization, the relevant
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Fig. 5. (a) Mean and standard deviation of reconstruction error for the subjects 

of the Nathan Kline Institute-Rockland dataset by using only direct structural 

connections and both direct and indirect connections. (b) Final reconstruction 

errors for different orders using the ABIDE-II dataset. The stars at the left and 

right of the line depict respectively the errors for the control (TD) and case (ASD) 

subjects from the classification experiment. 
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MN connections were maintained. Each DMN region before the CMAR

ad on average about 30 connections (not depicted in the graph to avoid

luttering), while after the CMAR the average connections were 8 and

hose were the most relevant for the DMN regions based upon litera-

ure Greicius et al. (2003) . Moreover, the CMAR/Granger analysis did

ot erase the relavant connections, and found bidirectional causality be-

ween the cingulate and prefrontal cortex, though the causalities from

he posterior cingolum to the prefrontal cortex were stronger. While for

he selected DCM, the strongest causalities were in the opposite direc-

ion. It is worthwhile to mention that all DCMs required specific settings

iscussed in the Discussion and Methods sections. 

.3. Classification with effective connectivity in autism 

A classification task between ASD and TD individuals was used to

urther prove the descriptive power of the effective connectivity com-

uted using the proposed approach. 

We investigated the most significant connections obtained through

he weights of a trained support vector machine (SVM). The selected

eights were those larger than the 95 th percentile or smaller than the

 th percentile of a random weight distribution which represents the null

ypothesis, as depicted in Fig. 7 (d–f). Of note, the most discriminating

onnections of the MAR model were very different from those deter-

ined with structural connectomes. Fig. 7 (d–f) shows the whole spec-

rum for the averaged SVM weights respectively for the structural, ef-

ective CMAR(1) and functional connectomes. It is noticeable that the

eights for the MAR cases are larger than those related to the original

tructural connections, and the weights related to the functional data

re more numerous. Given the fact that functional connectivity can be

iven by anticorrelations, positive and negative weights are present. The

etected connections using the structural data comprised ipsilaterally

pread connections in agreement with previous studies ( Li et al., 2014;

hang et al., 2018 ). The detected functional connections also confirmed

revious results obtained by using another dataset ( Yahata et al., 2016 ).

or instance, the connections between the left frontal pole and the right

entral gyrus, as well as the left inferior frontal gyrus and the right in-

erior temporal gyrus, were also identified as significantly different be-

ween cases and controls by our model. The detected effective connec-

ions partially resemble the detected structural and the functional con-

ections. Interestingly, these detected features are even more in agree-

ent with the discriminant features identified through previous studies:

s such the ectopic connectivity of precentral and striatal and occipital

egions ( Noonan et al., 2009 ), the left superior parietal and right infe-

ior frontal gyrus, and rectus and cuneus region ( Yahata et al., 2016 ).

he classification accuracy in discriminating ASD from TD subjects by

sing the identified connections was respectively for the structural, func-

ional, and effective connectivity using CMAR(1) and CMAR(2) 60.57%,

9.1%, 70.21%, and 72.34%. This showed the efficacy of using effective

onnectivity matrices instead of others for the proposed experiment, al-

hough the experiment should be repeated with larger datasets. Lastly, it

as noted that the detected functional connections were larger in num-

er and both negative and positive to compensate the signs given by

orrelations and anti-correlation. 

.4. Effective brain community detection 

This latter experiment aimed at identifying the communities in the

ffective connectome which better represent the original functional sig-

al in terms of segregation. By analyzing the group-wise eigenvalues

esulting from the joint Laplacians diagonalization, a spectral gap was

oted at the 4 th and 8 th eigenvalues for both structural and effec-

ive connectivity matrices, in agreement with previous studies on other

atasets ( Hagmann et al., 2008 ) and as depicted in supplementary Fig.

 (Supporting Information). The value 𝑘 = 4 has been neglected since

he clustering for 𝑘 = 4 would have led to a simplistic representation of

he brain. Therefore 𝑘 = 8 has been used. The resulting clustering of the
8 
rain regions based on the structural connectome ( Fig. 8 (a)) and on the

ffective connectome ( Fig. 8 (b)) are fewer while preserving the overall

rganization. The reconstruction error shown per subject in Fig. 8 (c)

ndicates, as expected, that the lowest error is given when considering

he whole network in the CMAR computation. 

Evidence was also obtained when analyzing the cluster functional

eparation, defined as the average ratio between the intra- and inter-

luster cross-correlation ( Crimi et al., 2016 ). This index has been com-

uted for both structural and effective clustering results. Fig. 8 (d) in-

icates that cluster functional separation of clusters determined using

ur CMAR approach is significantly higher when compared with the

tructural clusters ( 𝑝 < . 001 ) according to converted t-tests, demonstrat-

ng that the effective clusters are also underpinned by the functional

onnectivity. More specifically, we also devised an analysis to assess

hether the clusters obtained from the autoregressive modeled data are

ore meaningful in relation to the fMRI time-series than the clusters

btained from the structural information. To this end, we carried out a

lock-wise definition of the effective connectivity matrices where one

lock at a time, defined by the brain regions belonging to a cluster, was

sed in a CMAR model involving only the relative fMRI series. Then
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Fig. 6. Mean and standard deviation of reconstruction error obtained by using 

the preprocessed BOLD 𝑦 ( 𝑡 ) and the estimated neural signal s(y). Here, the de- 

convolution is performed before carrying out the MAR analysis and only direct 

connections are considered in both cases. 
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he reconstruction error of the fitted CMAR models for each cluster was

ummed up over all clusters and compared to each other. The under-

ying intuition is that partitioning the brain using an effective connec-

ivity information would remove those structural connections that are
ig. 7. Axial views of most discriminant connections according to the SVM weights (a

onnectomes. (d), (e) and (f) show the average weights respectively for the structural,

onnections in (a) are mostly ipsilateral and few commisural connections. Most of the

he link between the left frontal pole and the right central gyrus, and the left inferio

n (b) also highlight known connections as the left superior parietal and right Inferio

9 
eaningless from a functional perspective, at least in the analyzed ex-

erimental data. This is the overall message conveyed in Fig. 8 . 

. Discussion 

Investigation of how structure influence function is present in sev-

ral fields. For example, how the function of a protein can be predicted

y its sequence and structure is a common issue in proteomics ( Lee

t al., 2007; Watson et al., 2005 ). In neuroscience, it is now well es-

ablished that functional segregation is a basic principle of brain orga-

ization ( Hermundstad et al., 2013 ). However, this principle is diffi-

ult to prove and the easiest approach is to investigate it through func-

ional connectivity analysis, which is usually based on the determina-

ion of functional correlations between brain regions. Causal influence

s most likely the key to deliver insights in neuroscience and physiology

 Bielczyk et al., 2018 ). In this context, the proposed model combines

tructural and functional information with the aim of defining effective

onnectivity. Given the initial brain-wide structural connection the au-

oregressive model acts as a filter removing the connections that are

ot used in a related functional series, then causality is investigated

ccording to Granger causality. The previous experiments showed that

he resulting connectivity matrix can be used to relatively predict BOLD

ignal. The use of indirect connections, rather than only direct connec-

ions, showed a lower reconstruction error in predicting the BOLD signal

hough a slower convergence, though this was a slight improvement.

s described in previous studies mapping brain functional connectiv-

ty from diffusion imaging suggested Becker et al. (2018) , the propaga-

ion of neural signals through direct and short structural walks has the
) original connectomes, (b) CMAR(1) effective connectomes, and (c) functional 

 the CMAR(1) effective and functional connectomes. The highlighted structural 

 detected functional connections (c) are already known ( Yahata et al., 2016 ) as 

r frontal gyrus and the right inferior temporal gyrus. The effective connections 

r frontal gyrus, and rectus and cuneus region ( Yahata et al., 2016 ). 



A. Crimi, L. Dodero, F. Sambataro et al. NeuroImage 239 (2021) 118288 

Fig. 8. Axial view of joint spectral clustering using k = 8 is depicted in (a) for the original structural joint eigenspace, and (b) on the joint eigenspace given by effective 

connectivity matrices. The resulting connectivity matrices as shown in Fig. 2 (b) and the related clustering in this subfigure (d) are not only sparser than the original, 

they also lead to better reconstruction of the functional data as shown in the other figures: Subfigure (c) depicts the reconstruction error of CMAR model (represented 

as error bars) after converging to the effective connectivity or according to block-wise MAR based on the structural communities and the effective communities. The 

lower the better. Subfigure (d) depicts the functional segregation of clusters using the effective communities or structural communities represented as errorbars. The 

higher the better. 
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trongest influence in the resulting functional connectivity, This effect

an also be true for the data used in our experiments. The comparison

etween using the BOLD signal and the estimated neural signal further

hows the importance of isolating the HRF from BOLD signal. 

In the simulation experiments the proposed CMAR estimated causal

nferences with smaller difference from the ground-truth compared to

he DCM. The differences of the CMAR from the ground-truth were

ainly in associating opposite causal inference between the node 𝑌 1
nd 𝑌 2 compared to the ground-truth. The DCM had even more mis-

atched causal inferences. In the experiments with the DMN regions,

he proposed model starting from brain-wide structural connections, it

as able to identify the relevant connections of the DMN without re-

oving them. The causalities determined through the CMAR were par-

ially overlapping with those identified by DCM, without the extensive

esign of the models described below. Without a proper ground-truth

t is difficult to establish whether the data-driven or the selected DCM

odel produced a more correct estimation of the causalities. In fact, in

revious studies DCM applied to DMN has produced inconsistent results

 Razi et al., 2015 ). A further hurdle using the DCM was given by the

eed of specifying a driving input, which is not clearly defined for the

esting-state case ( Adams et al., 2013 ). Nevertheless, the CMAR was able

o extract - from all the given connections - meaningful DMN networks

hile the DCM required the investigation of all possible causal direc-

ions, with the limitation of increasing complexity when increasing the

umber of nodes. This shows that Granger causality combined with the

roposed CMAR model is a valid explorative data-driven approach. In

ontrast, DCM models haemodynamics variations explicitly analyzing

ata at the level of hidden neuronal states ( Valdes-Sosa et al., 2011 ).

evertheless, despite their fundamental difference, it has been hypoth-

sized that the two approaches may be used together ( Friston et al.,

013 ). 

Still, our aim is not to solve all possible controversies related to

ausality, especially considering the criticisms that those models are

ore temporal correlations ( Bielczyk et al., 2018; Etkin, 2018 ), but to

rovide a straightforward method to identify structural connections ef-

ectively used during tasks or rest that can be used as biomarkers or for

ther purposes. 

For example, the experiment of classification between autistic and

ypically developing subjects also improved if the resulting effective

onnections were used. This led to the hypothesis that using features

rom the resulting effective connectivity removes those structural con-

ections that are also meaningless from a functional perspective or com-

ine both features, leading to a better performance in terms of cluster-

ng or classification. Moreover, the identified discriminant connections

ere in line with connections detected by other works described in the
10 
esults section ( Mastrovito et al., 2018; Yahata et al., 2016 ). Although

he improvement obtained in this experiment should be repeated with

arger sample size, the hypothesis is that using features obtained with

ur model offers the advantage of combining functional and structural

eatures, with advantages compared on using only one type of features.

In our experiments, the identification of the effectively used struc-

ural connections had clearly an impact on the subsequent clustering,

hich is reflected in Fig. 8 (c-d). Namely, the CMAR while preserving

he structural partitioning, also optimized the graph cut minimizing the

oss of functional interactions. In fact, when removing some connec-

ions according to the clustering results, the communities determined

rom the effective connectivity matrix appeared to be more self explana-

ory in terms of functional activity than the communities obtained from

tructural connectivity alone. 

In all our experiments, contrary to DCM that requires a detailed setup

f numerous experimental setup, the complexity of the proposed method

as limited to the first order of the autoregressive model and of the prop-

gators. The former takes into account the number of prior time points

ithin the BOLD series that need to be examined, the latter the num-

er of nodes within the structural connectome that have to be crossed

steps). The autoregressive order was found empirically to be optimal at

 lags, while the steps of the propagator were also limited at 2. The low

alues for the autoregressive model are most likely related to the low

emporal resolution of the BOLD signal. Regarding instead the propaga-

ion through indirect connections, due to the resolution of the atlas the

sed matrix 𝐁 

( 𝟐 ) was already comprising all complement of the matrix

 . Once again, most likely due to the nature of the BOLD signal, the

trongest influence was given by the direct connections as shown in the

xample in Fig. 5 . 

Besides those observations, CMAR is independent on whether the

OLD series is task-based or resting-state. Deconvolving the signal be-

ore the use in the MAR model is a useful extension to the proposed

odel which can produce more accurate estimates effective connectiv-

ty. The proposed approach can be seen as similar to previous works

elating precision matrix from functional series to structural informa-

ion ( Deligianni et al., 2013; Hinne et al., 2014; Ng et al., 2012 ), but

here those models constrain functional connectivity, the proposed

odel used it to define effective connectivity. 

Some studies have pointed out that functional connections can be

iolated from the underlying structural connections either naturally

 Medaglia et al., 2018; Preti and Van De Ville, 2019; Tyszka et al.,

011 ) or induced by psychedelics ( Luppi et al., 2021 ) and this can

ave an impact in the prediction. Those violations can arise either by

he differences between effective connectivity and functional connec-

ivity ( Goldenberg and Galván, 2015 ), or by the limitations of the diffu-
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ion imaging acquisitions. Effective connectivity captures the biophys-

cal transfer of activity between brain areas along structural pathways,

t fundamentally differs from functional connectivity which only man-

fests the measurable consequences of such interactions, described as

orrelations. Moreover, the nature of the DWI signal can estimate fiber

ensity, but might be inaccurate to capture the true synaptic interac-

ion strength between areas, especially considering short-term plasticity,

hich may alter the interaction strength especially during a task setting

 Hahn et al., 2019 ). Despite those discrepancies, relationships between

unctional and structural connectivity exists. A further example of this

s the impact of corpus callosus agenesis, which for example can reduce

he underlying structural connections related to the DMN to the cingu-

um, affecting the functional connectivity ( Hearne et al., 2019 ). Given

hese observations the proposed method is more focused on the effective

onnectivity capturing biophysical transfer of activity between brain ar-

as, and this limitation cannot unravel all possible aspects of functional

onnectivity, which are yet to be understood. 

Summarizing, despite the limited temporal resolution of BOLD sig-

als, models such as those defined by the Granger causality can make

xplicit the definition of causality by the use of MAR models that are

asy to validate ( Goebel et al., 2003 ). The effective connectivity inferred

y the proposed constrained MAR model highlights a different brain ar-

hitecture underpinned by both structural and functional connectivity,

hich is in-line with current neuroscience principles ( Passingham et al.,

002 ). This represents a valid alternative to other approaches which are

omputationally limited. 

The DMN experiment served as a proof of concept of the validity of

he method, conveying results in line with known connections from lit-

rature ( Demertzi et al., 2019 ; Greicius et al., 2003 ). Other experiments

ighlighted also the benefit of this approach. Namely, the effective in-

uence can be identified among specific brain regions with which they

nteract, given by effective connectivity rather than just by the func-

ional co-activations or structural connections ( Sridharan et al., 2008 ).

his method can lead to new insights into understanding brain effective

onnections in healthy subjects and in subjects with a neurological dis-

ase. Moreover the proposed constrained model is not limited to fMRI

nd diffusion volumes, but it can also be applied to different domains

here structural and time varying data is generated such as two-photon

𝑎 2+ imaging ( Sheikhattar et al., 2018 ), electroencephalography, and

etabolic positron emission tomography ( Hampel et al., 2011 ). 
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