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ABSTRACT
In this paper we demonstrate how smart phone sensors,
specifically inertial sensors and GPS traces, can be used as
an objective “measurement device” for aiding psychiatric di-
agnosis. In a trial with 12 bipolar disorder patients conducted
over a total (summed over all patients) of over 1000 days (on
average 12 weeks per patient) we have achieved state change
detection with a precision/recall of 96%/94% and state recog-
nition accuracy of 80%. The paper describes the data collec-
tion, which was conducted as a medical trial in a real life ev-
ery day environment in a rural area, outlines the recognition
methods, and discusses the results.

Author Keywords
smart phone; bipolar disorder; real-life study; state
recognition; state change detection

INTRODUCTION
Cognitive, mental and emotional disorders are an obvious ap-
plication field for activity recognition. The symptoms of such
diseases manifest themselves in behavior changes so that ac-
tivity aware systems can be used as core diagnostic instru-
ments. The value of such instruments is amplified by the fact
that psychiatrists currently have few objective and reliable al-
ternatives. Whereas a physician attending a broken leg can
make an X-ray to see exactly what he is dealing with, most
of the time psychiatrists have to rely on a patient’s subjec-
tive recollection of his or her behavior. The problem is even
more significant for the patients themselves. In contrast to
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e.g. a hypertension patient, who only needs to regularly mea-
sure his blood pressure and compare the results to thresholds
given to him by his doctor, a person with a cognitive or mental
disorder has no such simple instrument. The closest thing to
a “measurement” are self-assessment questionnaires that can
be time consuming and only rely on subjective recollections
and the patients’ self-perception. As a consequence patients
often end up visiting the doctor very late, which makes treat-
ment more difficult and often leads to prolonged hospitaliza-
tion.

While the benefit of an “objective measurement“ based on ac-
tivity recognition is clear, developing and implementing such
a system is difficult for many reasons. First, having men-
tal patients wear complex sensors on a daily basis is often
not practicable. Second, since there are no reliable diagnos-
tic instruments, getting enough ground truth for training and
testing involves a huge effort in terms of long running trials.
Finally, the fact that behavior can vary strongly on a daily
basis, independently of illness-based effects, makes recogni-
tion difficult. As a consequence, very little work exists on di-
agnostic work using pervasive sensors in real world environ-
ments. Overcoming such difficulties, in this paper we demon-
strate how smart phone sensors, specifically inertial sensors
and GPS traces, can be used as an objective “measurement
device” for aiding psychiatric diagnosis. In a trial with 12
bipolar disorder patients conducted over a total (summed over
all patients) of more than 1000 days (on average 12 weeks per
patient) we have achieved state change detection with a pre-
cision/recall of 96%/94% and state recognition accuracy of
80%.

Related Work
The usage of wearable and pervasive technology in health-
care has already been explored in numerous publications.
Overviews include [12], [2], [21], [16] and [1]. Specific ex-
amples range from assisting elderlies with cognitive impair-
ment [18], to monitoring children’s developmental progress
using augmented toys and activity recognition [22]. In the
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area of mental health the majority of systems deployed to date
focus on supporting self-monitoring. Systems that require pa-
tient feedback through questionnaires or text messages are de-
scribed in [3] and [23]. Other systems, like [4], [10], and [15]
present self-report smartphone applications. Burns et al. [4],
for instance, introduce a smart phone application for mood
prediction of depressive patients. However, it requires con-
stant interaction and feedback of the patient. LiKamWa et
al. [10] display an approach, which - again requiring constant
mood input from the user - tries to infer mood through an
Iphone application. Furthermore, the “Optimism App” [15]
was developed to log self-reported mood, activities and qual-
ity of sleep in order to monitor depression. Simpson et al.
[19] apply interactive voice response self-monitoring for al-
cohol abuse disorder patients.

In terms of automatic recognition of mental state much less
work exists, in particular work involving real world studies
and off the shelf devices like smart phones. In [7], the usage
of an indoor location system to assess the state of dementia
patients is presented. Massey et al. [13] describe an experi-
mental analysis of a mobile health system for mood disorders
where they introduce different possible sensors for mood de-
tection, yet focus on technical aspects like line of sight and re-
ception rate, optimal coverage and optimal placement of on-
body sensors. Two publications close to the work presented
in this article are the research done by a group from Den-
mark [6] and the previously mentioned [4] that introduces a
mobile phone application which employs machine learning
models to try to predict patients’ mood (of depressive pa-
tients). Here however, the ground-truth is fully self-rated,
no objective psychological or psychiatric assessment is per-
formed. In [6], Frost et al. use a self-developed smart phone
application to record subjective and objective data from pa-
tients suffering from bipolar disorder. Even though their main
focus lies on self-reported information they utilize a sidetrack
of using coarse objective sensor data (acceleration fragments
and phone call statistics) to calculate predictions of simple
tendencies of the patient’s mental state (state forecast) in or-
der to compare it to the forecast drawn from the self-reporting
data. By contrast, our work goes into far more depth in the
area of classification, uses location sensors in addition to ac-
celeration and instead of social interaction sensing compares
the results to an objective, diagnostic ground-truth on a day to
day basis. In previous works our group has also discussed the
basic concepts of using smart phones for the management of
bipolar disorder [20] and used a smaller (6 patients) data set
from a preliminary experiment to detect correlation between
selected sensor data and self-reported state ([8] and [17]).

BIPOLAR DISORDER AND ACTIVITY RECOGNTION
Bipolar Disorder [19] is a common and severe form of men-
tal illness characterized by repeated relapses of mania and
depression. Thus, people suffering from the disorder may ex-
perience - often in rapid succession - periods of manic, nor-
mal and depressive state. The current standard for diagnosis
of bipolar disorder uses subjective clinical rating-scales based
on self-reporting that were developed in the early 1960s (e.g.
HAMD, BRAMS scales) and other more recent variations of
them (e.g. BSDS). While the efficacy of these scales has been

proven in diagnosing bipolar disorder, they have their draw-
backs, as they are a potential source of subjectivity in the di-
agnosis. Additionally, the diagnosis requires the attendance
of a physician. Pharmacotherapy is the main treatment cur-
rently offered, but its effectiveness critically depends on the
timing of application. Thus, therapy can be very effective if
administered at the beginning of a patient’s transition to a dif-
ferent state (e.g. from normal to depressive). However, it is
much less so when applied only after severe symptoms have
persisted for a significant time. As a consequence, a promis-
ing form of intervention is teaching patients to recognize and
manage early warning signs (EWS). A recent systematic re-
view of this approach found that 11 randomized controlled
trials (RCTs) involving 1324 patients show the efficacy of in-
terventions that include EWS self-recognition [11]. However,
this involves a very significant training effort (which is diffi-
cult to finance) and strongly depends on the patients’ compli-
ance and discipline. Thus, it is not always practical or even
possible and therefore of limited use.

The Envisioned Use of Activity Recognition
Following the above considerations and elaborate discussions
with the psychiatrists (see also [20]), the aim of this work
is to demonstrate that smart phone based activity monitoring
can be used as an objective “measurement instrument” that
detects state changes in order to ensure that as soon as they
occur, appropriate treatment can be administered. It is impor-
tant to mention that:

1. The recognition results are not meant to automatically trig-
ger medication. There is no danger that a false recognition
would trigger potentially dangerous wrong medication.

2. Required “reaction times” are on a time scale of a few days
rather than a single day. In fact, radical change seldom
happens from one day to the next.

Overall the envisioned usage scenario for the recognition sys-
tem is to provide daily updates to the doctors and possibly
the patients who would then look at the trend evolving on the
scale of a few days and, if the trend points towards a nega-
tive state change, make sure that an examination is scheduled.
This means that for our work:

1. Change detection is more important than the recognition of
a particular state.

2. Recognition does not need to be perfect to be useful.

More important than perfect recognition is that the results are
achievable in the real world, in a setting not only realistic but
actually real. This entails genuine patients and no constraints
on where and how to wear the phone, non-technology-savvy
users and irregular availability of data from different sensors.

DATA COLLECTION

Trials Setup
To collect the required data a medical trial was set up at a
psychiatric hospital. The hospital is located in Hall in Tirol, a
small rural-area town 15 km east of Innsbruck, the capital city
of Tirol, Austria. The trial was set up as a so-called uncon-
trolled, not randomized, mono-centric, observational study
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and was approved by the ethics board of the Innsbruck Uni-
versity Hospital. It aimed at recruiting between 10 and 15
patients for a 12-week participation in the trial. The num-
ber of patients and the duration of the trials were limited by
the resources available within the project for paying medical
and technical support staff. Inclusion criteria were: age be-
tween 18 and 65, ability and willingness to deal with current
smartphones, being ”contractually capable”, and a diagnosis
of bipolar disorder categorized by ICD-10, F31 (by the Inter-
national Classification of Diseases and Related Health Prob-
lems), with frequently changing episodes. The participation
in the study was voluntary and quitting it would not affect the
therapy in any way. For each patient the trial proceeded as
follows:

1. Patients were recruited during stationary treatment at the
clinic by clinic psychiatrists.

2. The trial started with an initial examination. After that the
patients were given the phone and data collection began.
Note that stationary treatment does not mean a “lock up”.
Instead the patients would stay in the hospital overnight
and attend therapy, but were free to move around the hos-
pital compound and the town close by.

3. Patients were released whenever it was medically advis-
able. In general, this meant 1 or 2 weeks after the start of
the trial, but would come to the hospital for an examination
every 3 weeks.

4. A final examination was performed at the end of the trial.

The psychological state examination comprised of 4 stan-
dardized scale-tests. The Hamilton Depression Scale
(HAMD) and the Common Depression Scale (ADS) were
used for determining depression, and the Young Mania Rat-
ing Scale (YRMS) and the Mania Self-Rating Scale (MSS)
were used for determining mania. These psychological scale-
tests were performed by a specifically trained psychologist
(clinical psychologist). The examinations resulted in an as-
sessment on a scale between -3 (heavily depressed) and 3
(heavily manic) with intermediate steps of depressed, slightly
depressed, normal, slightly manic, and manic. At times the
psychologists would even give half grades.

It was agreed to have an examination appointment at the be-
ginning of the study, at the end and only every 3 weeks in-
between because more frequent scale-tests would result in a
learning effect and thus bias the outcome. To ameliorate the
scarcity of ground-truth, well trained and experienced clinical
psychologist talked to the patients on the phone in-between
measurement appointments. In this way, it was possible to
estimate the patients’ state and possible changes compared to
the preceding scale-test measurement point.

The Patients
Overall 12 patients participated in the trials between novem-
ber 2012 and august 2013 (11 female, 1 male, age between 25
and 65). Some patients dropped out early (p0202 and p0602),
some (p0502 and p0802) even extended the trial. The evo-
lution of the state of the individual patients during the trial
is shown in Figure 1. Note that patients p0202 and p0402

Figure 1. The evolution of the state of the individual patients during the
course of the trial.

show no change of state during the entire trial period. As a
consequence they are not considered in this paper.

Data Collection
Each patient was given an Android smart phone running a
logging application developed by our group [8]. This appli-
cation contained two major components: a data logger (using
the standard Android API) with the patient having the option
of turning off the logging at any time and a self-assessment
questionnaire (set to pop-up at the end of the day). After fin-
ishing the questionnaire the patient would be asked whether
they were comfortable with logging the day’s data. If the pa-
tient did not agree all data collected during that particular day
would be deleted. Otherwise it would be stored on the SD
card. This protocol was a pre-condition of the ethics board
approval. However during the entire trials there was no case
of a patient asking to delete data. The data from the SD card
would be copied during the periodic examination and stored
in a form that would not reveal the patients identity to the re-
searchers working on the data later on. Clearly in a “produc-
tive” system the data would need to be transmitted wirelessly
at the end of each day. However, for the purpose of our re-
search the SD card option was more reliable and allowed us
to simplify data security issues.

Ground Truth Extraction
As described in the introduction the aim of this work has been
to determine to what degree sensor data can be used to gen-
erate an “objective measurement” of a patient’s state. This
means, that unlike in our earlier study [8], we had to com-
pare the output of our system with the results of the exami-
nations, not with the self-assessment. Thus, there arose the
question of how to translate the examinations taking place
every three weeks plus some occasional information from the
phone interviews into enough labeled days to enable training
and testing of the recognition systems. Clearly using only the
5 examination days would not be sufficient. Adding only the
results of the phone examinations would also not improve the
situation much (max. 12 data points per patient), especially as
such additional information was only scarcely available (see
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also the next section). After consulting the doctors and build-
ing on the experience from the previous small-scale trial [22]
the following procedure was applied:

1. As a default the period of 7 days before and 2 days af-
ter the examinations (and phone interviews) was consid-
ered as ground-truth data. The basic assumption is that
state changes are gradual and the probability of a major
change within a few days is low. Less days were used af-
ter the examination because, in general, visits to the doctor
may/should lead to behavior changes (which, incidentally,
is the whole point of going to a doctor).

2. The default period then was modified (made smaller or
larger) based on the self-assessment questionnaires. The
reasoning: according to the psychiatrists, even if self-
assessment questionnaires often do not agree with the ob-
jective psychiatric rating, they do tend to show a high level
of consistency. This means that the same real state leads
to a similar self-rating. Thus, if ratings do not vary much
during the days before an examination, then a major state
change is very unlikely.

3. As a last step of ground-truth extraction we looked at the
distribution of days for which ground-truth was available
within adjoining classes.

Clearly the above ground-truth is not perfect. However, the
fact is that no psychiatric examination ever is. Anyway, it is
obviously more “objective” than relying solely on the subjec-
tive self-assessment. Finally, note that as is described later we
randomly select training and testing data in a cross validation
approach to reduce the impact of outliers in the ground-truth.

Data Amount and Quality
In theory, with 12 patients and 12 (or even more) weeks of
trial duration more than enough data (> 1000 days) should
be available for our purpose. However, in reality, as we are
dealing with a real-life setting, a number of factors influenced
the amount of data that actually is suitable for training and
testing of recognition systems:

1. Patient Compliance. Since the trial had been conducted un-
der uncontrolled conditions, during normal live, there was
no way to make sure that the patients always carried their
devices with them. In addition, some patients would even
switch off some sensors at certain occasions.

2. Patients state evolution. In general the data collected dur-
ing the trials was not distributed evenly among the states.
In fact most patients had a predominant state and many had
“marginal” states for which nearly no data was available.

3. Presence of ground-truth. As described in the previous sec-
tion, ground-truth was only present for the days around the
examinations. In addition, for some patients a number of
days had to be discarded due to unstable self-assessment.
On top of this, only days where ground-truth and sensor
data was available at the same time was usable. Unfortu-
nately this was not the case for all of the ground-truth days.

The effect of the factors described above can be seen in Figure
2. The number of days on which there is any data available

Figure 2. The amount of sensor data (in days) and Ground Truth days
(GT) per patient (in brackets: distribution onto the different classes).

(first column) is quite close to the amount of time that the
patients participated in the trial and varies between 53 and
131. In terms of understanding the usefulness of the data the
most important are the last 3 columns showing the number of
days on which we have sensor data and ground-truth for each
sensing modality and for their combinations. Here the val-
ues range from 21 days (p0602, Acc + GPS), to 60-70 days
for acceleration (Acc). Even though the data situation is more
difficult for the GPS + Acc case (by looking at the distribution
of data to the classes (in brackets) some critical cases - only
7 or less samples - can be seen), for most cases the amount
of data is reasonable for an evaluation using standard tech-
niques such as a 66/33 percentage-split between training and
test data and n-fold cross validation. This is particularly true
for the change detection method (see section 6).

FEATURE COMPUTATION
Based on previous initial experiments [8] and discussions
with the medical personnel the following mobility based char-
acteristics were assumed to be relevant:

• Physical motion: Patients with depression tend to move
less, move less forcefully and overall slower. The opposite
is true for manic patients.

• Travel patterns: Most people have their travel routines
dominated by a set of places, which they often visit in a
certain temporal pattern. These patterns tend to change in
both depressive and manic states (become less frequent or
more erratic respectively). In addition depressive people
tend to travel and stay outside less often.

Clearly this is to be seen as a statistical average and will be
strongly person dependent (some people may move more in
depressive state than others do when manic). Also, please
note that these are not guesses but have been established in
previous work. Based on the above the following features
were used:

Acceleration Features
First, the raw signal was resampled to a fixed sampling rate of
5Hz in order to address variations introduced by the Android
phones. Afterwards, signal magnitude was calculated making
the following feature extraction invariant to phone orientation
(which is unknown). As a final preprocessing step all parts
where the signal variance falls under a small threshold were
removed and interpreted as time periods where the phone was
not on the body (the threshold was experimentally derived by

4



leaving the phone just lying on a stationary surface). Once
this preprocessing was completed, a set of features was cal-
culated using a 10 second sliding window. These were RMS,
frequency centroid and frequency fluctuation. The latter two
were based on the Fourier transform of the signal. Finally,
since labels and location data were calculated on a daily ba-
sis, all of the features (in all of the ten seconds windows of
each day) were aggregated by computing their mean and vari-
ance. These were then used for classification on a daily basis.

Location Features
The Android phones recorded GPS traces. For privacy rea-
sons, actual translations into real world locations (“movie the-
atre”, “shopping”, etc.) were not possible. The ethics board
insisted that the co-ordinates had to be translated into an ar-
tificial “anonymized” co-ordinate system that merely showed
position relative to the users home. Thus, for our work we
used the following set of abstract features:

1. The number of distinct locations visited (applying cluster-
ing to the GPS point cloud using a 500m threshold)

2. The number of hours outdoors: the number of hours during
which the patient was outside at least once.

3. The average time outdoors per hour: the mean of the time
spent outdoors within each of the 24 hours of a day

4. The mean of the times of day spent outdoors (calculated
by enumerating all hours and averaging the subset spent
outside, which can indicate when a patient was most active
- e.g. in the morning or afternoon).

5. The variance of the times of day spent outdoors (similar to
4 yet substituting “variance” for “mean”. Both features in
conjunction provide a clearer picture of the temporal dis-
tribution of patient activity.

6. The number of stays outdoors (connected stays outdoors =
a consecutive number of GPS data points within 15 minutes
of one another. Timestamps more than 15 minutes apart
consequently marked a new segment outside.

7. The percentage of time outside in 24 hours: the sum of the
duration of all connected stays, divided by 24 hours.

8. The distance travelled: sum of all distances travelled on
any particular day.

All of the above features were calculated on a daily basis.

STATE RECOGNITION
Using the features described in the previous section we first
investigated the recognition of individual states using a stan-
dard supervised training approach. The recognition was done
on a per patient basis (training and testing on the same pa-
tient). As we will show later (see section 6), person indepen-
dence (in this case, training with one patient and testing on
another) is probably not achievable. This stands to reason, as
every patient behaves differently.

Single Modality Classification
With the features described above in place, we first attempted
to apply standard pattern recognition techniques to the data
to try to identify which state a patient had been in. As is
common with supervised learning methods, we performed a
percentage split on our dataset, dividing it into 66% training
and 33% test samples. The split was performed randomly.
The test-set was resampled to ensure that classes were equally
represented. For the actual classification, features were first
transformed using a linear discriminant analysis [5]. After-
wards, the Naı̈ve Bayes classifier included in Weka [14] was
used to estimate classes for the test-set. Other classifiers were
tested (k-nearest neighbor, j48 search tree, conjunctive rule
learner), but achieved very similar results. Since the per sam-
ple class probability distribution output of the Bayesian clas-
sifier was used for the fusion of modalities described in the
next section, the results presented for acceleration and loca-
tion individually were also taken from this classifier. The
entire process above was repeated 500 times in a cross val-
idation approach with random test/training splits to eliminate
artefacts caused by “lucky” or “unlucky” random selections.

Classifier Fusion
The previous step resulted in a list of probabilities for all pos-
sible classes, for each day, for each modality (acceleration
and location). Combining them yielded a final classification
for each day data was available for. The combination pro-
cess was performed as follows: For every day where there
was only one modality available, the most probable class of
the associated class probability list was chosen. For every
day where both acceleration and location provided class esti-
mates, those estimates were fused using this algorithm:

For each class, the ratio of training data available for accelera-
tion and location compared to all training data was calculated.
If modality one provided 10 samples of training and modality
two provided 5 samples, the ratio would have been 0.66 for
one and 0.33 for two. In order to further penalize little avail-
able training data, these coefficients where then input into a
sigmoid weighting function: 1/(1+ e(− (coeff − 0.5) ∗ 5))
Finally, the product of estimated class probabilities and co-
efficients was calculated for each modality. The two vectors
of class estimates were then summed up and the highest rated
class picked as winner. The above scheme was chosen be-
cause available data was often scarce; it is a well-known fact
that for supervised training, an adequate amount of training
data is required. Thus, it makes sense to trust classifiers more
when they are based on a larger amount of data (within rea-
son, of course).

Results
The results (accuracy) are summarized in Table 1 below for
each patient and each sensing modality plus their fusion. The
accuracies for the individual patients are between 66% and
92%, which is reasonable given the application case outlined
in section 2. It can be seen that overall the results are best for
the location classifier closely followed by the fused classifier.
Average precision/recall values are around 80% for location,
around 70% for fusion and around 60% for acceleration (see
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Table 1. Percentage of correctly recognized days per patient: GPS only,
Acc only and sensor fusion. Absolute number of recognized instances is
given in brackets

Patients Fusion GPS ACC
p0101 70% (70) 77% (26) 75% (70)
p0102 84% (46) 82% (34) 76% (46)
p0201 68% (38) 77% (36) 68% (38)
p0302 82% (60) 92% (47) 66% (60)
p0502 71% (58) 85% (28) 72% (58)
p0602 77% (31) 71% (31) 66% (21)
p0702 74% (42) 77% (31) 73% (42)
p0802 79% (62) 89% (37) 77% (62)
p0902 83% (35) 85% (35) 70% (35)
p1002 68% (43) 79% (22) 71% (43)
mean 76% 81% 72%

Table 2. Overall recall and precision for GPS only, accelerometer only
and sensor fusion

Recall Precision
LOC 81,7% 80,8%
ACC 62,9% 64,8%

Fusion 70,3% 74,0%

Table 2). A close look at the individual precision/recall val-
ues in Table 3 reveals the reason why location performs best.
Since there is not enough data the location classifier does not
consider medium depression for patient p0502, which is very
poorly recognized by the other classifiers. Overall the fused
approach has the advantage of considering more data points
than either acceleration or location alone since, as described
in subsection B (Classifier Fusion) it considers data points
covered by either modality. Looking at the individual patients
and states and comparing them with the amount of data out-
lined in Figure 1 (in particular the distribution into classes in
brackets) it is clear that many of the poorly faring cases are
related to a very small amount of available data.

Table 3. Precision / recall values for the different states. Most patients
experienced 2, some 3 different states during the trials.

Recall Precision Recall Precision
Fus/Loc/Acc Fus/Loc/Acc Fus/Loc/Acc Fus/Loc/Acc

p0101 % % p0602 % %
normal 84 / 2 / 74 75 / 1 / 88 sl. dep. 85 / 58 / 57 65 / 63 / 69
sl. man. 55 / 80 / 75 65 / 90 / 59 normal 73 / 78 / 61 89 / 74 / 47
med.man. 67 / 67 / 80 67 / 63 / 79
p0102 % % p0702 % %
depr. 94 / 84 / 81 86 / 86 / 83 sev.dep. 91 / 82 / 82 80 / 94 / 85
normal 62 / 77 / 55 80 / 73 / 51 sl. dep. 0 / 21 / 22 0 / 7 / 18
p0201 % % p0802 % %
depr. 25 / 75 / 40 50 / 48 / 41 depr. 44 / 70 / 58 64 / 57 / 49
normal 89 / 81 / 76 72 / 86 / 75 normal 91 / 93 / 84 82 / 96 / 88
p0302 % % p0902 % %
depr. 39 / 94 / 42 100/64 / 32 depr. 92 / 83 / 73 83 / 82 / 76
normal 100/92 / 73 80 / 99 / 80 normal 67 / 70 / 57 83 / 71 / 53
p0502 % % p1002 % %
sev.dep. 50 / 50 / 55 58 / 74 / 62 med.dep. 86 / 68 / 75 74 / 91 / 83
med.dep. 35 / 0 / 56 71 / 0 / 39 sl. man. 18 / 87 / 32 33 / 57 / 22
normal 69 / 82 / 81 85 / 57 / 87

CHANGE DETECTION
In this section we investigate the detection of a state change
without explicit recognition of the new state. The main dif-
ference to the approach in the previous section is that instead
of a classifier that has a model for each state relevant to the
patient, we only build a model of a single “default state”. All
points falling outside this model are classified as a “change”.

This approach is motivated by the following considerations:

1. As discussed in section 2 (Bipolar Disorder), from the ap-
plication point of view detecting a change of state in order
to trigger a visit to the doctor is a key functionality. The
exact diagnosis is then done by the doctor anyway.

2. The approach of starting with a single default state has the
advantage that a new patient that comes to a doctor can
be given a device and as soon as initial data has been col-
lected for his current state the device becomes useful (since
a change can be detected). There is no need to wait until
data for all relevant states has been collected.

3. For 8 out of 10 patients we are dealing with a two state
problem anyway.

Since, in the state change detection case we are explicitly
building our own probability density functions (PDFs) for the
default state rather than using the output of an out of the box
WEKA implementation we also use this case to test a more
controlled fusion strategy where the distances to the mean are
used as weights together with the number of available training
points.

Single Modality Methode
To evaluate whether this change detection is indeed possible
given the data we have collected, we devised the following
evaluation:

1. Set up a model for a baseline: As described previously,
a number of features have been calculated on both loca-
tion and acceleration data. Furthermore, for each patient,
a number of different classes exists in the recorded pe-
riod, e.g. samples from a “normal”, “lightly manic” and
“medium manic” episode. To establish a basis for a certain
state of mind, two thirds of samples of a given class were
randomly taken as a “training set”. A multivariate Gaus-
sian distribution was fitted to this subset.

2. Establish a distance measure and decision boundary: To
measure how far a sample is from the model established
in (1), the Mahalanobis distance lends itself as a natural
choice. For all training samples, the distance to the model
was calculated and their mean and standard deviation was
determined. Using these two parameters, distances of any
sample to the model distribution were normalized by sub-
tracting the mean and then dividing by the standard devia-
tion. If a sample’s normalized distance was within a certain
threshold, they were marked as “no change” and otherwise
as “change”. For the threshold, a set of values was tested,
resulting in the precision/recall-graph presented in the eval-
uation section.

3. Evaluate the model: Afterwards, all samples not used for
training were used to test the model formed in (1) and (2)
by calculating their normalized distance to the model, then
checking if they lay in or out of the threshold region estab-
lished in (2). Based on these estimates, precision and recall
were calculated.

4. Perform steps (1) to (3) a thousand times in a cross valida-
tion approach with different test/training splits to eliminate
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the influence of outliers and offset the artefacts caused by
the random selection of training samples. Also, evaluate
different thresholds from 0 to 5 in steps of 0.1

Fusion of Location and Acceleration
Both acceleration and location were evaluated according to
this algorithm individually. Afterwards, the results of both
modalities were fused, both to improve accuracy and to widen
the range of days considered (different modalities may pro-
vide data for different, though potentially overlapping, sets of
days). For days where there was only data from one modality,
that modality was used. When both modalities were available,
three different approaches were tested:

1. Logical AND: A state change was assumed if and only if
both modalities detected one.

2. Logical OR: A state change was assumed if one or both
modalities indicated it.

3. Weighted, at the normalized distance stage: Here, we went
back to step (3) of the previous algorithm. Normalized dis-
tances were calculated for both modalities, then summed
up according to the same sigmoid weighting scheme out-
lined in the state detection classifier fusion section. Thresh-
olds were combined accordingly. Afterwards, the fused
distance was simply tested for being smaller or larger than
the new threshold.

Results
The precision/recall-graphs sweeping over different threshold
values for the different fusion approaches and modalities are
shown in Figure . It can be seen that the weighted fusion
approach is by far the best one reaching an optimal preci-
sion/recall value of 96%/94%.

The precision/recall values, reached for each patient in the
parameters given by this optimal average point, are given in
Table 4 (left). Table 4 (right) contains the values for each
state (class averaged over all patients). It can be see that ex-
cept for the precision for patient p0602 (87%) and recall for
light manic (86%) all values are well over 90%. The improve-
ment compared to the state detection can be explained by two
factors. First, while only two patients have three states, the
results for the state detection for these patients is fairly poor
which pulls the overall result down. Second, as is clearly vis-
ible in Figure, such excellent results are only reached for the
weighted fusion approach, which we have developed specifi-
cally for the change detection. For this case, we built explicit
PDFs and computed point distances rather than rely on the
output of a black box Bayes classifier. This is not surprising
since proper weighting is a core aspect of classifier fusion. It
should be noted that some improvements in state recognition
can possibly be gained by investing the same kind of effort
into it that we applied to the change detection in this section.
The core aim of this article, however, was change detection,
which is the reason our efforts are concentrated here.

Person (In) Dependence
All of the evaluations described so far in this paper were done
in a patient dependent mode. We have justified this by the in-
tuition and previous experience that indicated strong person

Figure 3. Precision/Recall graphs for acceleration only, GPS only, fused
AND, fused OR and fused WEIGHTED modality.

Table 4. Recall and precision values for each patient (right) and each
class (left) using the weighted fusion.

Patient Recall Precision Class Recall Precision
p0101 91.1% 93.4% depressive 99.1% 95.5%
p0102 86.2% 96.8% heavy depres. 96.8% 96.5%
p0201 97.3% 92.9% medi. depres. 100.0% 90.6%
p0302 100.0% 93.8% light depres. 100.0% 96.8%
p0502 97.8% 97.6% normal 94.4% 92.8%
p0602 100.0% 87.4% light manic 86.7% 96.7%
p0702 96.8% 97.1% medi. manic 100.0% 96.9%
p0802 95.6% 95.2%
p0902 100.0% 97.1%
p1002 100.0% 91.2%

Average 96.5% 94.2% 96.7% 95.1%

specific variations in behavior. With the multivariate feature
distributions derived in the section “Change Detection” we
can back this up with empirical data. To this end, for each of
the classes of a patient, the associated distribution was used
to calculate the Kullback Leibler divergence [9] to the Gaus-
sian of the same class of all the other patients. While some
patients appear to exhibit similar tendencies to one another
(patient p0101 and p0302, e.g.), overall divergence values are
very high (a mean of 1089). As an example, by comparison,
given a 6 dimensional (there were 6 acceleration features)
multivariate Gaussian with an expectation value of (10, 10,
10, 10, 10, 10) and the identity matrix as covariance, its KBL
divergence to the 6 dimensional normal distribution around 0
is 300. In essence, this confirms what psychologists are fond
of pointing out: each patient is an individual and needs to be
treated on an individual basis.

DISCUSSION
The results presented in the previous sections must be seen
in the light of a noisy ground-truth and the fact that a pa-
tient’s behavior cannot be expected to be fully consistent on
a daily basis. Even a severely ill person can have a good day.
Also, mere change detection (which performed very well in
our tests with a precision/recall of 96%/94%) is enough in
most cases since the exact diagnosis will be done by the doc-
tor. Furthermore, it would be a potent tool not yet available.
In this context we consider our results to be very promising.
Clearly, when judging the value of the results presented in
this paper one must take into account that for some patients
the amount of labeled data and classes was small. This means
that it is not possible to say if in large-scale trials we would
reach values very close to the 96%/94% for change detection.
However, as outlined before, even significantly smaller values
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would be sufficient for practical applications. As described in
section 2 (Envisioned Use of Activity Recognition) the use
case of recognition triggering after persistent occurrence of
changed values does not require particularly high accuracies.
Even more significant than a few percentage points either way
in terms of performance is the fact that the data was collected
under conditions that correspond exactly to the way a system
would be used in real-life. We have worked with real patients
in a rural environment (not necessarily tech savvy) just giving
off-the-shelf devices to people with no other supervision than
a visit to a doctor every three weeks.
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