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The motion of social insects is often used as a paradigmatic example of

complex adaptive dynamics arising from decentralized individual behaviour.

In this paper, we revisit the topic of the ruling laws behind the burst of activity

in ants. The analysis, done over previously reported data, reconsiders the

causation arrows, proposed at individual level, not finding any link between

the duration of the ants’ activity and their moving speed. Secondly, synthetic

trajectories created from steps of different ants demonstrate that a Markov pro-

cess can explain the previously reported speed shape profile. Finally, we show

that as more ants enter the nest, the faster they move, which implies a collective

property. Overall, these results provide a mechanistic explanation for the

reported behavioural laws, and suggest us a formal way to further study

the collective properties in these scenarios.

1. Introduction
The behaviour of social insects constitutes beautiful examples of adaptive collec-

tive dynamics born out of apparent purposeless individual behaviours [1,2]. The

richness of the phenomena offers plenty of opportunities to test the theories

dedicated to understand the fascinating aspects of collective organization and

behaviour. An emergent issue is to dissect the dynamics that are routed on indi-

vidual versus those explained by collective forces. (A recent review can be found

in [3].) A relevant perspective allowing us to point out the effects of collective be-

haviour is the analysis of insects’ speed. For instance, the walking speed of an ant

changes after interaction with other ants [4], where the change depends on the

speed of the second ant. Consequently, it has been suggested that a building

up in speed, following the interaction with fast returning foragers, might be the

basis of an ant’s decision to leave the nest for a foraging trip [4,5].

Recent work [6,7] found that ants’ bursts of activity moving both inside and

outside their colony’s nest exhibit a power-law relation between the duration

of the activity and its average speed. Successive motion events, defined as the

segment of data between two consecutive motionless instances, were found

to obey a universal speed shape profile. The authors concluded that this pre-

dictability implies that the duration of each ant’s movement is ‘somehow

determined before the movement itself’ [7], thus placing important weight

into the individual ant’s spontaneous behaviour.

In this work, we revisit the topic proceeding to analyse the same datasets as in

[6] to disambiguate the individual properties that can be judged as cognitive from

the features that can be potentially based on other aspects of the animal’s physi-

ology. A null model is introduced allowing us to create synthetic trajectories by

adding steps of different ants selected at random. The results of the analysis

suggests an alternative explantation simpler than the causation arrows between

the ants’ duration of activity and their speed proposed in [6]. The origin of the

universal shape profile of the speed can be reconnected to a Markov process

taking into account the observed ants’ speed auto-correlation that is based on

the animal’s physiology.
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Figure 1. Examples of typical ants’ trajectories: three ants from colony
C2

55�44, after entering the nest from the point marked with a small bar
(middle region of the top side). Notice the movements of two of them
(ants 03 and 16) which are manifestly correlated. (Online version in colour.)
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Finally, we show a novel and distinctive collective effect

by which as more ants enter the nest, the faster they move.
2. Methods
2.1. Data
The data re-analysed here were already described in [6], and corre-

spond to Temnothorax albipennis ants, which form small colonies in

rock crevices, approximated in the laboratory by a 100 � 100 mm2

Petri dish where food and water are available at will. Ant workers

were identified by markers with unique combinations of colour

paint dots. Ants’ individual trajectories were video-recorded

within two nest sizes: 35 � 28 mm2 and 55 � 44 mm2 in a random-

ized order from each of three colonies (labelled C1, C2 and C3, and

indexed according to the nest sizes used). Ants’ trajectories were

reconstructed manually from the video with a cursor with a time

resolution of 0.1 s. To compare with previous work [6,7], we use

similar preprocessing steps. The data were coarse-grained to an

average sample interval of 0.8 s in order to reduce the very

small-scale fluctuations. An ‘activity event’ was defined using a

speed threshold ve ¼ 0.001 mm s21, below which it indicated that

the ant is inactive.

Typical ants’ trajectories are plotted in figure 1. Figure 2

shows examples of the speed changes for a group of ants

during the first minute recorded. It can be seen that the ants’

motion is discontinuous and irregular, eventually stopping and

restarting their walk. Indeed, decreases in the ant’s speed are

related with the so-called marking behaviour in which the ant

touches the tip of its gaster to the surface, a known property in

various ant species [8–11].

2.2. Model
The causality argument proposed in [6,7] is supported by the

comparison with what we can call a zeroth order null model,

where synthetic realizations of the ants’ trajectories were to be

made by randomly extracting speeds from the distribution

P(v(t)) thus ignoring the possible correlations with the current

state of the movement.

Here, we propose an improved first-order model taking into

account the fact that auto-correlation plays a strong role in

animal movement processes. The model is based on the statistical

reconstruction of return map for the ants’ speeds. This map can

be observed in figure 3a, where we plot for all time series, all
pairs of consecutive values of speeds v(t), v(t þ 1) (dots in

figure 3a). Subsequently, values of v(t) were binned and its cor-

responding v(t þ 1) averaged (circles in figure 3a). Similarly, to

construct the synthetic speed trajectories of the null model, we

define a conditional probability distribution for the subsequent

velocities P(v(t þ 1)jv(t)) from the data with bins of Dv ¼
0.1 mm s21. A special bin is used for speeds after rest events

(that is, speeds below the threshold ve ¼ 0.001 mm s21). Then, we

describe an ant’s speed as a Markov process which draws from

the binned distribution, using the following iterative procedure:

(i) an initial value of speed v(t) is randomly chosen from the bin

of speeds following a rest event. (ii) The next speed is determined

by randomly choosing a v(t þ 1) inside the corresponding bin of

P(v(t þ 1)jv(t)). (iii) Such value is then considered as the new v(t)
for the new iteration. (iv) If v(t þ 1) , ve, the movement is con-

sidered completed. (v) When a movement is finished, a rest time

t is extracted at random from the experimental data. (vi) After a

time t with no movements, we restart from the first step.
3. Results
The results are organized as follows: first we describe the

observation that can be derived by analysing the map of dis-

crete consecutive speeds from the raw data. This map is used

to define the first-order null model, which is relevant to isolate

the role of auto-correlation in the individual ant’s dynamic.

After that, we compare the scaling statistics for both processes:

the recorded and null model simulated ants’ trajectories,

including the event duration, speed, intervals and shape.

Finally, we describe a novel dependence of speed as a function

of the number of ants moving.

Despite the wide scatter of the data points in figure 3a, the

average f(v(t)) (circles and continuous line) make evident the

auto-correlation between consecutive steps. Thus, the average

dynamics of the ants’ speed can be, in part, described by

the average map f; i.e. values larger than v* (arrow) tend,

on average, to decrease (i.e. the average value stays below

the identity line). For values of speed smaller than v*, there

are two tendencies: if the ant is moving, then it will speed

up in the next time step. For the case that the ant is not

moving, we cannot say anything about when it will start

moving (although see below); nevertheless, whenever it

does it, it will do it with an average speed of the order of v*

as indicated by the circled symbol at the origin of figure 3a.

The map f in figure 3a can be used to test the potential origin

of the fluctuations in the ants’ speed, constructing time series

of speeds following a given null hypothesis. Following [6,7],

the variables of interest are the individual bouts of motion,

defined by the speed fluctuations of a given ant, starting

and ending with immobility (see Methods). For instance,

figure 3b shows a real event (circles and continues line) lasting

20 s. The other six traces (dashed lines), starting at 4 s, are

stochastic realizations constructed using the map of

figure 3a. Specifically, time series of speeds were computed

iteratively: at each step the next speed value v(tþ1) is calculated

as follows: given a speed v(t), the next speed is randomly

selected from the subset of v(tþ1) values corresponding to the

bin v(t) 2 Dv/2 , v(t) , v(t) þ Dv/2 with Dv ¼ 0.1 mm s21).

The computed value became the new current speed and the

iteration proceeds. It can be seen, in the example, that the trajec-

tories of speeds constructed this way vary in both size and

duration. It is important to note that this first-order null

model breaks some, but not all, correlations present in the
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Figure 2. (a) Speeds of the ants moving in colony C1
55�44 during the first recorded minute. (b) Whenever at least a single ant is moving we can define the average

speed �v(t). (c) The number n of moving ants. (Online version in colour.)
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real ants’ walks, as shown in the map in figure 3a that preserves

the average serial correlations in the speed.

As will be discussed later, the stochastic procedure used in

our first-order model shuffles, in a sense, the ‘decisions’ of indi-

vidual ants at each time step. This deletes any predetermined

individual plan (as argued in [7]) about how long and fast

would be any given bout of motion, while maintaining some

of the properties of the speeds auto-correlation (see the elec-

tronic supplementary material). Very different results are

observed (see the electronic supplementary material) if the

synthetic realizations were to be made with the zeroth-order
null model by randomly choosing speeds regardless of their

preceding one, as done in [6].

Armed with an appropriate null model, now we can pro-

ceed to analyse the ants’ data and to compare the statistics

with synthetics time series. Of interest here are the ‘events’,

which are defined as the bouts of activity starting and finish-

ing on a quiet instance (recall that quiet was defined as any

speed below the ve threshold as in [7]).

First, we compute the densities of event’s duration T, the

event’s size S (that is, the total distance covered during the

motion event), and their mutual relation, which are plotted

in figure 4a–c, respectively. Overall, the results show that

the null model agrees very well to replicate more than the

95% of the real events, while fails to replicate the empirical

probabilities of the longest lasting events (of the order of

1 � 1024 , P , 1 � 1022). This disagreement might be a con-

sequence of the higher order correlations which are not taken

into consideration in our first-order model. Indeed, as we see

in the electronic supplementary information, the empirical

auto-correlation function decays slower than in our model,

which can possibly lead towards longer moves.

Looking at the scaling relations in figure 4c, is apparent

that the exponents could be consistent with a stochastic pro-

cess where changes in speed are given by an uncorrelated

noise Dv(t þ 1) ¼ v(t þ 1) 2 v(t) ¼ j(t), which would yield

v(T )/ T0.5 and therefore S(T )/ T1.5 [12]. However, the fact
is that consecutive speed samples of the raw data are correlated,

as demonstrated by the average map of figure 3a. Because of

that, it is of less interest to consider the zeroth-order null

model in which these correlations are ignored and the time

series are built by random shuffling of each raw time series

of speeds, where speeds become independent by duration

(see the electronic supplementary material and fig. 8 of [6]).
3.1. Shape collapse
The functional relation between the lifetime of an event and its

size shown in figure 4c, observed in both real and null model

implies that the time series of speed is self-affine [13]. Thus,

after appropriate rescaling, an average shape descriptive of

the events shall be extracted, as was reported earlier for this

data [6], as well as for human activity [14]. We observe in

figure 5 that equally satisfactory collapse of the trajectories

can be obtained in both cases, the null model (figure 5a) and

the raw data (figure 5b). However, there is a small, but relevant,

difference. While the shape function of the model is more simi-

lar to the expected inverted parabola, the one derived from real

walks exhibits a plateau. A less notable feature, but common

to both cases, is the presence of a slight asymmetry. These

similarities and differences will be discussed later on.

The results so far indicate that the scaling relation and

the characteristic shape or the bouts of ant motion are

indistinguishable from the results of the null model trajectories

in which consecutive speed increments are shuffled at each
step among different ants and moments in time. This similarity

is one the main results and clearly goes against the inter-

pretation given in [7] when stating that ‘ants determine their

next move at rest’ assigning a cognitive root to the observed

universality. To remark the contradiction, note that the null

model can be visualized ‘as if’ at each step each ant uses

another randomly chosen ant’s decision for its own next step.

The observed universal characteristics of ants’ movement

can be reconstructed using as the only ingredient the
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Figure 3. Extracting the null model map. (a) Return map extracted from the
raw data by plotting consecutive v(t) samples (dots) and its binned average
f(v(t)) (circles and continuous line) over-imposed (note the log axis). (b) An
example of a real event v(t) (solid line with circles) and six synthetic trajec-
tories (dashed lines). In this example, differently from the implementation in
our simulations, the trajectories are the same until t ¼ 4 s. Then they evolve
independently following our model starting from the real trajectory with
initial condition v0 ¼ v(4 s) and selecting subsequent steps from the map
in panel (a). Note that synthetic trajectories vary in both size and duration.
Data from colony C2

35�28, the scaling for other colonies are displayed in the
electronic supplementary material. (Online version in colour.)
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35�28, the scaling for other colonies are dis-

played in the electronic supplementary material, where we also report a
dependence in the numerical value with the nest size already pointed
out in [6]. In the simulated data, we generated 1 million synthetic
events. (Online version in colour.)
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auto-correlations of speeds, whose origin is probably to be

found in the animal’s physiology.

3.2. Speed dependency with N
We observed, in the two colonies with the largest number of

ants (but independently from the nest size, see the electronic

supplementary material), an additional effect concerning the

dependency of speed as a function of the number of ants

moving. Figure 6a shows that as this number increases, the

average speed also increases. Specifically, at each time t we

count the number n of ants in motion, and we compute their

average speed �v(t). The quantity k�vln represents the average

speed of moving ants in a moment where n ants are moving.

To disambiguate the origin of this dependency, we compared

the growth in speed observed for the 22 ants tracked in

colony C2
35�28 with the same analysis performed on the same

number of artificial time-series obtained from our null model.

It is seen (figure 6b) that the speed for the artificial trajectories
constructed with the null model is independent from the

number of ants moving. In this way, we can safely exclude

the possibility that it is an artefact related to the larger average

speed of longer trajectories; instead the results argue in favour

of an effect emergent from the ants’ interaction.
4. Discussion
The main findings can be summarized along three points. First,

from an individual perspective, the similarity between the
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first-order null model and real ants results takes considerable

weight from the previous suggestion indicating that the dur-

ation of each ant’s movement is ‘somehow determined before

the movement itself’ [7]. The proposed causation arrows in

previous reports are not found in our results, as the universal

shape of the v(t) curve is not a behavioural feature but the

necessary consequence in movements characterized by

random accelerations integrated over time.

Indeed, at each step of the synthetic data, ant i future

speed is determined by the decision made in another

moment by another ant j, which completely ignores ant i’s
past history or determination. It is clear that under such con-

ditions any informed plan or determination taken by ants is

hard to sustain.

Second, despite the similarities, it is shown that the aver-

age shapes of the individual movement events exhibit a small

but relevant difference with respect to the synthetic data.

Figure 5b shows that the shape of the empirical events is

not completely parabolic as in figure 5a, which is expected

from a random walk. It is, instead, rather flat. This type of

plateau, according to the analytical results of Baldassarri

[12], is expected for a particle executing a random walk on

a potential well, in which the restoring ‘force’ depends on

the value of v. In simple words, relatively large increments

of v are harder for larger absolute values of v, something

that make also sense from a biological standpoint. In passing
notice that the slight asymmetry is not expected for the fully

stochastic memoryless linear process in [12].

Third, the analysis unveiled a new observation in this type

of data, dubbed here ‘the more the faster’ effect; as more ants

are in motion in the arena, the faster they move. This result is

clearly a collective property, which is consistent with a

number of theoretical ideas on trail formation, where at a

certain density of agents directed motion (and subsequent

individual speeds increase) emerges [15,16]. It is our hope

that this observation would encourage further experimental

studies on the link between speed and colony dimensions,

with the particular caution of forming differently sized

groups of ants from the same colony, instead of from different

colonies, to control for variation among field colonies.

Overall, these results provide a mechanistic explanation for

the reported behavioural laws, and suggest a formal way to

further study the individual and collective properties of

animal trajectories. In particular, the modelling approach we

proposed, based on the description of movement patterns as

a random process characterizing the evolution of speeds in

time, can be enlightening for the open discussion on Lévy

flights as models of animal movement [17–19].

The Lévy flight hypothesis, proposing a universal scale-

invariant character of animal motion, does not account for

the interaction between different animals [20] and for the

auto-correlation in consecutive moves [21]. A deeper quanti-

tative understanding of animal movement behaviour can be

gained by going beyond the simple characterization of move-

ment patterns in terms of step-length distributions [22].

A model of randomly accelerated walkers, describing the
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evolution of speeds as acceleration kicks at random times,

already proved successful in showing that the longstanding

interpretation of human displacement as Lévy flights was

incorrect [23].

The spontaneous movement of animals should necessarily

be seen as the product of a continuous decision-making pro-

cess, adjusting the organism’s behaviour in response to both

past and present events [18]. This perspective requires accurate

analysis of the experimental data, which must be recorded con-

sistently with the spatial and temporal scales of the organism’s

movement decisions [24,25].
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from the shackles of optimal foraging. Phys. Life
Rev. 14, 59 – 83. (doi:10.1016/j.plrev.2015.03.002)

20. Breed GA, Severns PM, Edwards AM. 2015 Apparent
power-law distributions in animal movements can
arise from intraspecific interactions. J. R. Soc.
Interface 12, 20140927. (doi:10.1098/rsif.2014.0927)
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