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In empirical studies, trajectories of animals or individuals are sampled in

space and time. Yet, it is unclear how sampling procedures bias the recorded

data. Here, we consider the important case of movements that consist of

alternating rests and moves of random durations and study how the estimate

of their statistical properties is affected by the way we measure them. We

first discuss the ideal case of a constant sampling interval and short-tailed

distributions of rest and move durations, and provide an exact analytical cal-

culation of the fraction of correctly sampled trajectories. Further insights are

obtained with simulations using more realistic long-tailed rest duration dis-

tributions showing that this fraction is dramatically reduced for real cases.

We test our results for real human mobility with high-resolution GPS trajec-

tories, where a constant sampling interval allows one to recover at best 18%

of the movements, while over-evaluating the average trip length by a factor

of 2. Using a sampling interval extracted from real communication data, we

recover only 11% of the moves, a value that cannot be increased above 16%

even with ideal algorithms. These figures call for a more cautious use of data

in quantitative studies of individuals’ movements.
1. Introduction
Recent years have witnessed a dramatic increase in the use of large amounts of

available data thanks to information and communication technologies. These

new sources allow one to monitor and to map the dynamical properties of

many complex systems on an unprecedented scale [1] and we now have

access to a vast number of spatial trajectories representing movements of objects

in geographical space [2]. In particular, such datasets have opened the oppor-

tunity to better understand human movements [3–7] and the impact of

mobility on important processes such as epidemic spreading [8]. These recent

works extend previous studies of movements and foraging patterns of animals

[9,10] and rely on tracking man-made inanimate objects [11,12]. However, as is

the case for any dataset, these new sources of information have limits and biases

[13–16] that need to be assessed.

It is common to approximate the continuous spatio-temporal record of the

followed individual (or animal) by a series of straight lines, thus describing the

movements of an organism as a sequence of behavioural events called moves for

animals [17] and trips for humans. This empirical approach allows a natural

implementation of the theoretical framework of continuous-time random

walks [11,18], where a rest time is associated with the endpoint of each move.

However, this leads to the first major problem due to the lack of behavioural

information in the empirical data [19]. Real trajectories always exhibit a large

variety of intertwined static and dynamic behaviours [20]: slow versus fast

movement for animals [19], fixation versus saccade in eye-tracking [21] or activi-

ties versus trips in human mobility [22]. Isolating and identifying these

behaviours from a series of chronologically ordered points is an important stat-

istical challenge [23] and a growing array of methods based on spatio-temporal

characteristics of the trajectories have been developed to perform this task auto-

matically [2,19,21]. These methods are often tailored for the specific dataset in
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question [20]. Therefore, even the working definition of a

‘move’ might vary significantly between studies, depending

on the method and the technology used [24].

A second complication comes from the limits of the tech-

nology used for collecting the empirical data. In the case of

spatial movements, a crucial aspect is the temporal sampling

of the trajectory. The simplest and most common method

used is periodic sampling, where spatial coordinates are

recorded at regular time intervals. Alternatively, other data

sources are characterized by an event-based sampling where

locations are recorded at certain (random) events. This is

the case, for instance, for the most common sources of

human mobility data such as call detail records (CDR) of

mobile phone data [25] and geo-located social media accesses

[26]. In both cases, the discrete displacements recorded are

associated with continuous moves [17], but this is a strong

oversimplification, and all derived quantities will depend

on the sampling process itself [20,27–29]. The sampling of

random processes might even be the principal cause of the

emergence of long tails in several statistical distributions

[30,31]. For example, in the case of periodic sampling, it has

been shown that non-Lévy movements can be erroneously

interpreted as Lévy flights when sampling time intervals

are larger than the natural timescale of animals’ movements

[32,33]. The sampling rate is thus a crucial element that has

to be taken into account when analysing empirical trajectories

[20,34].

For both periodic and event-based sampling, the nature

of data forces researchers to make the following naive

assumptions:

(i) an individual is always at rest at the location where its

position is recorded; and

(ii) every change of position is associated with a single

move.

This point of view has been adopted, for instance, in the

first important papers where human mobility has been

studied with mobile phone data [3,4] and often replicated,

even in recent studies [35–37]. However, the use of these

new sources of data exacerbates the challenges associated

with temporal sampling. Indeed, in these data, trajectories

are represented as sequences of positions recorded at the

moment of a communication event (which can be a call, a

text message or an application access). The trajectory

sampling is therefore coupled with the random and bursty

nature of human communications [38]. The probability distri-

bution of the time interval between calls [3,4], e-mails [38]

and tweets [39] has a long tail which can be fitted by a

power law with an exponent value close to 21 (and with a

cut-off on the order of days). Only in a few cases, a small

set of trajectories sampled every D ¼ 1 or 2 h is available

[3,4,40]. Even when individuals with a very high call fre-

quency are selected [40], they are still inactive most of the

time [41]. In order to identify human mobility patterns, it

thus become necessary to introduce ad hoc methods based

on reasonable assumptions and almost arbitrary parameters

[16,42].

In this paper, we discuss the effect of sampling and

assumptions (i) and (ii) on the measured properties of

random movements. We will consider one of the simplest

and realistic cases where the trajectory consists of two alter-

nating phases, moves and rests, whose durations t and t
are regarded as independent random variables. Trajectories

can then be seen as an alternating renewal process, i.e. a gen-

eralization of Poisson processes to arbitrary holding times

and to two alternating kinds of events. The sampling time

interval D depends on the particular experiment and can be

either constant or randomly distributed. Using methods of

renewal theory along the lines of [43], we provide a theoreti-

cal estimate for the fraction of correctly sampled trips with

periodic sampling, and show the existence of an optimal

sampling time interval. We then extend our results numeri-

cally to the case of event-based sampling, and with more

realistic rest times and speeds. This allows us to show that

sampling human trajectories in more realistic settings is

necessarily worse than predicted by our analytical model.

Finally, we use high-resolution (spatially and temporally)

GPS trajectories to verify our predictions on real data.
2. Results
2.1. Theoretical analysis
We study the effect of the periodic sampling rate on the appar-

ent distribution of measured move lengths. We focus on the

case of an alternating sequence of rests and moves and we

further assume that the movement is one dimensional with a

constant velocity v (see electronic supplementary material, sec-

tion ‘Numerical analysis’, for other cases). Simplifying the

problem to one dimension is here sufficient to point out

when the sampling is inadequate. We show below that the

diagnostics we use to identify the optimal sampling times

are independent of the dimensionality of the space in which

a trajectory is embedded. We will not discuss here other

issues associated with temporal sampling, like the apparent

speed and turning angles in a general two-dimensional case

[20,27,29], the possible fits of the displacement distribution

[32,33,44,45], or interpolation methods to reconstruct the

movements between samplings [46]. The quantities entering

this problem are therefore: the move duration t, the move

length ‘ ¼ vt, the resting time t, and the time interval D

between two consecutive measures. The distributions P(t)
and P(t) are characteristics of the specific subject in motion,

while the distribution of the sampling interval P(D) is associ-

ated with the technology used for tracking the motion.

Sampling the trajectory gives us a displacement distribution

P(‘*) where ‘* is the apparent length of a move, and the pro-

blem is thus to compute this distribution P(‘*) for any given

distributions P(t), P(t) and P(D).

During rests, the displacement is assumed to be zero, and

so the succession of rests and moves is associated with a

continuous increasing function x(u), where u is the time par-

ameter (figure 1). We sample the position x*k for every instant

u�k ¼
Pk

j¼1 Dj, where Dj is the value of the jth sampling inter-

val (in the case of constant sampling, Dj ¼ �D, and so u*k ¼ k�D).

The succession of space–time coordinates (u*k, x*k) (shown in

figure 1 and in the two-dimensional example of electronic

supplementary material, figure S1) thus represents all the

knowledge we have about the trajectory after sampling. For

two consecutive measures at times u*k and u*kþ1, there is an

observed displacement ‘*k ¼ x*kþ1 2 x*k. Our goal is then to

estimate the differences between the distribution of real dis-

placement lengths ‘ and of the observed displacements ‘*k.

In particular, we want to understand the biases induced by

different choices for P(D).
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Figure 1. Examples of trajectory sampling. On a trajectory with exponentially
distributed rest and move durations, we show the case of constant sampling
interval (red circles) and the case of random sampling interval (blue crosses)
with P(D) / D21 (Dmin ¼ 5 min, Dmax ¼ 12 h). See electronic supple-
mentary material, figure S1 for a two-dimensional example. (Online version in
colour.)
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If we make the naive assumption (ii), discussed in the

introduction, that every observed displacement is associated

with a single move, the necessary condition for this to be cor-

rect is that two subsequent sampling times u*k and u*kþ1 fall in

two consecutive rests. We can also easily identify the cases

where the sampling times fall in the same rest, because this

is the only situation where we exactly have ‘*k ¼ 0 and

which does not lead to a wrong estimate of the individual’s

movement. Conversely, we must consider as errors all

remaining configurations, because at least one of two things

necessarily happens: (i) we have a sampling point at move-

ment or (ii) a rest is missed by the temporal sampling.

Either of these events leads to a misinterpretation of the indi-

vidual mobility and to an under- or overestimate of the move

lengths [32] and of the number of trips observed [15]. In order

to go beyond this simple hand-waving argument, we will

consider the case of exponential distributions for P(t) and

P(t), constant sampling time interval �D, and constant speed v.

In this case, we obtain explicitly the distribution P(‘*) of

sampled displacements. This will allow us to discuss the

impact of the sampling, and to show, in particular, that

there is an optimal value for �D.
2.1.1. Constant sampling rate and exponential distributions
We will consider the case of exponential distributions for the

move and rest durations:

P(t) ¼ 1
�t

� �
exp � t

�t

� �
and P(t) ¼ 1

�t

� �
exp � t

�t

� �
, ð2:1Þ

and a constant sampling interval:

P(D) ¼ d(D� �D), ð2:2Þ

(d(x) is Dirac’s delta function). In the constant velocity case,

the real displacements are also exponentially distributed:

P(‘) ¼ 1
�‘

� �
exp � ‘�‘

� �
, ð2:3Þ

with �‘ ¼ v�t.
Using methods of renewal theory [47–49], along the lines

of [43], we obtain an explicit expression for the distribution

P(‘*) of apparent displacements ‘* after sampling (see
electronic supplementary material, section ‘Analytical

calculations’, and in particular equations (S15), (S33)):

P(‘�) ¼ e�
�D=�t

1þ�t=�t
d(‘�)þ e�

�D=�t

1þ �t=�t
d(‘� � v�D)þ Pcont(‘

�), ð2:4Þ

where the continuous part of this distribution reads

Pcont(‘
�) ¼ 2e�(‘�=v�tþ(v�D�‘�)=v�t)

v(�tþ �t)
I0(y)þ ‘�

v�t
þ v�D� ‘�

v�t

� �
I1(y)

y

� �
,

ð2:5Þ

with y ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘�(v�D�‘�)

v2�t�t

q
, and where I0(y) and I1(y) are modified

Bessel functions of the first kind.

In the following, we will not consider the discrete part

associated with the Dirac’s delta function d(‘*) of the distri-

bution P(‘*), as the value ‘* ¼ 0 can be easily recognized

and excluded in any practical scenario. The fraction of

sampling intervals associated with null movements (‘* ¼ 0),

denoted by C0(�D), can be significantly large. In the stationary

regime [50], we can compute C0(�D) for any distributions P(t)
and P(t), and a constant sampling time �D (see electronic sup-

plementary material, equation (S17)). We can show that it is a

decreasing function, varying between C0(0) ¼ �t=(�tþ �t) (i.e.

the fraction of time spent at rest, in the continuous sampling

limit) and C0(1) ¼ 0. In the particular case of exponential dis-

tributions (equation (2.1)), C0 is the prefactor of the d(‘*) peak

in equation (2.4), and can be very large. For instance, C0 �
60% in the case of car mobility (�t ¼ 0:30 h and �t ¼ 2:49 h,

see Methods) and �D ¼ 1 h. For this reason, we compare the

original data to a rescaled probability distribution which

does not include the d(‘*) peak and is given by (see electronic

supplementary material, figure S2)

P‘�.0(‘�) ¼ 1

1� C0(�D)

e�
�D=�t

1þ �t=�t
d(‘� � �D)þ Pcont(‘

�)

" #
: ð2:6Þ

We show in figure 2a the dependence of the continuous

part of P‘*.0(‘*) on �t, keeping the average travel time �t
fixed to the experimental value of 0.30 h for car mobility [7].

We note that Pcont(‘*) can have a maximum, even if the

original distribution P(‘) is a decreasing function. The

measurements allow us to recover the exponential tail of

travel times only if the resting time �t is sufficiently long.

Conversely, when the sampling time �D is larger than the

average duration of a rest, the result of the sampling is

manifestly different from the original exponential distri-

bution. In figure 2b, we take �t ¼ 0:30 h and �t ¼ 2:49 h

(which are the values observed for vehicular mobility, see

Methods) and study the outcome for different sampling

times �D < �t. Naturally, �D acts as a cut-off because all

moves longer than this value are necessarily interrupted

by the sampling. By contrast, for large values of �D, the

number of short travels is underestimated, as subsequent

short moves may be joined together and thus appear as

an effective long one.

We also computed exactly the first two moments of the

distribution equation (2.4) and found for the average

k‘�l ¼ v�D

1þ �t=�t
, ð2:7Þ

(see electronic supplementary material, equation (S19) and

equation (S26) for the second moment). Naturally, the exclu-

sion of the null displacements influences the value of the

distribution’s moments. In particular, the average value of
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Figure 2. Distributions P(‘*/v) obtained from periodic sampling with expo-
nential distribution of rest and move times. (a) Dependence of equation (2.6)
on �t fixing �t ¼ 0:30 h and �D ¼ 1 h. The distribution has a maximum
when the average rest times exceed the sampling time, and its value is
strictly zero for ‘* . v�D. (b) Dependence of equation (2.6) on �D fixing
�t ¼ 0:30 h, �t ¼ 2:49 h. Short sampling times introduce a cut-off in the dis-
tribution. Large deviations can be observed when sampling time intervals are
long. (Online version in colour.)
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equation (2.6) can be computed by a simple rescaling

and reads

k‘�l‘�.0 ¼
k‘�l

1� C0(�D)
: ð2:8Þ

This rescaling yields notable changes in the numerical values

of the moments. For instance, with realistic values for car

mobility (�t ¼ 0:30 h and �t ¼ 2:49 h), a sampling time of 1 h

gives k‘*l/v � 0.11 h, while excluding the zero-displacement

part, we obtain k‘*l‘*.0/v � 0.27 h.

2.1.2. Optimal sampling times
We first note that high-frequency sampling (D! 0) does not

automatically allow one to understand the whole trajectories

under the naive assumptions (i) and (ii). Indeed, it is only

with additional data that we can correctly reconstruct a

whole trajectory. It is then necessary to implement a ‘segmen-

tation’ algorithm that goes beyond the assumption (ii) that

an observed displacement corresponds to one single move,

as D! 0 implies that any move is cut into a very large

number of segments [17]. In addition, high-frequency record-

ings are known to present uncertainties and systematic errors

that need to be taken into account for extracting meaningful

information [17,20,51–53]. A good segmentation algorithm

should take into account the noise, the spatial scale and charac-

teristic speeds of the tracked subjects. Here, it is not our intent

to develop detailed segmentation methods, but to show the

quality, and the limits, of the simpler assumption that one
observed displacement is equal to one move. In this frame-

work, having D! 0 means that we measure moves over a

very short time, obtaining thus a distribution of measured dis-

placement peaked at very small values and indicating that

very high-frequency rates are not good under assumption (ii).

We can define an ‘optimal constant sampling time’ in two

different ways: either as the time interval D
�

that correctly esti-

mates the average length of moves, or as the time interval D̂

that maximizes the fraction of correctly sampled moves. The

second approach offers a more general perspective, introdu-

cing a dimensionless measure for the quality of the sampling

but which is unfortunately not a natural and common obser-

vable in experimental ecology or human mobility. For this

reason, we consider in parallel the first approach that is based

on a more natural quantity, the average displacement, which

also has the merit of focusing on the character of the displa-

cement distribution and therefore on what is perhaps the

most controversial topic associated with individual trajec-

tories: the mis-identification of a Lévy walk from empirical

data. In the following, we obtain exact formulas for both

D
�

and D̂ in the exponential–exponential case (i.e. with

conditions described by equation (2.1)).
2.1.3. Average move duration and total number of moves
The optimal sampling time D

�
can be obtained by solving for

�D the equation k‘�l‘�.0 ¼ v�t. The solution can be written in the

form

D
�
¼ �tW(�e�

�t=�t�1)þ�tþ �t, ð2:9Þ

where W(x) is the Lambert function, such that W(x)eW(x) ¼ x.

This function is defined for x� 2e21, which always holds in

our case because �t, �t . 0. Using the empirical values
�t ¼ 0:30 h, �t ¼ 2:49 h, we obtain D

�
� 80 min. This result is

confirmed by Monte Carlo simulations (figure 3), where red

circles represent the values for D
�

. With this ‘optimal’

sampling time based on the first moment, the second

moment is slightly underestimated. Note that matching the

average travel time is equivalent to correctly estimating the

number n of trips, i.e. of moves and stops (see inset in

figure 3a), which is computed by counting the number of con-

secutive sampled points k and k þ 1 with ‘*k ¼ x*kþ1 2 x*k . 0.

For �D . D
�

, the trajectory is under-sampled (n* , n) and

trip lengths are overestimated, while for �D , D
�

it is

over-sampled (n* . n) and trip lengths are underestimated.

This point of view about the number of moves allows us

to extend the validity of this optimal sampling to higher

dimensionality (two or three dimensions) and to any distri-

bution P(v). The dimensionality of space indeed does not

influence the moves’ number counting. To illustrate this, we

extend this analysis in the electronic supplementary material,

section ‘Numerical analysis’ with a Monte Carlo simulation

in the case where speed is a random variable depending on

the move duration [7]. In this case, our exact results for P(‘)

do not hold anymore, because moves have different speeds.

Nevertheless, the value given by equation (2.9) only under-

estimates the mean displacement length with varying

speeds by some 5%.

More generally, all our analytical results concern the

stationary regime of the renewal process. This stationary

regime exists only if the mean values �t and �t are finite (see

electronic supplementary material, section ‘Analytical

calculations’). The distributions P(t) and P(t) can thus have
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power-law tails, in principle, for our results to hold, but only

with large enough exponents.
2.1.4. Fraction of correctly sampled moves
In order to estimate D̂, we have to compute the fraction Fgood

of movements that are correctly measured. This occurs when

two consecutive sampling times fall during the rests immedi-

ately before and after a move, say u*k in the rest tm and u*kþ1 ¼

u*k þ �D in the rest tmþ1. The probability Pgood of the latter

event and the fraction Fgood ¼ Pgood/(1 2 C0) are calculated

in the electronic supplementary material, section ‘Analytical

calculations’. In the case of exponential distributions, we

obtain the explicit expression (see electronic supplementary

material, equation (S37))

Fgood(�D) ¼
�t�t

(�t��t)2

e�
�D=�t þ ((�t��t)�D=�t�t� 1)e�

�D=�t

1þ�t=�t� e��D=�t
: ð2:10Þ

In figure 3b, we compare the shape of Fgood for fixed values of
�t and �t with the result of a Monte Carlo simulation. For
empirical values valid for car mobility (�t ¼ 0:30 h,

�t ¼ 2:49 h), the curve has a maximum F̂good � 51% for a

sampling time given by D̂ ¼ 1:70 h (102 min). Both the

value of D̂ and the height F̂good of the maximum of Fgood(�D)

depend on the ratio �t=�t (figure 4a). They are however inde-

pendent of the spatial embedding and of the characteristics

of P(v). The quantity F̂good � 51% is associated with the lar-

gest value of �t for the data sources we have analysed

(mobile data, GPS trajectories and car mobility, see electronic

supplementary material, table S1), and thus represents the

best possible value associated with human mobility at an

urban scale. It is remarkable that the optimal fraction F̂good

of sampled movements in human mobility is so low that

essentially one half of the moves are cut or merged during

the sampling, limiting the possibility of understanding the

individuals’ behaviour. We also note that the value Fgood(D
�

)

is not far from 51% (figure 3b). We thus see that, even if the

measured and real distributions are similar with comparable

first moments, we are often describing different movements.

The nature of the process, characterized by �t and �t, limits our

knowledge of the system for any value of �D.

The maximal value F̂good is naturally associated with

another optimal sampling time representing the conditions
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for which we sample correctly the largest number of moves.

This optimal sampling time D̂ is of the same order as �t and

�t: D̂ ¼ a
ffiffiffiffi
�t�t
p

. The function a(�t=�t) can be approximated as a

constant when studying human mobility at an urban scale,

or other datasets sharing similar �t=�t ratios (figure 4):

D̂ � 1:96
ffiffiffiffi
�t�t
p

: ð2:11Þ

This result suggests that the sampling with �D� �t,�t (that is,

substantially more frequently than the time frame of an aver-

age move or rest) is not optimal and will lead to incorrect

results. This is apparently paradoxical, because if the trajec-

tory is very well sampled, then it would be relatively

straightforward to build an algorithm that reconstructs cor-

rectly moves and rests. However, such a high-frequency

sampling is useful only when we have additional information

that allows one to reconstruct the trajectory which can be

done with more advanced technologies that do not need

assumptions (i) and (ii).
curve computed for exponential distributions. The red circle corresponds to
D
�
¼ 52 min, while orange triangles correspond to the empirical maximum

D̂ ¼ 1 h of Fgood. Strikingly, the latter coincides with the theoretical value
of D̂ for exponential distributions. (Online version in colour.)
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2.2. Sampling human movements
The conditions of equations (2.1) and (2.2) define a process

where both travel and rest times have a short-tailed distri-

bution and the trajectory sampling is strictly periodic.

While this allowed us to find exact analytical expressions

and to uncover important effects of sampling on the statistical

properties of trajectories, real-world problems are much more

involved. Indeed, human travel times are characterized by

short-tailed distributions (see [7] and references therein),

and resting time can be broadly distributed for both

humans [4,54] and animals (see [55] and references therein).

In addition, the trajectory can be sampled with a random

inter-sampling time.

We expect, in general, to observe the same behaviour as

the exponential–exponential case (described by equation

(2.1)) studied above for any peaked distribution of rest and

move durations (i.e. when both the first two moments con-

verge). We show here that when rests or sampling times are

broadly distributed, the outcome of the sampling will be

necessarily worse. The exponential–exponential conditions

discussed above therefore correspond to the best-case

among the typical scenarios observed empirically (although

better sampling might be eventually obtained in marginal

scenarios such as fixed rest and move times for example).

We first confirm with Monte Carlo simulations the validity

for more complex cases of the results obtained above for a

constant sampling time interval. In particular, we show (see

electronic supplementary material, section ‘Numerical analy-

sis’ and table S1 for details) how the sampling quality Fgood

for cars’ mobility progressively decreases from the upper

bound of 51% when introducing randomness in sampling

times (exponential or power-law) and in rest durations. For

instance, introducing a broad P(t) yields values of Fgood

lower than 40%, while a broad P(D) yields a Fgood lower

than 30%. We finally predict that, when coupling a broad

P(D) and a broad P(t) (as observed for mobile phone data),

the quality of the sampling decreases significantly, with

Fgood falling to 23%.

We illustrate these different results on a spatio-temporal

high-resolution dataset, namely the GeoLife GPS trajectories

[56,57]. The data consist of coordinates given every 5 s, thus

allowing us to perform a speed-based sequencing (see

Methods). We measure the properties of the sequenced
trajectories and find again an average trip time �t � 0:33 h.

The average rest time drops to �t � 0:8 h, because data allow

us to define activities at a finer scale. Using the functional

form for Fgood given by equation (2.10) for the ideal case,

we find that the upper bound for the sampling quality

declines substantially to F̂good ¼ 29%. In the following, we

use these GeoLife GPS trajectories to study the effect of

sampling on real trajectories. In particular, we will validate

the previous results by studying the effect of constant

sampling and then use mobile phone data to sample the

GPS trajectories with a random sampling interval.

We first sample the trajectories with a constant time inter-

val �D that varies between 1 min and 6 h. For each value of �D,

we compute the fraction of the trips that are correctly ident-

ified. The results are represented in figure 5. They confirm

our analytical predictions. Indeed, we find that there exists

an optimum value of the sampling time �Dopt � 60 min.

Even though this was not expected, because of a non-

exponential P(t), this value coincides with the predicted

maximum D̂ � 1:96
ffiffiffiffiffi
�t �t
p

� 60 min (the theoretical curve is

represented as a dashed line in figure 5). The fraction of cor-

rectly sampled moves is lower than in the idealized case with

at best 18% of the trips that are recovered (Fgood � 0.18) with

a constant sampling interval.

We also estimate the average length of the sampled trips

for every value of the sampling interval and compare it with

the average trip length in the original sequenced trajectory

(results are represented in electronic supplementary material,

figure S3). The optimal value of the sampling time
�D � 15 min is much smaller than the one maximizing the

number of correctly sampled trips. Furthermore, we find

that, at the optimal sampling interval �D � 60 min, the aver-

age sampled trip two-dimensional displacement is about

two times larger than the average trip length of the original

trajectories.

In the case of geo-localized data obtained from devices

such as mobile phones, position and time are recorded at

random times corresponding to a call or another event. The

sampling time intervals are thus random variables. In
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general, they are distributed according to a broad law such as

a power-law with exponent close to 21 [3,4]. Here, we use

CDR mobile phone data from Senegal [58] and, as commonly

done [35,40], extract the duration between calls of the users

with extremely high average call frequency, in the same

spirit as in [3]. We then sample the sequenced GPS trajectory

using these durations. The result is staggering: only 11% of

the trips are correctly sampled. One may argue that calls

and rests are correlated, or that calls done during moves

can be filtered out. We thus computed the proportion of cor-

rectly sampled trips at different levels of correlation (see

electronic supplementary material, section ‘Correlations

between calls and rests in empirical sampling’ for details),

and find that, at best—when we only have calls during

rests—only 16% of trips are recovered. The use of CDR

mobile phone data or of any dataset presenting a long-

tailed inter-event time distribution to study mobility is thus

very questionable. We note that forcing a perfect correlation

between calls and rests amounts to forcing assumption (i)

presented above. Yet, the trajectory is still poorly sampled,

meaning that assumption (ii) is flawed.
3. Discussion
A key aspect of every experimental science is to be aware of

the limits of the experiment’s set-up and of the measuring

apparatus. Unfortunately, this point has often been neglected

in the recent trend of data-driven studies. The desire for

novel, large-impact results is leading to studies where many

corners are cut. As a consequence, a large number of quanti-

tative results are sustained almost exclusively by the sheer

amount of data gathered, even when those data are not

adequate for the problem at hand: not all biases do average

themselves out. This is particularly true for the study of

trajectories from sampling movements in space. The choices

taken for trajectory segmentation, together with the temporal

and spatial granularity of the measures, influence all

quantities associated with these trajectories [20,34].

In this paper, we have shown that for any sampling of

a trajectory alternating rests and movements (of animals,

human or artefacts) the assumptions that each measure

corresponds to a rest and that an observed displacement cor-

respond to a move are intrinsically flawed. We solved

analytically an idealized case which shows that the fraction

of trips that are correctly identified with a constant sampling

time interval is intrinsically limited, and that this limit is at
best 51% for humans moving at the urban scale. We also

showed that this fraction is significantly lower in any other

realistic scenario, especially when mobility is being studied

through the lens of mobile phone communications: using

phone calls in order to track mobility gives correct predic-

tions for 23% of the trips made with a car. Result gets even

worse if one wants to investigate mobility at a finer scale:

using high-resolution GPS data the value drops down to

11%, and we estimate that no more of 16% of movements

can be recovered, even if a perfect stay-point identification

algorithm is applied. These figures (summarized in electronic

supplementary material, table S1) cast a shadow on the possi-

bility of understanding [3] and modelling [4] human mobility

from CDR data. Our ability to predict individuals’ move-

ments [40] is limited not only by the temporal and spatial

scales of analysis [59,60], but also and highly predominantly
by limitations inherent to the data sources. We provided new

analytical tools to evaluate the quality of a sampled trajectory

for the study of both animal and human movements. Pos-

itions must be collected (or, when necessary for historical

comparisons, down-sampled [34]) at least with a frequency

commensurate with the underlying moving and resting

dynamics (�D � 1:96
ffiffiffiffi
�t�t
p

). Alternatively, stay points can be

reconstructed from high-frequency sampling (kDl� �t), but

not when one has bursty inter-event times, because during

the numerous extreme events constituting the long tail of

the distribution P(D) the information on the movements is

simply absent. Further studies and rigorous analysis of the

empirical methods used in many studies are thus necessary

in order to construct solid foundations for our knowledge.
4. Methods
4.1. GPS data
In order to prove the validity of our claims, we test the above pre-

dictions on high-resolution data, the GeoLife GPS trajectories

[56]. This dataset consists of the trajectories of 182 subjects regis-

tered by a GPS device over the course of 3 years. The database

contains 17 621 trajectories for a cumulated travel length of more

than 1 000 000 km. Most trajectories are logged with a temporal

precision of the order of the second.

Because the term ‘rest’ has a behavioural connotation, we will

talk in the following about stay points [42]. These are locations

where an individual stays for a certain period of time and from

which he or she does not depart too much. Of course, the identi-

fication of stay points depends on the spatial and temporal

granularity of the data [20].

As mentioned in the Introduction, the absence of contextual

information forces us to make more or less realistic assumptions

in order to identify travelling times and rests. We begin by filter-

ing out the trajectories that are less than 1 km long, as they are

not representative. We then proceed to identify stay points as

follows:

— we consider all points around the point pt in a moving time

window of duration t ¼ 10 s around t;
— in this window, we compute the average movement speed

between successive trajectory points;

— if the average speed is lower than 2 m s21 (fast walker), we

identify pt as a stay point;

— we iterate the procedure for all points in the trajectory; and

— we aggregate consecutive stay points if the move in-

between is less than 100 m and aggregate consecutive

moves if the intermediate rest is shorter than 5 min.

The last passage is introduced in order to minimize the

impact of fluctuations in the GPS reading. After this procedure,

we obtain individual trajectories where stay points are identified.

We find the average travel and rest times �t ¼ 20 min and

�t ¼ 48 min. The average travel time is identical to that observed

for vehicular mobility. The average duration �t of a rest is,

however, significantly shorter.

4.2. Call detail records data
We use the dataset 2 ‘fine-grained mobility’ of the Orange data

made available for the D4D challenge [58] that provides anon-

ymized individual CDR records. For privacy reasons, the caller

IDs are reshuffled every 15 days. The dataset spans 25 such

15-day periods. The selection procedure that is most often used

is the one proposed in [40], i.e. selecting only the individuals

whose average call frequency is greater than 0.5 calls/hour.
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Here, we allowed for a more conservative margin by selecting

only the 1.1% of individuals who had more than 1 call/hour in

a period of 15 days. Furthermore, the data provide call time

stamps with a 10-minutes granularity. We apply a smoothing

procedure which consists of picking a time uniformly at

random between M 2 5 and M þ 5, where M is the value in

minute indicated by the time stamp. One should bear in mind

that the mobile phone CDR and GPS trajectories come from

two independent datasets describing two different populations

and times of the year. For this reason, we did not enforce calen-

dar synchronization between the datasets, but used the CDR

data to randomly extract real inter-event times with the appropri-

ate minimal frequency. More accurate numbers would thus

be obtained in a situation where information on calls and

trajectories would be available for the same user.

4.3. Characteristic times for car mobility
We need to identify the values of �t and �t in conditions that rea-

listically describe human mobility. We do this by using the

results of the analysis of urban and inter-urban traffic of private

vehicles in Italy [7].

The average travel time observed for Italian cars is �t ¼ 0:30 h.

Moreover, as discussed in [7] and references therein, in private as

in public transportation, the distribution of trip durations P(t) in

a city is short-tailed. A similar result has been found in taxi rides,

in survey data (where also �t � 0:30 h) and on the GPS data [57]

we use in this work (for separated modes of transport). For

this reason, we can safely limit our numerical analysis to the

case of exponential P(t).
Concerning rest times, two different functional forms have

been proposed for the distribution P(t). Car parking durations

have been fitted with a stretched exponential:

P(t) ¼ exp (�(t=t0)b)

t0G(1þ 1=b)
, ð4:1Þ

with t0 � 1024 h and b � 0.19 [7]. For mobile phone data, a
truncated power-law fit has been proposed:

P(t)/ t�g exp � t

te

� �
, ð4:2Þ

with g � 1.8 and te � 17 h [4]. This fit is made on movements

sampled at best with �D ¼ 1 h (it is thus expected to be influenced

by the sampling issues described above), and does not allow one

to identify rests shorter than 1 h. Note that in estimating the dis-

tribution’s average below, we are extending the distribution (4.2)

below this experimental range.

In our analytical study, we assume the distribution P(t) to be

exponential, while it is not in general. We therefore estimate the

parameter �t averaging the distributions (4.1) and (4.2) between 5

min and 24 h, which corresponds to selecting only individuals

moving every day, we obtain average rest times of 2.49 h and

0.55 h, respectively. To have a consistent description of car mobi-

lity, we choose to use the value �t ¼ 2:49 h. As our results suggest

that the larger �t the better the sampling, our choice also defines a

best-case scenario. In our numerical study, we will instead use

the whole distributions given above.
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Lévy walk? Reply. Ecology 89, 2351 – 2352. (doi:10.
1890/08-0313.1)

46. Hoteit S, Secci S, Sobolevsky S, Ratti C, Pujolle G.
2014 Estimating human trajectories and hotspots
through mobile phone data. Comput. Netw. 64,
296 – 307. (doi:10.1016/j.comnet.2014.02.011)

47. Feller W. 1968 An introduction to probability theory
and its applications. New York, NY: Wiley.

48. Cox DR. 1962 Renewal theory. London, UK:
Methuen.

49. Cox DR, Miller HD. 1965 The theory of stochastic
processes. London, UK: Chapman & Hall.

50. Metzler R, Jeon JH, Cherstvy AG, Barkai E. 2014
Anomalous diffusion models and their properties:
non-stationarity, non-ergodicity, and ageing at the
centenary of single particle tracking. Phys. Chem.
Chem. Phys. 16, 24 128 – 24 164. (doi:10.1039/
C4CP03465A)

51. Giannotti F, Nanni M, Pinelli F, Pedreschi D. 2007
Trajectory pattern mining. In 13th ACM SIGKDD Int.
Conference, San Jose, California, pp. 330 – 339.

52. Wang H, Calabrese F, Di Lorenzo G, Ratti C. 2010
Transportation mode inference from anonymized and
aggregated mobile phone call detail records. In 13th
Int. IEEE Conference on Intelligent Transportation
Systems, Funchal, Portugal, pp. 318 – 323.

53. Ranacher P, Brunauer R, Trutschnig W, Van der Spek
S, Reich S. 2016 Why GPS makes distances bigger
than they are. Int. J. Geogr. Inf. Sci. 30, 316 – 333.
(doi:10.1080/13658816.2015.1086924)

54. Gallotti R, Bazzani A, Rambaldi S. 2012 Towards a
statistical physics of human mobility. Int. J. Mod.
Phys. C 23, 1250061. (doi:10.1142/
S0129183112500611)

55. Proekt A, Banavar JR, Maritan A, Pfaff DW. 2012
Scale invariance in the dynamics of spontaneous
behavior. Proc. Natl Acad. Sci. USA 109, 10
564 – 10 569. (doi:10.1073/pnas.1206894109)

56. Zheng Y, Xie X, Ma W-Y. 2010 GeoLife: a
collaborative social networking service among user,
location and trajectory. IEEE Data Eng. Bull. 33,
32 – 40.

57. Zhao K, Musolesi M, Hui P, Rao W, Tarkoma S. 2015
Explaining the power-law distribution of human
mobility through transportation modality
decomposition. Sci. Rep. 5, 9136. (doi:10.1038/
srep09136)

58. de Montjoye YA, Smoreda Z, Trinquart R, Ziemlicki
C, Blondel VD. 2014 D4D-Senegal: the second
mobile phone data for development challenge.
(http://arxiv.org/abs/1407.4885)

59. Gallotti R, Bazzani A, Degli Esposti M, Rambaldi S.
2013 Entropic measures of individual mobility
patterns. J. Stat. Mech. 2013, P10022. (doi:10.1088/
1742-5468/2013/10/P10022)

60. Cuttone A, Lehmann S, González MC. 2016
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