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1. Introduction

Description of hadron structure in terms of quarks and gluons is key to our understanding of
Quantum Chromodynamics (QCD). Although most of the observed mesons can be classified as
qq̄ bound states, QCD has a much richer spectrum [1, 2, 3]. Several QCD-based models predict
states with explicit gluonic degrees of freedom, known as hybrids [4, 5, 6, 7, 8]. This predictions
have been supported by lattice QCD calculations [9, 10, 11]. A single state with quantum numbers
JPC(IG)= 1−+(1−) below 2 GeV is expected. However, experiments claimed two different states to
exist, a π1(1400) decaying into ηπ , and a π1(1600) decaying into ρπ and η ′π channels. The high
statistics analyses from COMPASS confirmed a peak in both ρπ and η ′π at around 1.6GeV [12, 13]
and another structure in ηπ , at 1.4GeV [14].

In [15] we analyzed the spectrum of the ηπ D- and P-waves extracted from the COMPASS
data with a coupled-channel formalism, extending our previous analysis [16]. We establish the
existence of a single π1 in these channels and provide a detailed analysis of its properties. We also
determine the resonance parameters of the a2(1320) and a′2(1700).

2. Data

In our analysis, we focused on the P- and D-wave partial waves extracted from the COMPASS
mass independent analysis of π p→ η(′)π p. Due to the 190 GeV pion beam most of the events are
produced in the forward direction, close to the lower limit of the measured transferred momentum
squared −t1 ∈ [0.1,1]GeV2. In the COMPASS data, at the η ′π mass of 2.04GeV there is a sharp
drop in the P-wave intensity, accompanied by a sudden fall of the phase difference between P- and
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Figure 1: From [15]. Fits to the ηπ (upper line) and η ′π (lower line) data from COMPASS [14]. The
intensities of P- (left), D-wave (center), and their relative phase (right) are shown. The inset zooms into
the region of the a′2(1700). The solid line and green band shows the result of the fit and the 2σ confidence
level provided by the bootstrap analysis, respectively. The initialization of the fit is chosen by randomly
generating O(105) different sets of values for the parameters. The best fit has χ2/dof = 162/122 = 1.3. The
errors shown are statistical only.
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D-wave by 50o. Unfortunately, there exist no data in the ηπ channel in the 1.8−2.0GeV region, so
that we cannot check this behavior. On top of that, fitting these data points of the P-wave produces
nonphysical values for the position of the a′2. For all these reasons, we discard the data above
2GeV.

Recently, COMPASS published the 3π partial-wave analysis [13], including the exotic 1−+

wave in the ρπ final state. Unfortunately, the extraction of the resonance pole in this channel is
hindered by the irreducible Deck process [17, 18]. As discussed in [16], neglecting additional
channels does not affect the pole position in cases like the one we are studying, so our analysis will
consider only η(′)π channels.

3. Model

The π p→ η(′)π p is Pomeron (P) dominated at high energies. This allow us to factorize the
πP→ η(′)π process, which resembles a helicity partial wave amplitude aJ

i (s) for fixed t1, with
i = η(′)π the final channel, J the angular momentum of the η(′)π system and s its invariant mass
squared. In order to explain the approximately constant hadron cross sections the Pomeron must be
spin one, this together with the fact that both angular momentum projections M = ±1 are related
through parity allow us to drop the Pomeron helicity index. The transferred momentum is fixed to
teff =−0.1GeV2.

We parameterize the amplitudes following the coupled-channel N/D formalism,

aJ
i (s) = qJ−1 pJ

i ∑
k

nJ
k(s)

[
DJ(s)

−1
]

ki
, (3.1)

where pi = λ 1/2(s,m2
η(′) ,m2

π)/(2
√

s) is the η(′)π breakup momentum, and q= λ 1/2(s,m2
π , teff)/(2

√
s)

the π beam momentum in the η(′)π rest frame, with λ (a,b,c) being the Källén triangular func-
tion. The nJ

k(s)’s incorporate exchange “forces" in the production process (left hand cuts), and
are smooth functions of s in the physical region. The DJ(s) matrix contains the right hand cuts
constrained by direct channel unitarity of the η(′)π → η(′)π channel interactions.

We use an effective expansion in Chebyshev polynomials for the numerator nJ
k(s). A custom-

ary parameterization of the denominator is given by

DJ
ki(s) =

[
KJ(s)

−1
]

ki
− s

π

∫
∞

sk

ds′
ρNJ

ki(s
′)

s′(s′− s− iε)
, (3.2)

where sk is the threshold in channel k and

ρNJ
ki(s
′) = δki

λ J+1/2
(

s′,m2
η(′) ,m2

π

)
(s′+ sL)

2J+1+α
(3.3)

is an effective description of the left hand cuts in the η(′)π → η(′)π scattering, controlled by sL,
which is fixed at the hadronic scale sL ∼ 1GeV2. Finally,

KJ
ki(s) = ∑

R

gJ,R
k gJ,R

i

m2
R− s

+ cJ
ki +dJ

ki s, (3.4)
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with cJ
ki = cJ

ik and dJ
ki = dJ

ik, is a standard parameterization for the K-matrix. We consider two
K-matrix poles in the D-wave, and one single K-matrix pole in the P-wave when obtaining our
best fit to data; the numerator of each channel and wave is described by a third-order polynomial,
and we set α = 2 in Eq. (3.3). The remaining 37 parameters are fitted to data. The best fit has
χ2/dof = 162/122 = 1.3, in good agreement with data as shown in Fig. 1. In particular, a single
K-matrix pole is able to correctly describe the P-wave peaks in the two channels. The uncertainties
on the parameters have been estimated via the bootstrap method.

Once the fits are obtained, the DJ(s) matrix in Eq. (3.2) can be continued underneath the uni-
tarity cut into the closest Riemann sheet. A pole sP in the amplitude appears when the determinant
of DJ(sP) vanishes. The poles close to the real axis drive the behavior of the partial waves in the
real axis, these can be identified as resonances. In a coupled-channel problem, it is not possible to
specify the number of poles. Appearance of spurious poles far from the physical region is likely.
However one could isolate the physical poles by testing their stability against different parameteri-
zations and data resampling. We select the resonance poles in the m ∈ [1,2]GeV and Γ ∈ [0,1]GeV
region, where customarily m = Re

√
sP and Γ = −2Im

√
sP. Two poles are found in the D-wave,

identified as the a2(1320) and a′2(1700), and a single pole in the P-wave, which we call π1. The
pole positions are shown in Fig. 2, while the resonance parameters are listed in Table 1. We have
also performed a pure background fit for J = 1, obtaining a χ2 larger by almost two orders of mag-
nitude when no pole is found, thus rejecting the possibility for the P-wave peaks to be generated
by non-resonant production.

Regarding the existence of two different states we have considered solutions with two isolated
P-wave poles, generated by using more K-matrix poles. This is the scenario discussed in the PDG,
and although the χ2 for this case is equivalent to the reference fit, one of the poles can appear in a
large region depending on the initial values of the fit, while the second one is compatible with the
single pole solution. The former does not influence the real axis close to its position but changes
the behavior of the phase, now having a 180o jump where no data exist. We thus conclude it is just
an artifact of including a second pole having no physical meaning.
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Figure 2: From [15]. Positions of the poles identified as the a2(1320), π1, and a′2(1700). The inset
shows the position of the a2(1320). The green and yellow ellipses show the 1σ and 2σ confidence levels,
respectively. The gray ellipses in the background show, within 2σ , variation of the pole position upon
changing the functional form and the parameters of the model, as discussed in the text
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Table 1: Resonance parameters. The first error is statistical, the second systematic.

Poles Mass (MeV) Width (MeV)

a2(1320) 1306.0±0.8±1.3 114.4±1.6±0.0
a′2(1700) 1722±15±67 247±17±63

π1 1564±24±86 492±54±102

4. Systematic uncertainties

The pole extraction requires an analytic model which carries systematic uncertainties. Re-
garding the numerator, which is expected to be smooth, we have varied teff and the order of the
polynomial. As for the denominator, we have first varied the values of sL and α in a considerable
range. Finally we have also modified the Chew-Mandelstam term, to include the phenomeno-
logical description of a t-channel exchange dominated by an intermediate particle, which mass is
considered to be of the order of 1GeV, explicitly the term reads

ρNJ
ki(s
′) = δki QJ(zs′)s′−α

λ
−1/2(s′,m2

η(′) ,m2
π), (4.1)

where QJ(zs) is the second kind Legendre function, and zs′ = 1+ 2s′sL/λ (s′,m2
η(′) ,m2

π) the scat-

tering angle of the elastic scattering, and sL = 1GeV2. This function behaves asymptotically as
s−α , has a left hand cut starting at s = 0, a short cut between (s′−m

η(′))2 and (s′+m
η(′))2, and an

incomplete circular cut.
The shape of the dispersive integral in Eq. (3.2) is altered, but the fit quality is unaffected under

all these changes. The pole positions change roughly within 2σ , as shown Fig. 2, while systematic
uncertainties are reported in Table 1.

5. Summary

We used a standard K-matrix formula constrained by unitarity and analiticity [15] to perform
the first coupled-channel analysis in the η(′)π system measured at COMPASS [14]. Two ordinary
mesons, identifies as the a2(1320) and the a′2(1700) are found in the D-wave. In the P-wave
however, a single exotic pole π1 is obtained, compatible with the Lattice QCD [9, 10, 11] suggestion
of a single isovector with JPC = 1−+ quantum numbers. Its mass and width are determined to be
1564± 24± 86 MeV and 492± 54± 102 MeV, respectively. The systematic uncertainties are
determined through the variation of both parameters and functional forms that are not directly
constrained. There is no evidence of the existence of a second exotic state.
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