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A B S T R A C T   

Dispersal is an important driver for animal population dynamics. Insect dispersal is conventionally assessed by 
Mark-Release-Recapture (MRR) experiments, whose results are usually analyzed by regression or Bayesian ap
proaches which do not incorporate relevant parameters affecting this behavior, such as time dependence and 
mortality. Here we present an advanced mathematical-statistical method based on partial differential equations 
(PDEs) to predict dispersal based on MRR data, taking into consideration time, space, and daily mortality. As a 
case study, the model is applied to estimate the dispersal of the mosquito vector Aedes albopictus using data from 
three field MRR experiments. We used a two-dimensional PDE heat equation, a normal bivariate distribution, 
where we incorporated the survival and capture processes. We developed a stochastic model by specifying a 
likelihood function, with Poisson distribution, to calibrate the model free parameters, including the diffusion 
coefficient. We then computed quantities of interested as function of space and time, such as the area travelled in 
unit time. Results show that the PDE approach allowed to compute time dependent measurement of dispersal. In 
the case study, the model well reproduces the observed recapture process as 86%, 78% and 84% of the exper
imental observations lie within the 95% CI of the model predictions in the three releases, respectively. The 
estimated mean values diffusion coefficient are 1,800 (95% CI: 1,704–1 896), 960 (95% CI: 912- 1 128), 552 
(95% CI 432–1 080) m2/day for MRR1, MRR2 and MRR3, respectively. The incorporation of time, space, and 
daily mortality in a single equation provides a more realistic representation of the dispersal process than con
ventional Bayesian methods and can be easily adapted to estimate the dispersal of insect species of public health 
and economic relevance. A more realistic prediction of vector species movement will improve the modelling of 
diseases spread and the effectiveness of control strategies against vectors and pests.   

1. Introduction 

Animal dispersal refers to movements away from the place of birth 
towards another location for reproduction. The main drivers of dispersal 
are related to the avoidance of kin competition and inbreeding and 
escaping deteriorating environmental conditions (Bowler and Benton, 
2005). In the case of insects, assessing the active dispersal range might 
be of crucial importance particularly in the case of species which dam
age agricultural productions, unsettle ecosystems, and threat human 
health. Among more than 6 million species of insects known, only less 

than 100 are either important pests for major crops or relevant vectors of 
human and/or animal diseases. The deep knowledge of these species 
dispersal is instrumental to develop proper integrated pest management 
plans which maximize cost-effectiveness of interventions and protect the 
environment in a sustainable way. 

Although many theoretical models are available, empirical studies 
are generally lacking due to the difficulties of linking observations to the 
quantification of dispersion (Tesson and Edelaar, 2013). Advanced sat
ellite radio telemetry and acoustic are giving new opportunities to study 
dispersion of big size animals such as large mammals or sharks 
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(Cagnacci et al., 2010; Spaet et al., 2020), but are less useful to quantify 
the dispersal of small animals. In the case of insects, 
Mark-release-recapture (MRR) is the most widely used technique for 
quantifying dispersal: specimens are first collected/reared and marked, 
then released from a single site and subsequently recaptured through 
traps placed at different distances in a given study area (Pollock et al., 
1990). 

The most common statistical approaches used to estimate dispersal 
from MRR data are regression techniques which aim to estimate the 
mean distance travelled (MDT) and the flight range (FRx) of a specified 
fraction x of the population, rather than the diffusion process of indi
vidual marked specimens. Other methods to estimate insect dispersal 
follow a Bayesian framework which explicitly models the diffusion 
process (Villela et al., 2015). For instance, the hierarchical Bayesian 
model proposed by Villela et al. (2015) for the mosquito Aedes aegypti 
takes advantage from the flexibility of the Bayesian approach and ex
pands the frequentist approach by including three components: two 
probabilistic models, describing the spatial distribution of specimens 
and the daily survival of marked and native individuals, and an obser
vation model describing the sampling process. 

Partial Differential Equations (PDEs) represent a standard mathe
matical method to model diffusion processes, such as the gas dynamics 
and heat distribution (Borthwick et al., 2016). In ecology, PDEs have 
been applied to study spatial-temporal dispersal of animal populations 
in a continuous domain (Bassett et al., 2017; Kareiva et al., 1990), such 
as the home-range dynamics of meerkats (Suricata suricatta) (Bateman 
et al., 2015) and the dispersal of butterflies (Ovaskainen, 2004). 

The aim of this work is to provide a PDE-based analytical method to 
estimate insect dispersion based on MRR field data. This method, 
compared to previously quoted ones, allows to estimate the dispersion 
taking into account the daily mortality of marked release insects and the 
days after release (time) in a single mathematical equation. In partic
ular, we applied the proposed modeling framework to estimate the 
dispersal of blood-fed females of the tiger mosquito, Aedes albopictus, 
during the egg laying phase. This species represents a significant public 
health burden due to its capacity to transmit exotic arboviruses, such as 
dengue (DENV) and chikungunya (CHIKV), capable of induce serious 
diseases in humans (Zeller et al., 2016). The species was the primary 
responsible of the thousands of DENV cases recorded in the southwest of 
the Indian Ocean in 2015–2018 (Vincent et al., 2019) and of the first 
autochthonous cases of both viruses in Europe (Marrama Rakotoarivony 
and Schaffner, 2012), where it caused two large CHIKV outbreaks with 
hundreds of human cases (Italy 2007 and 2017; Caputo et al., 2020). 

We expect that the proposed approach can be applied to quantify 
dispersal, and hence improve control of diseases transmitted by Ae. 
albopictus and by other mosquito species of global relevance (such as the 
major arbovirus vector, Ae. aegypti, and malaria vector species), as well 
as of agricultural pest species. 

2. Materials and methods 

2.1. Modelling 

Our model expands the one proposed in (Lutambi et al., 2013). 
Precisely, we included in the main equation the mortality and capture 
processes of the species of interest. Thus, the equation assumes the 
following form: 

∂M
∂t

= D
(

∂2M
∂x2 +

∂2M
∂y2

)

− M(μ+ β) (1)  

Where μ is the mortality rate, β is capture rate, (x, y) represent location 
coordinates as distance (in meters) along the x and y spatial axis from a 
given origin (x0, y0) respectively, t is the time (i.e., days or hours), M(x,y, 
t) is the density of the population of interest (individuals/m2) at location 
(x, y) at time t. In the equation [1] we assume that the initial number of 

individuals are M (x, y,0) = M0 δ(x, y) where δ(x, y) is the Dirac delta 
function in two dimensions so δ(x,y) = 0 for x2 + y2 ∕= 0 and 

∫∞
− ∞

∫∞
− ∞ 

δ(x, y)dxdy = 1 and therefore, 
∫∞
− ∞

∫∞
− ∞ M(x,y,0)dxdy = M0. The number 

of specimens in a general rectangular S = [0, a] x [0, b], is given 
by

∫

SM(x,y, t)ds. 

The term 
(

∂2M
∂x2 +

∂2M
∂y2

)

indicates the diffusion in space and D is the 

diffusion coefficient that measures dispersal rate (distance2/time). In 
addition, we assumed Neumann boundary conditions i.e., δM

δx (0, y) =

δM
δx (L,y) = 0 and δM

δx (x,0) = δM
δx (x,L) = 0. This implies that we assumed 

neither immigration (which is reasonable considering that we are 
modelling only the dispersal of released mosquitoes) nor emigration of 
mosquitoes from the study area (such assumption should be accounted 
for in the study design when selecting the sampling area). The analytical 
solution of [1], as shown in (Lutambi et al., 2013), is: 

M(x, y, t) ∼ Norm
( (

Rx;Ry
)
,Σ

)
∗ M0e− (μ+β)t (2)  

Where Norm is bivariate normal distribution, (Rx;Ry) is the distance on 
the x and y axis from the initial point (x0, y0), and Σ is the following 2 × 2 
covariance matrix: 

∑
=

(
σ2

xx σ2
xy

σ2
yx σ2

yy

)

(3)  

Here, we suppose that x and y are independent, meaning that the 
diffusion process is equal with respect to x and y, thus: σ2

xy = σ2
yx = 0;

σ2
xx = σ2

yy = 2Dt. In other words, we assume that the movement of the 
species of interest follows a Brownian motion (Lutambi et al., 2013), 
meaning the diffusion coefficient D is equal for both x and y directions. 
In our case, the bivariate normal distribution models the probability of 
finding specimens of the species of interest in a point (x, y) at time t. 

While our model was developed to estimate the diffusion coefficient 
of a selected species, it could also have other unknown parameters such 
as the mortality or the capture rate. We denote the set of free parameters 
with θ. Different techniques can be used to estimate θ, for instance, 
Markov chain Monte Carlo (MCMC), maximum likelihood, and particle 
filtering (Gelman et al., 2013). 

2.2. Case study 

We apply the proposed model to estimate the dispersal of blood-fed 
Ae. albopictus females using MRR field data. The entomological data 
were collected through three MRR experiments carried out on August 
3rd (MRR1, N released females = 1049), August 24th (MRR2; N = 1600) 
and September 9th (MRR3; N = 1200) 2009 in the municipality of Piove 
di Sacco (Padua province, Veneto, northeastern Italy) (see Marini et al., 
2019), for a detailed description of the experiments). In brief, blood-fed 
females were released from a single site and recaptures were carried out 
by 96 sticky-traps (STs, Facchinelli et al., 2007) distributed within 10 
concentric 50m-radius annuli around the release site (see Table S1 in the 
Appendix). Data used in the model refer to daily recaptures of marked 
mosquitoes carried out in the first five consecutive days after release, i. 
e., 76 during MMR1, 183 during MMR2 and 29 during MMR3 (see 
Table S2 in the Appendix). 

Mosquito mortality value used in the model is based on results of an 
assessment carried out on marked mosquitoes under semi-field condi
tions in parallel with the MRR experiments (see Table S3 in the Ap
pendix). Empirical data were fitted with several functions: (i) M0e− σt 

exponential, (ii) e− A
B (1− eBt) Gompertz, (iii) e− c

dt
d Weibull, (iv) ea+bt

1+ea+bt GLM; 
where t is day of experiment and M0, σ, A, B, c, d are free-parameters 
estimated through the nlsLM (Non-Linear Square Levenberg- 
Marquardt) method (see Table S4 in the Appendix) and a (Intercept), 
b estimated through the Generalized Mixed Model using Binomial dis
tribution (see Table S5 in the Appendix). We computed the likelihood of 
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daily mosquito mortality, which is assumed to follow a binomial dis
tribution, for each tested function. In addition, we evaluated the Root 
Mean Square Error (RMSE) for each function to quantify differences 
between predicted and observed values. Finally, we selected the best 
function for mortality considering both measures. So, in this case study 
we remark that the mortality rate µ is a function of time t. 

The capture rate β is defined as β = α ∗ N∗A
As

∗ ζ, where α is the average 
daily capture rate of a single sticky-trap. Here, α (estimated value =
1.24∙10− 4) has been computed using field data from three different 
MRR experiments carried out in Rome (Italy) in 2009, in which the same 
sticky-traps were used to recapture Ae. albopictus females (Marini et al., 
2010). The parameter α is defined as the number of recaptured marked 
mosquitoes divided by the product between the total number of 
mosquitoes released, the total number of sticky-traps deployed and the 
total number of days of MRR experiment. Such rate (α) was rescaled by 
the factor N•A/As to take into account the different density of active 
traps within each annulus, where N is the number of operational traps, A 
is the area of the inner (and smallest) annulus where a single trap was 
present, and As is the area of the annulus s. Finally, we multiplied the 
rescaled rate for a correction factor ζ, to be will estimated (so it is a free 
parameter belonging to set θ). 

Thus, in our study case, the set of free parameters is θ = {Di, ζ} and 
their posterior distribution was estimated following a MCMC approach. 
We initially explored the parameter space by sampling 1000 values of 
each free parameter from a uniform distribution (range: 0–2). The set of 
parameters that best fitted the data was then used as a starting point for 
the MCMC algorithm. 

We simulated mosquito dispersal sampling and the mosquito loca
tion at each time step (12h) from equation [2]. We assumed mosquito 
survival to follow a binomial process of parameters 1-μ(t)and M(t) where 
μ(t) is the computed mortality at each time step t, and M(t) are the 
surviving mosquitoes define as 

∫

SM(x, y, t)ds from time step t. Thus, we 
verify if every mosquito is alive with a binomial extraction with prob
ability 1-µ(t) given by the selected mortality function. We assumed that 
the number of captured adult female mosquitoes at given day t and 
annuli s follows a Poisson distribution with mean λ{t,s}; therefore, the 
likelihood of the observed data given a parameter set θ was: 

L
∏φ

i=1

∏ψ

t=1

∏Δ

S=1
e(λ{t,s}(θi))λ{t,s}(θi)

n{i,t,s}

n{i, t, s}!
(4)  

where i ∈ φ are the number of replicas of the mark release experiments, 
t ∈ Ψ are the consecutive days after release of MRR, s ∈ Δ are the 
number of annuli, λ{s,t}(θi) is the expected number of captures at day t 
and annuli s defined as λ{t,s}(θi) = βi

∫

S
M(x, y, t)ds simulated by the model 

with parameter set θi = (μi, βi, Di, ζ). Finally, n{i,t,s} is the observed 
number of trapped marked mosquitoes at day t(t= 1, ...Ψ) and annulus 
s(s= 1, ...Δ) during experiment i(i = 1, ...Φ). 

Here we used aggregated captures from each annuli s and day t and 
applied a sensitivity analysis study to assess the robustness of our 
sthocastic model. Afterwards, we considered two additional scenarios 
for the parameter set θ: θi = (μi,Di, ζ)and θi = (μi,Di) that were 
compared using the Akaike Information Criterion (AIC) (see Table S7, 
Figs. S3 and S4 in the Appendix). In addition, we assumed a different 
likelihood function under the hypothesis that the capture process fol
lowed a Negative Binomial distribution rather than a Poisson distribu
tion (see Eq. (1) in Additional results section in the Appendix). 

A total of 15,000 MCMC iterations with a burn-in of 5000 were 
performed and the convergence was checked by visual inspection on the 
trace plots of chains. Finally, we simulated 1000 releases, using the 
estimated parameters (D, ζ) discarding the first 5000 MCMC iterations, 
to compare our model predictions with the observed data. All statistical 
analysis and model simulations were performed using the statistical 
software R version 3.6.1 (R Foundation for Statistical Computing., 2018) 
and packages tidyverse (Wickham, 2017), mvtnorm (Ekström, 2010). 

The R code and the data are available at https://github.com/Chia1992/ 
Partial-Differential-Equation. 

As mentioned in the introduction, a standard method to quantify the 
dispersal is measuring the flight range (FR). The FR measures the area 
travelled/covered by marked mosquitoes in a unit of time. Classical 
methods, such as the regression model, estimate the FR with the cu
mulative number of expected recaptures at the end of the MRR experi
ment (Lillie et al., 1985; Morris et al., 1991; White and Morris, 1985), 
while the PDE method used the daily recapture. We used the parameters 
obtained by MCMC approach and the equation [2] to calculate the FR, 
thus the equation is: 

FR = Norm
((

Rx;Ry
)
,

̅̅̅̅̅̅̅̅
2Dt

√ )
M0e− μt (5)  

FR50 (area travelled by 50% of marked mosquitoes) and FR95 (area 
travelled by 95% of marked mosquitoes), were calculate from the 
equation [5] considering 50% and 95% of marked mosquitoes that are 
found each day t in the annulus s. 

3. Results 

In this section we present: (i) the estimated values for the diffusion 
coefficients (D1, D2, D3 for MRR1, MRR2 and MRR3 respectively), the 
correction factor (ζ) and the daily mortality rate (μ1, μ2, μ3 for the first, 
second and third semi-field experiments); (ii) the simulation of the 
dispersal process of the marked mosquitoes during five consecutive days 
after release; (iii) a validation of the mathematical-statistical model 
proposed here using the analytical solution of equation [2]. 

3.1. Diffusion coefficients and correction factor (D, ζ) 

The diffusion coefficients estimated by the stochastic model vary 
among the three MRR experiments. The mean values are 1800 (95% CI: 
1716–1 907), 983 (95% CI: 912–1 1 143), 564 (95% CI 442–1 103) m2/ 
day for the MRR1, MRR2 and MRR3 experiment respectively (see 
Table S6 and Fig.S1 in the Appendix), which can be interpreted as the 
area covered in a day by the dispersion process of the mosquitoes, i.e., 
the area travelled by the mosquitoes. The mean value of the correction 
factor (ζ) for the capture rate of sticky-traps is 81.35 (95% CI: 
72.47–88.44) (see Table S6 and Fig.S1 in the Appendix Our model well 
reproduces the marked mosquito recapture observed dynamics, with 
86%, 78%, 84% of the experimental observations lying within 95% of 
the model predictions in the first, second and third releases, respectively 
(Fig. 1). 

The estimated mean diffusion coefficient allows to evaluate the flight 
ranges over time. In MRR1, the predicted FR95 is on average 163 m (95% 
CI: 155–171 m) at day 1 and increases up to 361 m (95% CI: 342–382 m) 
at day 5 after release, whereas in MRR2 and MRR3 the FR95 start from 
119 m (95% CI: 115–124 m) and 91 m (95% CI: 87–96 m) and increase 
up to 267 m (95% CI: 256–280 m) and 204 m (95% CI: 194–213 m) in 
the first and fifth day after release, respectively (Fig. 2). 

To validate the stochastic model, we compared the predicted density 
of marked Ae. albopictus females with the analytical solution of the PDE 
(equation [2]). As shown in Fig. 3, there is a very good agreement be
tween the analytical solution and model simulations: 68%, 86%, 100% 
of the analytical results are within 95% of the simulated model data in 
MRR1, MRR2 and MRR3, respectively. 

3.2. Mortality rate estimate 

The comparison of the considered mortality functions shows that the 
exponential and the Weibull functions provide the best fit (higher like
lihood) of the mortality data of marked mosquito in the semi-field 
experiment (see Table 1 and Fig.S2 in the Appendix). 

The functions with the highest values of likelihood (Exponential and 
Weibull) were compared by means of a likelihood ratio test. Since no 
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statistical differences were observed between Exponential and Weibull 
likelihood value (p-value = 0.21, df = 1), the exponential function was 
chosen, given its simpler formulation compared to Weibull. The esti
mated daily mortality rates using the exponential function were 2.1%, 
1.8%, 1.3% in MRR1, MRR2 and MRR3, respectively. 

4. Discussion 

Here we presented a PDE-based stochastic framework to estimate 
insect dispersal based on MRR data. We tested it in a specific case-study 
to overcome the limitations of the commonly used analytical ap
proaches, i.e. regression analysis (Marini et al., 2019) and hierarchical 
Bayesian models (Villela et al., 2015). Indeed, the big advantage in the 
use of PDEs is the possibility of including time, space, and daily mor
tality in only one mathematical equation, thus providing a more realistic 
representation of the dispersal process, which could improve the plan
ning of control activities of human vectors and agricultural pests, as well 
as the study of their collective behavior. 

We applied the PDE method to study the dispersal of Ae. albopictus, 
which represents a major source of nuisance and a public health threat 
also in temperate regions, in order to highlight the potential of PDE 
approach in studies aimed at predicting the transmission dynamics of 
vector-borne pathogens and at planning vector control interventions. 
We exploited data from three MRR experiments, during which daily 
mortality rates of marked mosquitoes were experimentally estimated 
under semi-filed conditions. A good agreement between the stochastic 
model and observed data was observed. Moreover, given the analytical 
solution, the calculation of quantities of interest such as FR is 

straightforward. It is important to stress the implication that such result 
may have on control strategies, as it may allow to tailor the spatial 
radius deemed necessary to target the population of interest (Marini 
et al., 2019; Yamashita et al., 2018) . 

In the case study, the FR95 resulting from the PDE approach is 
significantly higher than the one estimated using regression analysis 
(Marini et al., 2019) , i.e. 361 m, (95% CI: 342–382 m) vs 250 m in 
MRR1, 267 m (95% CI: 256–280 m) vs 209 m in MRR2, and 204 m (95% 
CI: 194–213 m) vs 177 m in MRR3. This is due to the inclusion in the 
analysis of daily mortality and time (day after release) and is thus ex
pected to be more realistic. The spatio-temporal patterns of Ae. albo
pictus blood-fed females modelled through the PDE approach suggest 
that the dispersal increases over time, a conclusion which could not be 
reached using a conventional regression approach (Marini et al., 2019). 

The latter result suggests that in case of arbovirus transmission, the 
size of the area covered by vector control interventions should change 
over time to target the same fraction of the mosquito population 
potentially involved in the transmission event. For instance, in Italy, it is 
recommended that in case of autochthonous arbovirus transmission, 
vector control intervention (i.e. insecticide sprayings, larvicide appli
cation, door-to-door activity) are carried out in a 100 m buffer around 
the residence of a suspected or confirmed case (Ministero della Salute et 
al , 2019). Our model estimates that the probability of a mosquito being 
within this buffer is equal to 0.88 and 0.5 after 24 h and 3 days from the 
potentially infectious blood meal, respectively. 

Indeed, the flight range estimated for all MRR experiments suggested 
a very rapid dispersal, as in the case of MRR1 when 95% of mosquitoes 
travelled beyond 163 m (95% CI: 155–171 m) 1 day after release and 

Fig. 1. Model fit. Boxplot (2.5%, 25%, 75% and 97.5% quantiles) of the number of recaptured marked mosquitoes predicted per annulus (each annulus 50 mt) by 
the model (boxplots representing the 2.5%, 25%, 75% and 97.5% quantiles) for each MRR experiments (rows: MRR1 red, MRR2 green, MRR3 blue) in the first five 
days after release (columns). Dots represent the number of marked mosquitoes recaptured during the MRR experiments. 
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over 361 m (95% CI: 342–382 m) 5 days after release. 
Standard regression approaches for the computation of the flight 

range do not take into account time dependency but model cumulative 
captures, over the entire study period, as a function only of the distance. 
It should be noted that, given the short time span of the recapture data in 
our MRR dataset (5 days) and the low observed mortality, we did not 
need to make any assumption on the spatio-temporal variation of 
diffusion coefficient. However, in the PDE we assumed that mosquito 
dispersal is homogeneous in space (whit respect to x and y coordinates) 
and temporally constant. It would be interesting in the future to address 
the spatio-temporal dependency of the diffusion parameter D (i.e., in
dividuals of the species will not disperse indefinitely, nor randomly). In 
addition, we included in the model estimates of capture and daily 
mortality rates, which may be difficult to be estimated under different 
experimental conditions. In our study we calibrated the capture rate, 
evaluated by Marini et al., (2019) , to our data by estimating the 
correction factor (ζ). It is important to remark that if the mortality and 
capture rate are not available, they can be considered as free parameters 
and thus can be estimated by the stochastic model. Adding these free 
parameters into the model would increase the complexity of the model. 

Finally, our proposed framework could be improved by including 
other parameters affecting insect dispersal, such as wind (Bowen et al., 
1991; Cummins et al., 2012; Knols and Meijerink, 1997; Raffy and Tran, 
2005; Smallegange et al., 2005), provided that they are appropriately 
estimated during the MRR experiments. Indeed, differences either in 
wind direction and force, or in other meteorological features, might 
account, at least partially, for the different estimates in the diffusion 
coefficients between the three MRR experiments, as hypothesized in 
Marini et al., (2019). 

It is critical to highlight that estimate obtained from our analytical 
approach are unavoidably affected by the experimental design (e.g., the 
physiological stage of marked insect, the ecology of the site of release 
and recapture, the size of study areas, the recapture methods). FR90 
estimates for Ae. albopictus are higher in a study conducted in 
Switzerland (Vavassori et al., 2019) compared to (Marini et al., 2019). 

However, the experimental design of the two studies largely differ: i) 
freshly emerged adults instead of blood-fed females were released in 
Switzerland; ii) BG-Sentinel trap instead of blood-fed ones were released 
in Switzerland to focus on dispersal triggered by host-seeking, rather 
than by egg-laying; iii) the study area was larger in Switzerland (1 km 
radius instead of 500 m). Application of PDE method to this dataset 
could allow a more realistic comparison of the two datasets. 

Epidemiological models are used to evaluate the risk of outbreaks 
occurrence and, more generally, to study the circulation, possibly spatial 
and temporal, of a given mosquito-borne pathogen (Li et al., 2021). Most 
of these models include into the equations various parameters that can 
influence the transmission of pathogens such as the vector mortality and 
oviposition rates and the length of gonotrophic cycle (e.g. Poletti et al., 
2011; Otero et al., 2006; G. Marini et al., 2019). The dispersal of 
mosquitoes can be incorporated into these models by introducing either 
the dispersion term or the value of the diffusion coefficient (D) estimated 
in this work. In fact, during an outbreak, mosquito dispersion might be 
an important factor. Seventy percent of focal infections during a large 
chikungunya outbreak mediated by Ae. albopictus in the Lazio region 
(Italy) in 2017 were transmitted within a distance of 200 m, demon
strating the key importance of the dispersal of infected mosquitoes in the 
spatial spread of mosquito borne diseases (Guzzetta et al., 2020). 
Finally, our results on the dispersion of mosquitoes could be useful both 
for models aimed at predicting mosquito abundance (Zheng et al., 2018) 
and for models carried out to evaluate demographic effects of SIT 
techniques (Haramboure et al., 2020). 

5. Conclusions 

The results here obtained are useful for the definition of the optimal 
buffer on which to focus emergency mosquito-borne virus control in
terventions (i.e. deployment of adulticides insecticides aimed at elimi
nating potentially infected mosquitoes in the area surrounding the 
residence of an arbovirus infected person). This information is crucial 
for public authorities, as it has already been shown that enlarging the 

Fig. 2. Flight range of marked blood-fed females of Aedes albopictus estimated by the model (meters/day traveled by 50% and 95% of mosquitoes). Dots 
represent the average predicted distance (in meters) from the release point covered by 50% (left panel, i.e., FR50) and 95% (right panel, i.e., FR95) of marked 
mosquitoes for MRR1 (red), MRR2 (green), and MRR3 (blue). The segments represent the 2.5- 97.5% quantiles. x-axis: Meters, y-axis: days after release. 
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size of the area to be treated and reducing the time interval between 
infective case identification and the control implementation might 
substantially increase the effectiveness of the intervention during an 
arbovirus outbreak (G. Marini et al., 2019). 

The mathematical/statistical framework developed here can be 
easily adapted to estimate the dispersal of other insect species of public 
health and economic relevance. Indeed, MRR data are available for 
major arbovirus (i.e., Ae. aegypti, (e.g. Villela et al., 2015)) and Afro
tropical malaria vectors (e.g. Epopa et al., 2017), as well as for agri
cultural pest species, such as Drosophila suzukii which damages the fruit 
during the ripening stage (Asplen et al., 2015), or the beetle Platypus 
koryoensis, vector of the fungus Raffaelea quercus-mongolicae, which is 
fatal for oaks (Lee et al., 2019). 

6. Data availability statement 

The R code and the data are available at https://github.com/Chi 
a1992/Partial-Differential-Equation 
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