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Abstract—Traditionally, there is a lack of detailed information
on passengers’ movements from and to the airports. This is due
to the limitations in accuracy and coverage of methodologies
like local surveys commonly used to obtain data in this context.
As a consequence, managers and policy makers must take
decisions based on partial information on passengers’ transport
demands. Recent developments and popularization of the use
of Information and Communication Technologies (ICT) provide
new alternative data-sources allowing for the precise derivation
of individual mobility at different spatial scales. This data may
pose some challenges in terms of correcting potential biases,
but it overcomes many of the traditional methods limitations.
Here, we investigate how the availability of ICT data depicts
a new comprehensive perspective on door-to-door air transport
mobility. We do this by proposing three case studies involving
three new sources of data: i) GPS records of taxi pickups; ii) a
database of geolocated tweets including 10 million users tracked
for two years in Europe; and iii) the travel-times between the
user’s home and the alternative airports (provided by Google’s
API). By integrating this data into simplified discrete choice
models, we exemplify how the description of airport catchment
areas can be treated in large cities served by more than one
airport. This works illustrates how the air transportation system
interacts with other transport modes in the passengers decision
process. While passengers can still be described within the
classical rational choice paradigm, new models must be developed
to include the influence of ground transportation aspects in the
passenger’s travel decisions.

Keywords—data; data analytics; geo-located tweets, travel-
times, passenger behaviour; door-to-door mobility

I. INTRODUCTION

The increasing availability of data offered by the ex-
plosion of the Information and Communications Technolo-
gies, together with the raise in computational power and
methodological tools necessary for their elaboration, enables
us to study socio-technical systems with unprecedented de-
tail [1]. This possibility propelled a new wave of studies that
touched several aspects of human long-range mobility, like
seasonal changes in population distribution [2], migration [3],
tourism [4], [5], and including air passenger flows [6], [7].
Long-range airline traffic however, interacts with short-range
ground transportation. The spreading of epidemics, for in-
stance, is strongly shaped by the interaction of international
passenger flows and urban commuting [8]. For this reason,
in the effort of expanding our knowledge on the behavior of
air passengers, it becomes important to integrate the currently
used models with a better understanding of the impact of
ground transportation. Also in this case, the recent years

have shown a lot of novel data-informed results based on the
analysis of cars [9], [10] or taxis [11] GPS traces, mobile
phones [12], micro-blogging [13], location based social net-
works [14], and public transportation timetables [15], [16].
Data by itself is not sufficient and must be supported by
adequate methodological foundations to correctly improve
our understanding on the evolution of any system and our
possibility of forecasting it [17]. In particular, the economical
dimension of transportation must be taken into account [18],
[19], [20], [21].

In this paper, we propose three case studies to showcase the
potentiality of publicly available data sources in describing
the effects of the competitions between airports serving the
same urban area. We will use the GPS record of taxi pickups
in New York City (NYC), geo-referenced tweets in London
and Paris, and the trajectories suggested by the Google Maps
API [22] for reaching the airports in the same two cities. Our
analysis aims at highlighting the role of ground transportation
in the choice between alternative airports. In support of this
data-driven perspective, we use rational choice theory [23] to
model the decision behavior and to point out which aspects
are more relevant for the travellers when they face the option
of more departure airports.

II. RESULTS

A. Taxi Pickups

As a consequence of the Freedom of Information Law, in
2013 the New York City Taxi and Limousine Commission
shared the content of its database to anyone who requested
and agreed to physically go to copy the data available in
their facilities [24]. For this case study, we use in particular
the dataset released by the University of Illinois at Urbana-
Champaign [25], but we remark that since then the New York
City Taxi and Limousine Commission simplified the access
to this type of data which can be now downloaded directly
from their website [26]. We limited our analysis to data of the
year 2013, which includes over 173 million taxi trips across
all the New York state. For each trip, the pickup and dropoff
coordinates, and timestamps are recorded, together with the
fare charged including tips, tolls, taxes and the surcharges
characteristics of the trips to and from the airports. More
details can be found in [25].

NYC is served by three airports: John F. Kennedy Interna-
tional Airport (JFK), LaGuardia Airport (LGA) and Newark
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Figure 1. Real (up left) and estimated (up right) fraction of travellers going
toward one of the three NYC airports, represented with an RGB scale (Red:
La Guardia LGA, Blue: JFK, Green: Newark NWA) for cells with more than
3 journeys. The majority choice is, therefore, the dominant color. Below, a
comparison between model and data through a scatter plot of the fraction of
users going from a cell to a each given airport.

Liberty International Airport (EWR). JFK is the main in-
ternational airport and the one with the largest number of
passengers (60 million per year), it also has a good public
transport connection by train with the island of Manhattan
and with Brooklyn. LGA hosts mostly national flights (24
million passengers per year). LGA is also the closest airport
to Manhattan but the public transport connection is only by
bus. Newark is both national and international, but is has less
passengers than JFK (35 million per year). In the data, we
identify the trip from and to the airports as if the pickup or
dropoff coordinates fall in a box around the airport. Being
EWR not in the New York state, only dropoffs are recorded in
that airport. For this reasons, the following analysis is limited
to dropoffs.

We use here taxi data to model and test the passenger
choice selection between airports using a multinomial logit
model [23], [27]. We first select an area of analysis comprising
the three airports (see Fig. 1 up left) and divide it in bins of
approximatively 400m × 400m. For each bin i, we evaluate:
i) the fraction Fi(a) of pick-ups having as destination one
of the airport a; ii) the average travel-time ti(a) to the
airport; and iii) the average cost ci(a). The travel time and
the monetary cost of the taxi travel to the airport allow
us to estimate cost associated to the trip as a combination
Ci(a) = ci(a) + VT ti(a), where VT is a constant value-of-
time. The total utility U associated to a trip should in principle
include also the generalized utility gained by performing the

(a)
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(b)

Figure 2. (a) Distribution of tweets of British (UK), French (FR) and Spanish
(ES) users around London. (b) Percentage of tourists seen tweeting at each
airport.

trip, and the cost associated to the plane ticket. Here, we
simplify of the problem by ignoring these two factors, which
are known to be relevant in transport analysis and planning,
implicitly inducing the naive assumption that all three airports
offer similar flights at similar times, with similar quality and
costs of the trips, in order to focus on the effect of ground
transportation. Under these assumptions, we can model the
probability of choosing the airport a from i as:

Pi(a) =
exp(−Ci(a)/k)∑
i exp(−Ci(a)/k)

where k is a free parameter representing uncertainty of in-
formation [27]. These probabilities can be compared with
the observed fractions Fi(a). By minimizing the total error∑

i,a(Pi(a)−Fi(a))
2, we identify the optimal values for k and

for the value of time VT = 0.35 USD/minute (R2 = 0.975).
These value allow us to reproduce the observed catchment
areas for taxi users with surprisingly good precision (see Fig. 1
up right and the flow comparison below).

B. Geo-referenced tweets

Geo-located tweets have been continuously recorded by
querying the Twitter API [28]. The system we implemented
allows us to capture a good part of the entire streaming of geo-
located tweets [29]. For this work, we filter only the countries
where air traffic is handled by the European Civil Aviation
Conference (ECAC). For this selection, we find a total of 9.8
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Figure 4. Empirical distribution of the approximate home location for the local passengers observed in the six London airports.

Million users observed during the two-years period of analysis
considered (2015-2016).

By tracking the movements of the individual (anonymized)
users, it is possible to approximatively reconstruct their home
country as the country where they have been observed for the
longer time. This allow us to distinguish between tweets of
locals and tourists in the same area. In Fig. 2 (a), we can
see, for instance, the distribution of tweets of locals (UK) and
tourists of two different nationality (France (FR) and Spain

(ES)) within the metropolitan area of London.

London is served by six airports: Heathrow (LHR), Gatwick
(LGW), City (LCY), Luton (LTN), Stansted (STN), and
Southend (SEN). These airports are characterized by a dif-
ferent user base. For studying this difference, we define for
each airport a polygon describing its contour (see Fig. 3 (a))
and isolate the tweets performed inside this polygon (see as
example the tweets distribution in Heathrow in Fig. 3 (b)).
This permits us to assign a set of users to the airport they
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(a)

(b)

Figure 3. (a) Map of the 6 London airports with the shapes of the polygon
used for filtering the tweets. (b) Distribution of tweets observed in the area
of the Heathrow airport.

tweeted from. It is important to note that we filter out users
tweeting frequently in different days from the same airport in
order to exclude workers and population living around airports.
The first thing we can quantify is what proportion of users
observed in the airport are local (residents in the London area)
or non-local travelers (having their residence within the rest
of the ECAC area) (see Fig. 2 (b)). The airport most used by
tourist is Stansted, which is indeed a base for a number of
major European low-cost carriers, while the one least used in
proportion (and also in total) is the Southend airport.

As one could notice in Fig. 2, locals and tourists are
distributed differently in London’s metropolitan area, with the
tourist mostly concentrated in the central districts. This is
reflected also by the subset of users we observed tweeting
from within the airports. For each of these users, we can
approximate the position of the home-place (for locals) or the
final urban destination (for tourists) as the area from where
the user tweets the most. In this approximation, we first divide
the area of the analysis (Fig. 2) in a number N of sub-areas
commensurate to the total number n of tweets recorded (using
the rule N ≈

√
n), and identify the home/destination as the

center of mass of the points in such sub-area. This procedure
has of course some limits, but assures that the approximated
location is in an area that has been largely visited, which is not
true if one uses the alternative option of computing directly
the center of mass of the tweets.

The spatial distribution of the final urban destination of
the tourist observed in the different airports show very small
differences with the exception of the City and Southend airport

(a)

(b)

Figure 5. L2 distance between the distribution of home location of local
passengers (a) and destination of tourists (b).

from where most often the travelers go to ’The City’ of
London. A clearer evidence of a spatial optimization in the
choice of the airport can be observed in Fig. 4 for local
travelers. In these maps, it appears evident that the residence of
the travelers observed in an airport are typically closer to that
airport than to others. In the choice between the alternative
airports, local travelers are therefore minimizing the travel-
time (and cost) between home-place and airport. We will build
on this observation in the following section, integrating Twitter
data with travel-time information extracted from Google maps
in two case studies: London and Paris.

The observed difference in the catchment area of the six
airport between can be quantified using the L2-distance be-
tween the distribution of Fig. 4. The L2-distance is computed
as the sum of the square differences between the value of
each cell: DL2(p1, p2) =

∑
i,j (p1(i, j)− p2(i, j))2, where

p1 and p2 are two probability density distribution, and i and j
respectively the row and column index of the cell. In Fig. 5, we
represent the L2-distances with a color-scale. In the (a) panel,
we can observe the distances for locals and in the (b) panel for
tourists. We observe that in both cases the two airports with the
most peculiar catchment areas are City and Southend, and that
for tourists in the (b) panel all differences are less pronounced
than for locals in (a).

We can finally associate to each sector of the area analyzed
in Fig. 4 the most common airport used. This permits us to out-
line the empirical catchment areas of each airport. These are
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Locals

Tourists

Figure 6. Empirical catchment areas in London for locals (up) and tourists
(bottom). The black line represents the London borough. In the top panels
each square represents an area of 10x10 km2. In the bottom panels we zoom
in the two most central sections and each square is of 1x1 km2.

shaped differently for locals and tourists (see Fig. 6). In both
cases, the largest and relatively central airport of Heathrow is
the dominant option in the center of London. It is noteworthy
the effect of low cost companies, which are most used by
tourists. Consequently the yellow area representing Stansted
is wider for tourist than for local travelers. Conversely, the
central and more expensive City airport, in red, is more widely
used by locals.

C. Google Maps API

The results illustrated in the preceding section show how
the choice between alternative airports is dictated by their ac-
cessibility, together naturally with the offer of flights and their

(a)

(b)

Figure 7. Transit time to Gatwick airport (black square). We remark that for
many areas in the centre of London transit (left) is faster than driving (right).
In white areas the API does not provide any possible trajectory for reaching
the airport from the centre of the box of 1x1 km.

cost. In this section, we want to investigate how information
on the travel-time of ground transportation acquired through
the google maps API [22], integrated with spatial information
on the distribution of population in a city (Fig. 2) and ticket
costs extracted by the Sabre market intelligence database [30]
allows for the modeling the catchment areas of cities with
more than one airport such as London and Paris.

We divide the area including the six airports of London
(see previous section) and the three airports of Paris: Charles
de Gaulle CDG, Orly ORY, and the low cost Beauvais BVA
(situated in the far north) in cells of a square kilometer, each
identified by a couple of indexes for row and columns i, j.
We approximate the real destinations distribution Popij with
Twitter data by associating each user to the cell where he/she
tweets the most, and the travel-times ta,m(i, j) to the airport a
and a mode of transport m as the time given by Google Maps
for a trip from the cell to the airport at 8am of a Monday
(see Fig. 7 for an illustration of trips to London Gatwick).
The mode of transport we considered in this analysis are
cars (’driving’ option in Google API), and public transport
(’transit’ option in Google API). From the Sabre dataset we
obtain the average price of a ticket ca,b between the origin
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(a)

(b)

(c)

Figure 8. Map of the modeled catchment areas in London for three possible
destinations: Madrid (a), Palma de Mallorca (b) and Zurich (c). The black
lines represent the London borough.

airport a in London or Paris and a destination b in the year
2014. For this study, we considered a set of ≈200 destinations
b ∈ B(a) within the ECAC area and for which more than an
origin/destination a was available in the city.

Similarly to what proposed for taxi, we use a multinomial
logit to model the decision between alternative airports. We
define a generalized cost function as Cij(a, b,m) = c(a, b) +
VT tij(a,m). This cost function would predict that for the
travelers departing from cell (i, j) having final destination b
and using the mode of transport m for getting to the airport
the probability of using airport a is

Pij(a; b,m) =
exp(−Cij(a, b,m)/k)∑
i exp(−Cij(a, b,m)/k)

where k is a free parameter. From this, we can estimate the
fraction of passengers that would choose to go to the airport
a for reaching their destination b in the area of analysis as

F (a, b,m) =

∑
i,j Pij(a; b,m)Popij∑

i,j Popij

(a)

(b)

Figure 9. Map of the modelled catchment areas in Paris for two possible
destinations: Madrid (a), Palma de Mallorca (b). The black lines represent the
Paris arrondissements.

and compare them with the empirical fractions F ∗(a, b) that
can be extracted from Sabre data, from where we can obtain
number of passengers pass(a, b) that have flown from a to
b in 2014. This approach is naturally based on a series of
simplifying assumptions: i) the cost of ground transportation is
totally represented by travel-time, ignoring the monetary cost
of the trip to the airport; ii) travel-times are set as constant
regarding the days and hours of possible departure; iii) the
price of the air ticket is constant in time (notice also that
our price data does not include promotions); iv) the choice
of the travel destination b and the mode of transport m is
independent on where the traveller starts the trip (cell i, j); v)
the value of time VT and the parameter k are constant across
the population. vi) we do not consider the option of choosing
an alternative destination b (e.g., another airport in the same
city) or another mode of transport alternative to the flight.

A last strong assumption we are making at this stage is that
we propose here two different reconstruction of the catchment
areas for the two alternative means of transport m (cars, or
public transport) that can be used for reaching the airport.
A more parsimonious way of modeling, for instance, would
be for instance to separate the population Popij in two sub-
groups using different transportation means, but this would
require further input information not available at the moment,
or alternatively to couple the modeling of the decision between
the airports with a second modal-split model describing the
decision among the available modes of transport. This alter-
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native modeling option would be in our opinion too refined
at this point, since the current model is already based on
the aforementioned list of very important assumptions and
finds most of his strength in its relatively simple interpreta-
tion. Therefore, we compare directly the empirical fraction
F ∗(a, b) = pass(a, b)/

∑
a pass(a, b) with the theoretical

fractions F (a, b,m) obtained from our models, that explicitly
depends upon the mode of transport chosen for reaching the
airport m.

For each departure city, we obtain the values of VT (and k)
that better approximate the passenger’s behavior by minimiz-
ing the mean square deviation

err(m) =
∑

a∈A(b),b∈B

(F ∗(a, b)− F (a, b,m))2

for a set of destination airports B where the set of possible
departure airports A(b) includes more than a single airports.

The key factor to interpret, with this model, the passenger’s
choice behavior and the differences between cities is the value
of time VT . We show here two case studies describing the
London airports reached via public transportation (Fig. 8)
and the Paris airports reached via private transportation 9. In
both cases, the value of time we found is remarkably high:
150 USD/h for London and 190 USD/h for Paris. This high
value suggests us that the more central airports offer probably
some further advantages that exceeds simple accessibility, such
for example a better choice of flighting time. In reality the
collectivity of passenger studies would be better characterized
by a distribution of value of times: for some passengers
money is more an issue than time, while for others, like for
instance business flyers, time is more relevant. This variability,
neglected by assumption v) is probably a very important aspect
that requires further investigation.

The different availability of departure airports and differ-
ence in ticket costs induce a particular outline of the airport
catchment areas for every destination b. In Fig. 8 (a) and (b)
we can appreciate how, as a consequence of the topology of
the underlying transit network and of the radial distribution of
the airports, the visual representation of the most frequently
used airport seems to cut the center of London “as slices of
a cake”. More in detail, we see that the area of influence
low cost airport of Stansted (purple) for passengers using
public transport is expected to expand for trips to the touristic
destination of Palma de Mallorca (PMI, panel b) as compared
to the state capital of the same country Madrid (MAD).
Comparing these with the catchment ares for trips to Zurich
(ZRH) displayed in panel (c), we observe how for this in
general more expensive destination the role of the central
City airport is expected to become more important. In Fig.
8 (a) and (b) we propose two catchment areas for the Paris
airports, if reached by car, proposing a similar comparison
between an important touristic destination (PMI) and a state
capital (MAD) as destination. In this second case, the visual
representation of the most frequently used airport represented
in Figure 9a shows the two main airports (CDG and ORY)
splitting horizontally in half the municipality area of Paris.

For the touristic destination PMI (Fig. 9b), the low cost
options in ORY expands its area of influence to the whole
Paris municipality. The influence of the low-cost airport of
Beauvais seems to be very marginal under this perspective.
We expect that the same study focused on transit travel-times
would have differed from this picture, but we discovered that
information on the shuttle service from the center of Paris
to the BVA airport is not provided by the Google Maps API,
practically reducing the study of the French capital to its main
two airports.

III. CONCLUSION

In this paper, we assessed a series of novel modelling
opportunities provided by three new sources of ICT data with
application to the description of the catchment areas in large
metropolitan areas served by many airports. For these cities,
we have shown that the way air transport system interacts
with other transport modes can be an important factor in the
decision process of air passengers. To include the influence of
ground transportation, we modeled the passengers choices with
an utility dominated by a cost function that includes the travel-
times necessary to reach the airport. Our modeling approach
involved series of strong simplifying assumptions in the choice
modeling, but it still allows us to illustrate how new types of
data can be used to study mobility and travelling behaviour in
air transport.

From the three case-studies proposed, we can already reach
some preliminary conclusions at a relatively coarse level of
granularity. The fact that it has been possible to successfully
reconstruct the proportion of taxi passengers going the dif-
ferent NYC airports using only information on the ground
transportation, without the need of introducing a different cost
associated to each airports, suggests that the advantages and
dis-advantages associated to the different airport might be very
balanced once one aggregates over all possible destination
offered (as it is implicitly done in our study).

Detailed insight on the passenger’s behavior is now available
thanks to open-access individual data such as geo-located
tweets. For instance, we observe a clear difference between
locals and tourists behavior: London citizens more often
choose the closest airports, while this behavior is less remark-
able when tracking tourists. However, the quantity of Twit-
ter records available after selecting the passengers observed
within the airport is often insufficient for high resolution
statistics. For this reason, in our third case study we relied
on the Sabre dataset for validation, while Twitter data were
used to reconstruct the final destinations within the city.

As extremely rich spatial data such as those offered by
mobile phone records [31] are becoming progressively more
accessible, the individual trajectory data can successfully be
integrated with other rich and high definition sources of data
on ground transportation such as public transport timeta-
bles [16], open street map [32], or the Google Maps API [22].
Finally, all these sources of mobility and transportation data
can be enhanced thanks to more traditional models such as
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rational theory. Indeed, as we have shown in our last case-
study, even within the clear assumption shortcomings of the
chosen model, this approach is useful to identify patterns
in the data that can inform on the systems’s characteristics.
This data assimilation is naturally limited of the assumptions
behind the model we chose. For instance, the fact that in our
analysis some airports have clearer catchment areas than others
is probably generated by the fact that the assumption of similar
service offerings is violated: whilst some airports may compete
for passengers with a similar service offering, others do not
and are unique.
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R. Herranz, M. Barthelemy, E. Frias-Martinez, and J. J. Ramasco,
“Cross-checking different sources of mobility information,” PLoS ONE,
vol. 9, p. e105184, 2014.

[14] A. Noulas, S. Scellato, R. Lambiotte, M. Pontil, and C. Mascolo, “A
tale of many cities: universal patterns in human urban mobility,” PloS
ONE, vol. 7, p. e37027, 2012.

[15] R. Gallotti and M. Barthelemy, “Anatomy and efficiency of urban
multimodal mobility,” Scientific Reports, vol. 4, 2014.

[16] ——, “The multilayer temporal network of public transport in great
britain,” Scientific Data, vol. 2, 2015.

[17] H. Hosni and A. Vulpiani, “Forecasting in light of big data,” Philosophy
& Technology, pp. 1–13, 2017.

[18] M. Lenormand, T. Louail, O. G. Cantú-Ros, M. Picornell, R. Herranz,
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