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Abstract: The use of machine learning techniques for point cloud classification has been investigated
extensively in the last decade in the geospatial community, while in the cultural heritage field it has
only recently started to be explored. The high complexity and heterogeneity of 3D heritage data,
the diversity of the possible scenarios, and the different classification purposes that each case study
might present, makes it difficult to realise a large training dataset for learning purposes. An important
practical issue that has not been explored yet, is the application of a single machine learning model
across large and different architectural datasets. This paper tackles this issue presenting a methodology
able to successfully generalise to unseen scenarios a random forest model trained on a specific dataset.
This is achieved looking for the best features suitable to identify the classes of interest (e.g., wall,
windows, roof and columns).
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1. Introduction

The documentation, restoration and conservation of architectural heritage monuments have
become fundamental for protecting and preserving them from armed conflicts, climate change effects,
natural catastrophes and human-caused disasters. The presence of these risks is further enlarged by
the fact that all monuments are inevitably in a constant state of chemical transformation.

The advent in the last decades of 3D optical instruments for the 3D digitisation of objects
and sites has undoubtedly changed the concept of heritage conservation and preservation. Indeed,
the cultural heritage (CH) field is taking great advantage of reality-based surveying techniques
(e.g., photogrammetry, laser scanning) [1,2]. Currently, digital photogrammetry and laser scanning
have become standard methods for data acquisition and digital recording for the 3D documentation of
heritage assets. These technologies for 3D documentation allow the generation of realistic 3D results in
terms of geometric and radiometric accuracy, overcoming the so-called direct surveys, which involve
measuring in direct contact of objects or excavation areas. Once data are acquired (images, scans,
single points, etc.), post-processing operations allow the derivation of dense point clouds, polygonal
models, orthoimages, sections, maps and drawing or further products. Towards providing precise
representations of the objects at a given time to be passed down to future generations, these kinds
of data can be used as a base for any further studies [3]. In this context, the association of semantic
information to the point clouds leads to a simplification in the CH reading, accelerating the phase of
data management and interpretation. There are various applications where semantically annotated
point clouds are requested such as:

• Identification of architectural elements, supporting the scan-to-BIM process [4–7];
• Detection and quantification of different states of conservation or materials, deriving data for

monitoring and restoration purposes [8–11];
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• Quantification of surface areas or volumes of interest, useful both in case of maintenance
architecture planning and damage detection [12–15];

• Abstraction of structural elements, prior to simulations with finite element methods/analysis
systems (FEM/FEA) [16–18].

As most of these applications are based on time-consuming and subjective manual procedures of
annotation, it becomes fundamental to realise a more objective and automated classification method.

1.1. State of the Art

Up to now, machine- and its subset deep-learning algorithms (ML / DL) have become the
state-of-the-art method to deal with point cloud classification, overcoming rule-based approaches such
as Hough transform, Random Sample Consensus (RANSAC), or region growing, presented by Grilli et al.
in [19]. Among the ML approaches, the studies proposed in Vosselman [20], Weinmann et al. [21],
and Niemeyer et al. [22] can be considered as pioneer works in the geospatial field. Equally, on
the DL side, it is fundamental to mention PointNet and its later improvement PointNet++ [23,24],
built to perform the classification/part segmentation of simple objects with replicated shapes (e.g., mug,
plane, table, car). Both ML and DL are fields of artificial intelligence scientific research related to the
development of algorithms that allow computers to make predictions based on empirical training data.
Associated with the training data are the so-called features, variables found in the given training set,
that can powerfully or at least sufficiently help us at building an accurate predictive model. While
within standard machine learning approaches, the choice of the features depends on the operators,
deep-learning methods can learn the features by themselves, as part of the training process [25].
This ability to learn features is considered as one of the main causes for the quick advance in 2D and
3D understanding benchmark results [26]. However, deep learning does so using neural networks
with many hidden layers, powerful computational resources and a significant amount of annotated
data [27]. In this regard, the availability/unavailability of data can raise/limit the application of the
deep-learning approaches in some fields more than in other ones. As Griffith and Boehm asserted [26],
benchmarks are essential to provide the community with high-quality training data, also allowing a
fair comparison between the various algorithms/approaches.

Although current public datasets provide several indoor [28–30] and outdoor scenes [31–34],
there is still an evident lack of benchmarks designed for the heritage and architectural field. Despite
this, in recent years the following solutions have been proposed. A random forest (RF) classifier has
been used on texture and geometric data in [35]. Murtiyoso and Grussenmeyer [36] have proposed an
algorithmic approach to perform point cloud segmentation through geometric rules and mathematical
functions. Pierdicca et al. [37] presented a dynamic graph convolutional neural network (DGCNN) for
point cloud segmentation trained with 11 labelled scenes of heritage architecture.

1.2. Aim and Contribution of the Paper

The design of a heritage data classification model is challenging due to the high variability of
scenarios in this field. In addition, the class definition might change according to the classification
aims (e.g., architectural element identification vs. material quantification) and the case study treated
(e.g., classic temples differ from churches, churches can differ a lot from each other according to their
architectural style, etc.).

In our previous work [38], a standard machine learning approach based on an accurate selection
of geometric features was developed to facilitate and accelerate the classification of some heritage
monuments. While before, for each case study a specific model was trained (Figure 1), the main aim
of this paper is to verify the capability of a pre-trained model to generalise over other unseen 3D
scenarios, featuring similar characteristics (Section 2). When we talk about ‘generalisation’, we refer to
a machine learning model’s ability to perform well on new, unseen data, rather than just the data that
it was trained on. This term might be confused with the concept of ‘transfer learning’, used in the
deep learning community to indicate the use of a model pre-trained for a particular task to solve a
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different problem (i.e., using a model trained to recognise apples for identifying pears) [39,40]. In order
to test the generalisation concept, we worked with urban architectures (Section 1.3), looking for some
recurrent classes such as floors, facades, windows, doors and columns. (Figure 2).
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are extracted from the reference point cloud, manually annotated and enriched with selected features
(Section 2.2). A random forest algorithm is then trained to generate a predictive model. This model is
used to classify unseen scenarios.
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An additional goal of this work is to test the generalisation when training and test datasets
are acquired with different sensors (i.e., terrestrial photogrammetry and terrestrial laser scanners),
featuring different resolutions, levels of noise, and attributes (Section 3.2).

In summary, the aims and contributions of the presented work are:

• Identifying a set of transversal architectural classes and a few (geometric and radiometric) features
that can behave similarly among different datasets;

• Generalising a pre-trained random forest (RF) classifier over unseen 3D scenarios, featuring
similar characteristics;

• Classifying 3D point clouds featuring different characteristics, in terms of acquisition technique,
geometric resolution and size.

In the next paragraph, the heritage datasets used for the experiments are presented. In Section 2
the adopted approach is described, with particular regard to the identification of the classes and the
feature selection. Section 3 presents different experiments and discusses the classification results,
followed by the conclusions in Section 4.

1.3. Datasets

The different datasets used in our experiments consist of five photogrammetric point clouds
provided with RGB colour information and one laser scanned point cloud without colour information
(Table 1).

The first three datasets considered (Table 1 - A–B–C) represent a portion of the 40 km of porticoes
built between the 11th–20th centuries in Bologna. As they became a distinctive building feature of
the city, 25% of the porticoes were digitised using terrestrial photogrammetry under a project for the
candidature of the porticoes as UNESCO “world heritage site” [41]. Such structures are interesting for
our study, because they combine various types of columns and vaults, different materials, and many
architectural details such as mouldings and ornaments. Among them, the Bologna–S. Stefano dataset
(Table 1 - A) was considered as a reference dataset where some portions were annotated and used as
a training set. This dataset was chosen because it represents a heterogeneous starting point for the
subsequent classification of the other scenarios (Figure 3).
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Figure 3. A closer view of the reference dataset, where it is possible to see the big variety of the
architectural elements (facades, windows, arches, doors, columns, etc.).

Dataset D comes from a photogrammetric survey of the Buonconsiglio Castle in Trento (Italy).
It is the renaissance-style lodge of the castle (15th century) that, despite being of modest size, includes
all the architectural classes previously annotated in the Bologna dataset.
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To test the generalisation properties of the model we also worked on the challenging dataset of
the Dome square in Trento (E), composed of buildings of different styles and periods, including the
medieval praetorian palace, the city tower and the Dome (12th–13th centuries).

Finally, the classification was extended to a big portion of the old town of Trento (F) (about 1 km
of facades), surveyed with a hand-held laser scanning system. A critical problem with this dataset
was the presence of a decreasing spatial resolution from ground to top, as well as the absence of the
texture information.

Table 1. Datasets considered in the presented work to validate the pre-trained model and the
generalisation method (Av. D. = average distance between points, L= length of the facades).

DATASET ACQUISITION POINTS
(M)

AV. D.
(cm)

L
(m)

A Bologna–
S. Stefano

ISPRS Int. J. Geo-Inf. 2020, 6, x FOR PEER REVIEW 

Finally, the classification was extended to a big portion of the old town of Trento (F) (about 1km 

of facades), surveyed with a hand-held laser scanning system. A critical problem with this dataset 

was the presence of a decreasing spatial resolution from ground to top, as well as the absence of the 

texture information.  

Table 1. Datasets considered in the presented work to validate the pre-trained model and the 

generalisation method (Av. D. = average distance between points, L= length of the facades). 

DATASET ACQUISITION 
POINTS 

(M) 

AV. D. 

(cm) 

L  

(m) 

A 
Bologna– 
S. Stefano 

 

 
 

Photogrammetry 14 0.8 230 

B 
Bologna– 

S. Maggiore 

 

 
 

Photogrammetry 22 0.8 330 

C 
Bologna–

Castiglione 

 

 
 

Photogrammetry 14 0.8 235 

D 
Trento–
Lodge 

 

 
 

Photogrammetry 6 1.0 100 

E 
Trento–
Square 

 

 
 

Photogrammetry 11 1.3 330 

Photogrammetry 14 0.8 230

B Bologna–
S. Maggiore

ISPRS Int. J. Geo-Inf. 2020, 6, x FOR PEER REVIEW 

Finally, the classification was extended to a big portion of the old town of Trento (F) (about 1km 

of facades), surveyed with a hand-held laser scanning system. A critical problem with this dataset 

was the presence of a decreasing spatial resolution from ground to top, as well as the absence of the 

texture information.  

Table 1. Datasets considered in the presented work to validate the pre-trained model and the 

generalisation method (Av. D. = average distance between points, L= length of the facades). 

DATASET ACQUISITION 
POINTS 

(M) 

AV. D. 

(cm) 

L  

(m) 

A 
Bologna– 
S. Stefano 

 

 
 

Photogrammetry 14 0.8 230 

B 
Bologna– 

S. Maggiore 

 

 
 

Photogrammetry 22 0.8 330 

C 
Bologna–

Castiglione 

 

 
 

Photogrammetry 14 0.8 235 

D 
Trento–
Lodge 

 

 
 

Photogrammetry 6 1.0 100 

E 
Trento–
Square 

 

 
 

Photogrammetry 11 1.3 330 

Photogrammetry 22 0.8 330

C Bologna–Castiglione

ISPRS Int. J. Geo-Inf. 2020, 6, x FOR PEER REVIEW 

Finally, the classification was extended to a big portion of the old town of Trento (F) (about 1km 

of facades), surveyed with a hand-held laser scanning system. A critical problem with this dataset 

was the presence of a decreasing spatial resolution from ground to top, as well as the absence of the 

texture information.  

Table 1. Datasets considered in the presented work to validate the pre-trained model and the 

generalisation method (Av. D. = average distance between points, L= length of the facades). 

DATASET ACQUISITION 
POINTS 

(M) 

AV. D. 

(cm) 

L  

(m) 

A 
Bologna– 
S. Stefano 

 

 
 

Photogrammetry 14 0.8 230 

B 
Bologna– 

S. Maggiore 

 

 
 

Photogrammetry 22 0.8 330 

C 
Bologna–

Castiglione 

 

 
 

Photogrammetry 14 0.8 235 

D 
Trento–
Lodge 

 

 
 

Photogrammetry 6 1.0 100 

E 
Trento–
Square 

 

 
 

Photogrammetry 11 1.3 330 

Photogrammetry 14 0.8 235

D Trento–Lodge

ISPRS Int. J. Geo-Inf. 2020, 6, x FOR PEER REVIEW 

Finally, the classification was extended to a big portion of the old town of Trento (F) (about 1km 

of facades), surveyed with a hand-held laser scanning system. A critical problem with this dataset 

was the presence of a decreasing spatial resolution from ground to top, as well as the absence of the 

texture information.  

Table 1. Datasets considered in the presented work to validate the pre-trained model and the 

generalisation method (Av. D. = average distance between points, L= length of the facades). 

DATASET ACQUISITION 
POINTS 

(M) 

AV. D. 

(cm) 

L  

(m) 

A 
Bologna– 
S. Stefano 

 

 
 

Photogrammetry 14 0.8 230 

B 
Bologna– 

S. Maggiore 

 

 
 

Photogrammetry 22 0.8 330 

C 
Bologna–

Castiglione 

 

 
 

Photogrammetry 14 0.8 235 

D 
Trento–
Lodge 

 

 
 

Photogrammetry 6 1.0 100 

E 
Trento–
Square 

 

 
 

Photogrammetry 11 1.3 330 

Photogrammetry 6 1.0 100

E Trento–Square

ISPRS Int. J. Geo-Inf. 2020, 6, x FOR PEER REVIEW 

Finally, the classification was extended to a big portion of the old town of Trento (F) (about 1km 

of facades), surveyed with a hand-held laser scanning system. A critical problem with this dataset 

was the presence of a decreasing spatial resolution from ground to top, as well as the absence of the 

texture information.  

Table 1. Datasets considered in the presented work to validate the pre-trained model and the 

generalisation method (Av. D. = average distance between points, L= length of the facades). 

DATASET ACQUISITION 
POINTS 

(M) 

AV. D. 

(cm) 

L  

(m) 

A 
Bologna– 
S. Stefano 

 

 
 

Photogrammetry 14 0.8 230 

B 
Bologna– 

S. Maggiore 

 

 
 

Photogrammetry 22 0.8 330 

C 
Bologna–

Castiglione 

 

 
 

Photogrammetry 14 0.8 235 

D 
Trento–
Lodge 

 

 
 

Photogrammetry 6 1.0 100 

E 
Trento–
Square 

 

 
 

Photogrammetry 11 1.3 330 

F 
Trento–
Streets 

 

 

 

Handheld 

scanning 
13 

From 

0.2 to 

15.0 

810 

Photogrammetry 11 1.3 330

F Trento–Streets

ISPRS Int. J. Geo-Inf. 2020, 6, x FOR PEER REVIEW 

 

 
 

2. Methodology  

Even considering the advent of the deep learning approaches for point cloud classification [26], 

in this paper we chose to work with a random forest (RF) algorithm [42], for the following reasons: 

• Recent literature shows that this can still be considered a competitive method for point cloud 

classification [43–46]; 

• We wanted to extend the method presented in our previous study [38], and verify its 

applicability to larger and different scenarios; 

• There is a lack of annotated architectural training data necessary for training a neural network.  

RF uses an ensemble of classification trees, then gets a prediction from each tree and selects the 

best solution through voting. Each tree represents an individual classifier in the ensemble and is 

trained on a random subset of the training sample. During the training phase, both class labels and 

features were given as input to the model so it can learn to classify points based on these features. In 

this context, to increase the reliability of the generalisation, we had to make sure that the training 

dataset was as representative as possible of the entire scenario. To achieve this, it was fundamental 

to identify (i) transversal classes (Section 2.1) and (ii) features that could behave similarly among 

different datasets (Section 2.2). 

In our classification experiments, the Scikit-learn Python library (version 0.21.1) was used [47] 

to train the RF classifier and predict the classes over unseen areas.  

2.1. Class Selection 

For the class selection, we followed the idea proposed in [48], where classes have been defined 

by studying several standards and dictionaries underlying the construction of 3D architectural 

models. In addition to their proposed floor, facade, column, arch, vault, window and door, we decided to 

add the classes moulding, drainpipe and other. This last category specifically includes all those objects 

that do not belong to the architectural classes (e.g., low vegetation, fences, garbage cans, bikes).  

The classes were annotated using our in-house web annotation tool (Figure 4) built upon the 

Semantic-Segmentation-Editor web application [49]. 

Handheld
scanning 13 From 0.2

to 15.0 810

2. Methodology

Even considering the advent of the deep learning approaches for point cloud classification [26],
in this paper we chose to work with a random forest (RF) algorithm [42], for the following reasons:

• Recent literature shows that this can still be considered a competitive method for point cloud
classification [43–46];

• We wanted to extend the method presented in our previous study [38], and verify its applicability
to larger and different scenarios;

• There is a lack of annotated architectural training data necessary for training a neural network.



ISPRS Int. J. Geo-Inf. 2020, 9, 379 6 of 19

RF uses an ensemble of classification trees, then gets a prediction from each tree and selects the
best solution through voting. Each tree represents an individual classifier in the ensemble and is
trained on a random subset of the training sample. During the training phase, both class labels and
features were given as input to the model so it can learn to classify points based on these features.
In this context, to increase the reliability of the generalisation, we had to make sure that the training
dataset was as representative as possible of the entire scenario. To achieve this, it was fundamental to
identify (i) transversal classes (Section 2.1) and (ii) features that could behave similarly among different
datasets (Section 2.2).

In our classification experiments, the Scikit-learn Python library (version 0.21.1) was used [47] to
train the RF classifier and predict the classes over unseen areas.

2.1. Class Selection

For the class selection, we followed the idea proposed in [48], where classes have been defined by
studying several standards and dictionaries underlying the construction of 3D architectural models.
In addition to their proposed floor, facade, column, arch, vault, window and door, we decided to add the
classes moulding, drainpipe and other. This last category specifically includes all those objects that do
not belong to the architectural classes (e.g., low vegetation, fences, garbage cans, bikes).

The classes were annotated using our in-house web annotation tool (Figure 4) built upon the
Semantic-Segmentation-Editor web application [49].
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2.2. Feature Selection

A critical part of the success of a classification model relies on the good selection of the training
features. In order to characterise each point for classification, we combined the use of (i) radiometric
and (ii) geometric features, extracted from the point clouds.

2.2.1. Radiometric Features

Radiometric features, when available, can be useful to recognise objects such as windows,
commonly painted with specific colours, or also drainpipes, covered with a reflective material resulting
in a high-intensity value. Given that different colour spaces represent the colour information in different
ways, some of them can facilitate certain calculations [35]. Hence, after various attempts, in this
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work we chose to use both a composite channel of the RGB values ((R+G+B) / 3) and the colour
component b* of the colour space La*b* [50]. In the L*a*b* colour space, L* indicates lightness and
a* and b* are chromaticity coordinates. The a* and b* coordinates are the red/green and yellow/blue
axis. Ignoring the L channel (luminance) makes the algorithm more robust to lighting differences.
The colour component b* was chosen as it can facilitate the distinction between windows and walls
(Figure 5).
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Figure 5. Use of the colour component b* to facilitate the distinction between the windows and walls.

2.2.2. Geometric Features–Covariance Features

To describe the geometric distribution of the points and highlight the discontinuities between the
architectural elements, we used a few selected covariance features from [51]. The covariance features
are widely used in segmentation and classification procedures because of their capability to provide
in-depth knowledge on the geometrical structure of the reconstructed scene [21,52,53]. These features
derive from the normalised eigenvalues λi (λ1 > λ2 > λ3) of the 3D structure tensor calculated from the
3D coordinates of all the points within a considered neighbourhood [54]. Different strategies can be
applied to identify local neighbourhoods for points belonging to a 3D point cloud [55]. In a previous
study [38], the authors investigated the behaviour of the covariance features calculated within spherical
neighbourhoods at increasing radius sizes, in order to select a reduced number of features that could
be beneficial for the classification of heritage case studies. Besides covariance features, the verticality V
and the absolute height of the points in the cloud (Z coordinates) were considered. One of the main
problems of using many features is the computational time, that grows with the density of the point
clouds, the number of features to be extracted, and the size of the search radii [56]. Moreover, in [38]
it was proved that the accuracy of the results was not related to the amount of the features used,
but rather to their quality.

Therefore, to make the generalisation effective, it was essential to identify a small set of features
able to perform similarly across different architectural datasets. For the analysis of the best features,
we first considered the selection suggested by the RF algorithm, based on impurity reduction [42],
starting from a multi-scale analysis done over the training set (Figure 6). Then, iteratively considering
the most important features, only planarity P, omnivariance O, surface variation C, and verticality V,
at specific radii (Table 2, Figure 7) were used. In addition, the absolute height was employed.
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Figure 6. Feature importance ranking for a multi-scale classification. The features used in this study 
have been underlined in red. 

Figure 6. Feature importance ranking for a multi-scale classification. The features used in this study
have been underlined in red.
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Table 2. Geometric features considered to train the model with their relative neighbourhood size.

FEATURE FORMULA NEIGHBOURHOOD SIZE (m)

Planarity Equation (1) 0.8

Omnivariance Equation (2) 0.2

Surface variation Equation (3) 0.2, 0.8

Verticality Equation (4) 0.1, 0.4
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Figure 7. Example of the geometric features used for the classification procedure on Table 1 datasets: (a)
planarity: it can facilitate the identification of arches and columns; (b) omnivariance and (c) surface variation:
they highlight the discontinuities between the walls, mouldings and the windows; (d) verticality: it is
essential to distinguish floors from facades.

Once all the mentioned features had been extracted from all the datasets, we noticed that
omnivariance O, and surface variation C, were presenting different ranges depending on the point
cloud densities. Hence, we normalised them in the range 0–1 adopting the modified logistic function
defined in [57], to facilitate the generalisation between the pre-trained model and the unseen scenarios.

Pλ =
λ2 − λ3

λ1
(1)

Oλ =
3

√∏3

j=1
λ j (2)

Cλ =
λ3∑
λ

(3)

V = 1− nz (4)
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3. Experiments and Results

3.1. Evaluation Method

Traditionally, the evaluation of a classification model is performed by splitting the labelled data
into two sets, one used for training and the other one for testing. However, in this way, the evaluation
procedure does not assess how the method generalises to a different framework.

In this paper, we first pre-trained a model over a limited portion (about 5M points) of a reference
dataset (dataset A: Bologna–S. Stefano, Table 1), then we extended the classification to all the different
datasets described in Table 1. In this way, we could evaluate the performances of the classifier at four
different levels of generalisation:

1. Within the same dataset: the model trained over a portion of the dataset A (model 1) is used to
classify the rest of the same dataset (Table 3, Figure 8);

2. Within the same city: model 1 is applied to dataset B and C (Table 4, Figure 9);
3. Changing city: model 1 is applied to two different photogrammetric datasets surveyed in a

different city (dataset D (Table 5, Figure 10) and dataset E (Table 6, Figure 12));
4. Changing city and acquisition technique: a modified version (model 2) of the pre-trained model 1

is tested on the TL dataset F (Table 7, Figure 11). Since the handheld scanning dataset was not
provided with RGB values, a re-training round was necessary including exclusively height and
geometry-based features.

Finally, for an exhaustive evaluation of each level, some portions of each classified dataset were
taken into consideration and compared with the same manually annotated point clouds. The number
of correct and incorrect predictions were summarised with count values and broken down by each
class inside confusion matrices, that allows the visualisation of the performance of the algorithm
(Tables 3–7). Each row of the matrix represents the instances in an actual class (ground truth), while
each column represents the instances in a predicted class. From each confusion matrix we could then
derive the following accuracy metrics:
• Precision: it is a ratio of the total detection by the classifier. It gives information about the model
performance with respect to false positives (how many did we catch):

Precision =
Tp

Tp + Fp
(5)

• Recall: it is a ratio of the correct detection over the total number of test samples and gives information
about a classifier’s performance with respect to false negatives (how many did we miss):

Recall =
Tp

Tp + Fn
(6)

• F1 score: it is used to compare the performance of the predictive model. It considers both the
precision and recall values to compute the measures:

F1 score = 2∗
Recall ∗ Precision
Recall + Precision

(7)

where Tp = true positive (sum of the values in the diagonal position), Fp = false positive (sum of the
values in the column without the main diagonal one), Fn = false negative (sum of the values in the row
without the main diagonal one).

Precision, recall and the F1 score were first computed for each class using the above formula,
then the arithmetic and weighted averages over all the classes were considered.

In addition, a visual examination over the entire datasets was carried out to complete the quality
analysis (Figures 8–12).
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Table 3. Evaluation metrics: generalisation level #1, within dataset A.
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floor 546304 1 0 0 0 0 0 0 2619 1.00 1.00 1.00

facade 0 361751 4763 1175 0 185 0 0 2 0.98 0.99 0.99

column 0 218 59772 326 0 0 0 0 632 0.98 0.92 0.95

arch 0 507 94 57632 3972 20 5363 0 0 0.85 0.92 0.89

vault 0 0 0 3201 629809 1221 243 0 0 0.99 0.99 0.99

window 0 3030 0 2 24 78565 10531 852 0 0.84 0.88 0.86

moulding 0 200 143 227 1107 8668 304610 512 0 0.97 0.95 0.96

drainpipe 0 2 7 23 2 617 23 5641 0 0.89 0.81 0.85

other 111 137 230 0 0 0 0 0 18071 0.97 0.85 0.91

ARITHMETIC
AVERAGE 0.94 0.92 0.93

WEIGHTED
AVERAGE 0.98 0.98 0.98

3.2. Results

From the observation of the accuracy metrics (Tables 3–7) and the results (Figures 8–12), we can
reasonably infer that both model 1 and model 2 were able to generalise over unseen datasets.

If we take into consideration Table 3, even if the training samples represent a portion of the
tested dataset A, the results are still surprising (0.93 F1-score). In fact, these accuracy metrics have
far exceeded our previous study results (0.80 F1-score) achieved over a smaller portion of the same
Bologna dataset.
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Figure 8. Classification results: generalisation level #1, within dataset A.

Concerning the second experiment (Table 4), the average of the arithmetic metrics is around 0.80.
However, from a closer analysis, we can see that low values were achieved for the class other, which
represents a small sample of the entire dataset. Hence, if we consider the weighted average, then the
accuracy easily reaches 0.89. This kind of problem may be due to the lack of a representative annotation
for this class within the training set. In particular, we can see that in dataset B and C some garbage
cans (not present in dataset A) have been wrongly classified under facade or column (Figure 9c).
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Table 4. Evaluation metrics: generalisation level #2, B–C datasets. The most critical F1 values are
reported in italics (other class).
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floor 890967 207 20 0 0 4 0 0 3850 1.00 0.94 0.97

facade 3704 1084815 2530 16981 701 36776 17439 2 24741 0.91 0.91 0.91

column 20888 39614 200758 2672 0 961 1483 7 4664 0.74 0.85 0.79

arch 0 6855 21979 217040 6484 4477 16238 73 0 0.79 0.78 0.79

vault 76 0 0 27526 862579 833 1174 17 1 0.97 0.98 0.97

window 892 7801 163 657 4214 185498 51981 3231 677 0.73 0.66 0.69

moulding 4736 48394 13 14625 9687 44061 660871 815 74 0.84 0.88 0.86

drainpipe 0 9 17 26 0 8149 2478 25715 0 0.71 0.86 0.78

other 26107 5801 10828 0 5 519 385 0 34275 0.44 0.50 0.47

ARITHMETIC
AVERAGE 0.79 0.82 0.80

WEIGHTED
AVERAGE 0.89 0.89 0.89
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Table 5. Evaluation metrics: generalisation level #3, dataset D. The most critical F1 values are reported
in italics (window and moulding classes).
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floor 100514 613 787 0 0 0 184 0 3388 0.95 0.99 0.97

facade 0 204720 1305 341 0 4587 25349 0 71 0.87 0.94 0.90

column 39 3614 47864 1748 0 638 1073 0 877 0.86 0.84 0.85

arch 0 81 2923 20101 1665 242 992 0 0 0.77 0.79 0.78

vault 0 0 22 396 44387 450 533 0 0 0.97 0.95 0.96

window 19 5154 164 389 516 20424 13188 27 72 0.51 0.49 0.50

moulding 8 3203 1534 2376 328 15273 74301 1319 634 0.75 0.64 0.69

drainpipe 0 0 0 0 0 0 685 3047 11 0.81 0.69 0.75

other 832 143 2344 0 0 16 17 0 21208 0.86 0.81 0.83

ARITHMETIC
AVERAGE 0.82 0.79 0.80

WEIGHTED
AVERAGE 0.84 0.85 0.85
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Figure 10. Classification results: generalisation level #3, dataset D.

On the other hand, this problem was not present within experiments 3 and 4, where instead,
the accuracy values were decreased because of some problem with the classes window and moulding,
often confused with each other (Tables 5 and 7). This is especially evident where the RGB values were
not available in the point cloud (Table 7). A possible solution for this, in a future study, might be to
include in the class window both glass and moulding.

The most problematic generalisation experiment was the one relative to dataset E, where the
F1-score reached was only about 0.70 (Table 6). The peculiar type of windows and decorations of the
medieval facades (Figure 12) has led to several classification problems. To solve these kinds of errors in
future works, it might be useful to integrate the training set with the samples coming from this dataset.
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Table 6. Evaluation metrics: generalisation level #3, dataset E. The most critical F1 values are reported
in italics.
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floor 8328 46 311 0 0 0 0 0 2253 0.76 0.97 0.85

facade 0 338699 3667 11911 1519 19313 6277 806 599 0.88 0.98 0.93

column 0 2286 40760 80 0 395 0 0 5831 0.83 0.56 0.66

arch 0 933 3494 63599 137 90 49 192 2966 0.89 0.70 0.78

vault 0 0 0 0 10924 0 6377 0 0 0.63 0.45 0.53

window 0 373 9432 8012 4913 118873 20431 1784 0 0.73 0.61 0.66

moulding 0 438 18 6716 6576 51118 160958 38202 291 0.61 0.82 0.70

drainpipe 0 1194 0 260 0 1279 3196 34627 0 0.85 0.46 0.60

other 251 2991 15559 0 15 3399 3 0 27772 0.56 0.70 0.62

ARITHMETIC
AVERAGE 0.75 0.69 0.70

WEIGHTED
AVERAGE 0.77 0.80 0.78
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Table 7. Evaluation metrics: generalisation level #4, dataset F. The most critical F1 values are reported
in italics (window and moulding classes).
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floor 2010296 0 78 0 0 38 16 0 1664 1.00 1.00 1.00

facade 1226 409440 7228 162 0 10308 6406 0 286 0.94 0.87 0.90

column 1574 2610 95728 5846 44 328 3068 0 4688 0.84 0.86 0.85

arch 0 682 3496 40202 792 778 4752 0 0 0.79 0.77 0.78

vault 0 0 0 3330 88774 1032 656 0 0 0.95 0.97 0.96

window 0 9174 1276 484 900 40848 30546 0 32 0.49 0.51 0.50

moulding 368 50698 2146 1984 1066 26376 148602 1370 34 0.64 0.75 0.69

drainpipe 0 0 0 0 0 54 2638 6094 0 0.69 0.81 0.75

other 6776 142 1754 0 0 144 1268 22 42416 0.81 0.86 0.83

ARITHMETIC
AVERAGE 0.79 0.82 0.81

WEIGHTED
AVERAGE 0.94 0.93 0.93

Finally, quite satisfying results have been achieved testing the generalisation between datasets
with different characteristics (Table 7).
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Figure 11. Classification results: generalisation level #3, dataset E. A closer view shows how this 

architectural style is different from the one in the training dataset (Figure 4). 

Table 7. Evaluation metrics: generalisation level #4, dataset F. The most critical F1 values are reported 

in italics (window and moulding classes). 
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Figure 12. Classification results: generalisation level #3, dataset E. A closer view shows how this
architectural style is different from the one in the training dataset (Figure 4).
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The presented methodology and all the results are summarised in this video: https://www.youtube.
com/watch?v=_68PdseUh3o.

Moreover, the Random Forest code we used, and the pre-trained classifier models are available at:
https://github.com/3DOM-FBK/RF4PCC

4. Conclusions

This paper proved the capability of a pre-trained random forest (RF) model to generalise across
different and unseen 3D heritage scenarios. Although a reduced number of datasets have been evaluated
in this study, it is essential to consider that, except for the Trento Lodge case study, each dataset
(streets or square) already contains a big differentiation of buildings within it.

The absence of a generalisation study using a standard machine learning approach in this field
precludes a practical comparison between similar works. Nevertheless, if we would compare the
average of our accuracy metrics with other results (e.g., [36] and [37]), we can say that at the moment our
results reached better accuracy metrics, notwithstanding less training data and a faster prediction time.

The strengths of the presented approach can be summarised as follows:

• It is possible to classify a large dataset starting from a reduced number of annotated samples,
saving time in both collecting and preparing data for training the algorithm; this is the first time
that this has been demonstrated within the complex heritage field;

• The generalisation works even when training and test sets have different densities and the
distribution of the points in the cloud is not uniform (Experiment 4, Figure 11);

• The quality of the results allows us to have a general idea of the distribution of the architectural
classes and could support restoration works by providing approximate surface areas or volumes;

• The output can facilitate the scan-to-BIM problems, semantically separating elements in point
clouds for the modelling procedure in a BIM environment;

• Automated classification methods can be used to accelerate the time-consuming process of the
annotation of a significant number of datasets, in order to benchmark 3D heritages;

• The used RF model is easy to implement, and it does not require high computational efforts nor
long learning or processing time.

On the other hand, we saw that when the test set does not follow the distribution of the training
data, then the model does not perform as expected. Starting from this observation and considering
previous research experiences [35,38], the authors believe that in the heritage field, particular case
studies should be treated individually. However, it is possible, and it might be worth generating
different pre-trained classifier models for macro-categories of architectures (e.g., classical architecture,
Greek temples, gothic churches). In this view, we will consider in the future the possibility to generate
simulated point clouds coming from BIM to further accelerate the annotation phase.

To conclude, the heritage domain is a sophisticated testfield for both machine and deep learning
classification methods. For this reason, a new benchmark dataset [58] is going to be released in order
to boost research activities in this field and become a central resource for the development of new,
efficient and accurate methods for classifying heritage 3D data.
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