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In recent years, different on-shell 3 → 3 scattering formalisms have been proposed to be applied to both
lattice QCD and infinite-volume scattering processes. We prove that the formulation in the infinite volume
presented by Hansen and Sharpe in [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015).] and
subsequently Briceño et al. in [R. A. Briceño, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D 95, 074510
(2017).] can be recovered from the B-matrix representation, derived on the basis of S-matrix unitarity,
presented by Mai et al. in [M. Mai, B. Hu, M. Döring, A. Pilloni, and A. Szczepaniak, Eur. Phys. J. A 53,
177 (2017).] and Jackura et al. in [A. Jackura, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, J. Nys,
A. Pilloni, K. Saldaña, N. Sherrill, and A. P. Szczepaniak (JPAC Collaboration), Eur. Phys. J. C 79, 56
(2019).] Therefore, both formalisms in the infinite volume are equivalent and the physical content is
identical. Additionally, the Faddeev equations are recovered in the nonrelativistic limit of both
representations.

DOI: 10.1103/PhysRevD.100.034508

I. INTRODUCTION

Considerable progress has been achieved recently in
determination of the hadron spectrum from first principles
QCD [1–8]. Comparison of experimental data or lattice
results with theoretical models involves analysis of partial
wave amplitudes in which resonances appear as pole
singularities in the complex energy and/or angular momen-
tum planes [9]. Thus, a proper description of resonances
requires knowledge of analytic properties of the scattering
amplitude. Specifically, the determination of the hadron

spectrum from lattice calculations is done using a quan-
tization condition [10], which relates discrete energy levels
in the finite volume to the infinite volume, partial waves
evaluated at real energy values and later analytically
continued to the complex energy plane. The quantization
condition has been extensively studied for systems with
strong two-particle interactions (see, e.g., Ref. [11] and
references therein). However, most of resonances of current
interest decay to three and more particles.
Quantization conditions for three hadrons have been

derived by various groups using different approaches
[12–23], as recently reviewed in Ref. [24]. If differences
exist between formalisms, this could indicate that important
physical content is missing, and that results based on them
will lead to unknown systematic errors. Therefore, it is
important to unify our understanding of these approaches
and establish relationships between all formalisms. In
addition to quantization conditions, analytic representations
of the infinite volume 3 → 3 amplitudes are required to be

*ajackura@iu.edu
†sdawid@iu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 034508 (2019)

2470-0010=2019=100(3)=034508(14) 034508-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.034508&domain=pdf&date_stamp=2019-08-13
https://doi.org/10.1103/PhysRevD.92.114509
https://doi.org/10.1103/PhysRevD.95.074510
https://doi.org/10.1103/PhysRevD.95.074510
https://doi.org/10.1140/epja/i2017-12368-4
https://doi.org/10.1140/epja/i2017-12368-4
https://doi.org/10.1140/epjc/s10052-019-6566-1
https://doi.org/10.1140/epjc/s10052-019-6566-1
https://doi.org/10.1103/PhysRevD.100.034508
https://doi.org/10.1103/PhysRevD.100.034508
https://doi.org/10.1103/PhysRevD.100.034508
https://doi.org/10.1103/PhysRevD.100.034508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


able to identify pole positions of resonances. In this context
we discuss two seemingly different approaches and dem-
onstrate their equivalence.
The first approach is referred to as the B-matrix

representation, and was studied in Refs. [25,26].
Motivated by unitarity of the S matrix, the B matrix refers
to a kernel in a linear integral equation for an elastic 3 → 3
connected amplitude. The B matrix contains both the
known long-range one-particle exchange (OPE) contribu-
tions and any short-range interactions. The latter play a
similar role to the K matrix in 2 → 2 scattering amplitudes
[27]. Aspects of its analytic properties were studied in
Ref. [26], showing how, besides the unitarity branch point,
there are other singularities near the physical region
generated by the one-particle exchange, e.g., triangle
singularities. Applying the B-matrix formalism in a finite
volume leads to the quantization condition of Ref. [17].
The alternative approach was first derived in Ref. [12],

and subsequently generalized to allow for 2 ↔ 3 transi-
tions in Ref. [13]. Hereafter we refer to it as the HS-BHS
approach (for the authors initials). It is a bottom-up
construction of the 3 → 3 amplitude starting from a
generic, relativistic effective field theory in a finite volume
[14]. In Ref. [12], the corresponding infinite-volume limit
of the HS-BHS formalism was derived explicitly, providing
an expression for the 3 → 3 scattering amplitude in terms
of a 3 → 3 analog of the K matrix, referred to here as
Kdf .

1 This HS-BHS representation is written in terms of
two integral equations, the first summing one-particle
exchanges between 2 → 2 subprocesses, and the second
involving all orders in Kdf . Since this approach is based on
Feynman diagrams, one expects that the result is consistent
with unitarity, and, indeed, very recently this has been
shown explicitly [28].
In the HS-BHS representation, the kernel Kdf appears to

play a similar role to that of the short-range part of the
B matrix, but it is actually quite different. It is the main
purpose of this work to show that, nevertheless, the two
representations are equivalent. Specifically, we derive an
integral equation relating the R matrix of Ref. [26] and the
3 → 3 K-matrix of Ref. [29]. Furthermore, we show that
the reason for the superficial difference lies in the organi-
zation of the short-range rescattering effects and difference
in the order in which symmetrization of the amplitude is
applied.
The paper is organized as follows. Section II summarizes

definitions of on-shell 3 → 3 amplitudes and the relevant
kinematic variables. Section III reviews the B-matrix and
HS-BHS on-shell representations for the 3 → 3 amplitude.
In Sec. IV, we derive the relationship between these two
representations, proving their equivalence. In Sec. V we
show that in the nonrelativistic limit the B matrix can be
reduced to the Faddeev equations. Our findings and outlook

are summarized in Sec. VI. We include three technical
appendixes. Appendix A reviews the unitarity relation for
3 → 3 amplitudes, and Appendix B shows how to rewrite
the B-matrix representation in a form analogous to that of
the HS-BHS representation, which is used in the demon-
stration of Sec. IV. Finally, Appendix C proves a crucial
relation discussed in Sec. IV.

II. 3 → 3 AMPLITUDES

We consider the elastic scattering of three spinless
identical particles of mass m, e.g., 3πþ → 3πþ scattering.
Note that Ref. [26] considered distinguishable particles,
while here we consider identical particles to compare with
Refs. [12,13]. Internal symmetries such as isospin are not
considered, but can be included in a straightforward manner.
The initial and final three-particle state have a total energy
momentum P ¼ ðE;PÞ and P0 ¼ ðE0;P0Þ, respectively.
This exemplifies a convention we use throughout, namely,
that primed (unprimed) variables denote quantities in the
final (initial) state. Total energy momentum is conserved, as
is the three-particle invariant mass squared,

s≡ P2 ¼ E2 − P2; ð1Þ

which lies in the range ð3mÞ2 ≤ s < sinel, where sinel the
first inelastic threshold. It is convenient to split the three-
particle kinematics into a pair2 and a spectator. The spectator
is a single particle that has energy momentum p ¼ ðωp;pÞ,
whereωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
is the on-shell energy. The pair then

consists of the other two particles with total energy
momentum given by

Pp ≡ P − p ¼ ðEp;PpÞ ¼ ðE − ωp;P − pÞ; ð2Þ

where the subscript labels a momentum of the spectator
associated with the pair. The invariant mass squared of the
pair is

σp ≡ P2
p ¼ ðP − pÞ2 ¼ ðE − ωpÞ2 − ðP − pÞ2; ð3Þ

for which the physical region is ð2mÞ2 ≤ σp ≤ ð ffiffiffi
s

p
−mÞ2.

In the helicity frame of the two-particle subsystem, i.e., the
pair rest frame where P⋆ − p⋆ ¼ 0, the three momenta of
particles inside the pair are q⋆

p and −q⋆
p, respectively. In this

frame, the spectator defines the −z axis, and the y axis is
perpendicular to the plane formed by the three particles.
Kinematic quantities without a ⋆ are taken to be in the total
CMF, i.e., where P ¼ 0. Figure 1 illustrates the momenta of

1This quantity is denoted Kdf;3 in Ref. [12].

2Other commonly used terms for the pairs found in the
literature are dimers and isobars. More precisely, however,
isobars refer to partial wave amplitudes of the 2 → 2 subsystem
in a definite partial wave with only the unitarity branch cut [26].
We refrain from this terminology in an attempt to unify different
approaches and avoid confusion.
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the three particles in these frames. The magnitude of the
spectator momentum in the CMF is given by

p≡ jpj ¼ 1

2s
λ1=2ðs;m2; σpÞ; ð4Þ

where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2ðxyþ yzþ zxÞ is the
Källén triangle function, while the relative momentum of
the pair in the helicity frame is given by

q⋆p ¼ 1

2
ffiffiffiffiffi
σp

p λ1=2ðσp; m2; m2Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σp − 4m2

q
: ð5Þ

The final state variables have similar expressions with p
replaced by p0.
The elastic 3 → 3 scattering amplitude, M, is a Lorentz

scalar that depends on eight kinematic variables, and is
defined via

houtjTjini ¼ ð2πÞ4δð4ÞðP0 − PÞM; ð6Þ

where the T matrix is as usual given by S ¼ 1þ iT. The
Dirac δ-function ensures total energy-momentum conser-
vation. Because of Bose statistics, the amplitude is sym-
metric under interchange of any pair of particles in the
initial or final state. In the following, we express M in
terms of an unsymmetrized amplitude ½Mp0p�l0ml

0;lml
,

which is expressed in the mixed plml-basis; i.e., it
depends on the spectator momenta, p, and the angular
momentum of the pair, ðl; mlÞ. The fully symmetric
amplitude is then obtained by replacing the dependence
on spin3 by that of the corresponding spherical angles
(through multiplication by spherical harmonics4), and by
symmetrizing with respect to particle permutations, an
operation that we denote by S,

M ¼ S
�
4π

X
l0 ;ml

0
l;ml

Yl0ml
0 ðq̂⋆

p0 Þ½Mp0p�l0ml
0;lml

Y�
lml

ðq̂⋆
pÞ
�
: ð7Þ

The unsymmetrized amplitudes are infinite-dimensional
matrices in the ðl; mlÞ-space. Note that since the particles
are identical, due to Bose symmetry, all odd-l amplitudes
must be 0. We often leave the indices implicit and con-
sider amplitudes as matrices in the lml-space. The
p-dependence is left explicit unless otherwise noted.
The isobar representation of Ref. [26] is identical to the
symmetrization operation in Eq. (7). However, unlike in
Ref. [26], here we do not truncate the spin of the pair to
some maximum value, and instead work formally with
infinite-dimensional matrices. In practice, one must trun-
cate the partial waves, in which the resummation strategy
presented in Eq. (17) of Ref. [26] can be used to recover
cross channel effects.
The scattering amplitude M contains disconnected and

connected contributions. The disconnected terms in M,
denoted hereafter by F,5 are associated with 2 → 2 process
in which the spectator particle does not participate,

Mp0p ¼ δp0pF p þAp0p; ð8Þ

with the spectator momentum conserving δ-function,
δp0p ≡ ð2πÞ32ωpδ

ð3Þðp0 − pÞ, written explicitly in front of
F p. The amplitude F p is diagonal in the spin variables, and
depends solely on the single, scalar variable, the pair’s
invariant mass, σp ¼ σp0 ,

ð9Þ

The second term, Ap0p in Eq. (8), is the connected 3 → 3
amplitude and it contains off-diagonal contributions in spin
indices,

ð10Þ

(a) (b)

FIG. 1. A three-particle state in the (a) center of momentum
frame (CMF) with fixed total momentum P ¼ 0 and (b) in the
helicity frame at fixed P⋆ − p⋆ ¼ 0. Standard Lorentz trans-
formation with the boost β ¼ −ðP − pÞ=ðE − ωpÞ transforms the
system from the total CMF to the pair rest frame.

3By spin, we mean the angular momentum of the pair.
4Note that Ref. [12] defines their partial wave expansion with

the complex conjugate on the final state spherical harmonic.

5For convenience, we collect here the correspondences be-
tween our amplitude definitions and those of Ref. [12]. The
2 → 2 amplitude is F ¼ M2 (Ref. [12]), the connected 3 → 3
amplitude is A ¼ Mðu;uÞ

3 (Ref. [12]), and (as already noted
above) Kdf ¼ Kdf;3 (Ref. [12]). In addition, the ladder series
encountered below is D ¼ Dðu;uÞ (Ref. [12]).
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In addition to its implicit dependence on l, ml, l0,
and m0

l, Ap0p depends on the remaining four independent
variables. Convenient choices are s, the initial and final pair
invariant mass squares, σp and σp0 , and the scattering
angle between spectators in the CMF, Θp0p, defined as
cosΘp0p ≡ p̂0 · p̂ ¼ P̂p0 · P̂p.

III. ON-SHELL REPRESENTATIONS

Our interest is in constructing on-shell representations
for the connected 3 → 3 scattering amplitude. Here we
review the relevant features of the B-matrix representation
discussed in Ref. [26] and the HS-BHS representation
of Ref. [12].

A. B-matrix representation

As discussed in Refs. [25,26], the Bmatrix is an on-shell
representation for the connected 3 → 3 amplitude that was
constructed to satisfy elastic 3 → 3 unitarity. In the plml-
basis, the B-matrix representation leads to the integral
equation

Ap0p ¼ F p0Bp0pF p þ
Z
k
F p0Bp0kAkp; ð11Þ

where Bp0p ¼ Gp0p þRp0p is the B-matrix driving term,
with Gp0p being the OPE contribution6 and Rp0p a real
function called the R matrix. Figure 2 shows a diagram-
matic representation of Eq. (11). By construction, Eq. (11)
satisfies the 3 → 3 unitarity relation given that F p is
known, as demonstrated in Appendix A. Equation (11)
is an infinite-dimensional matrix equation in ðl; mlÞ-space,
and the integration over the spectator momenta includes the
measure,

Z
k
≡
Z

d3k
ð2πÞ32ωk

: ð12Þ

The integration ranges over all momenta, or equivalently in
−∞ ≤ σk ≤ ð ffiffiffi

s
p

−mÞ2 and over the entire solid angle of
the spectator. The jkj → ∞ (σk → −∞) limit is divergent
and needs to be regulated. The preferred option is to restrict
the integration region to 4m2 ≤ σk ≤ ð ffiffiffi

s
p

−mÞ2, which is
the only domain of σk that is actually restricted by 3 → 3
unitarity [26]. Beyond this region, one deals with unphys-
ical (off-mass shell) amplitudes, which depend on unknown
parameters, e.g., subtraction constants.

The OPE amplitude is given by

ð13Þ

where p̂⋆
p0 is the direction of momentum of the initial state

spectator in the final state pair rest frame. Similarly, p̂⋆
p0 is

the orientation of the final state spectator in the initial state
pair rest frame. The magnitudes of these momenta are

p⋆
p0 ¼ 1

2
ffiffiffiffiffiffi
σp0

p λ1=2ððPp0 − pÞ2; σp0 ; m2Þ;

p0⋆
p ¼ 1

2
ffiffiffiffiffi
σp

p λ1=2ððPp − p0Þ2; σp; m2Þ: ð14Þ

Note that energy-momentum conservation gives Pp − p0 ¼
Pp0 − p. The normalization of the barrier factors is chosen
such that they are equal to 1 when the exchanged particle is
on its mass shell, ðPp − p0Þ2 ¼ m2.
Our definition of G differs from the corresponding

quantity in Ref. [12], denoted G∞, in three ways. First,
there is a difference in overall sign. We find the choice in
Eq. (13) more convenient since it has a positive imaginary
part, which avoids several minus signs in expressions.
Second, G∞ contains a cutoff function, which serves to cut
off the integrals over spectator momenta, which in Ref. [12]
run over all values. Third, the form given in Ref. [12] has
the nonrelativistic form of the pole in the denominator, in
contrast to the relativistic form in Eq. (13). However, in
recent applications of the BHþ BHS formalism, e.g.,
in Refs. [13,30], the relativistic form is used. We also note
that the barrier factors in G are not required from unitarity,

(a)

(b)

FIG. 2. Diagrammatic representation of (a) the B-matrix repre-
sentation for the on-shell amplitude, Eq. (11), and (b) the Bmatrix
that is composed of the OPE Gp0p, Eq. (13), and the R matrix.

6In Ref. [26] we denoted the OPE contribution by the symbol
E, while here we use G to provide a closer connection to the
notation of Ref. [12].
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but are included so as to match those in G∞, where these
factors are included since they are needed in the finite-
volume analysis.
As with the K-matrix representation for 2 → 2 scattering

(see Appendix A), the R matrix is a real function that
represents the dynamical content of the three-particle
system, e.g., the short-range forces between pions in elastic
3π scattering. Included in this term are virtual exchange
processes giving rise to left-hand cuts, and higher multi-
particle thresholds, e.g., 5π production, which are off shell
in the kinematic domain of elastic 3π scattering. In
principle, given a specific theory, Rp0p can be computed.
Alternatively, given some data, e.g., from lattice QCD
calculations, Rp0p can be determined via the quantization
condition of Ref. [17]. In the limit where there are no short-
range three-body interactions, i.e., whenRp0p ¼ 0, Eq. (11)
reduces to a solution composed of entirely exchanges
between 2 → 2 subprocesses. We denote this solution as
Dp0p, which is called the ladder series and is the solution of
the integral equation,

Dp0p ¼ F p0Gp0pF p þ
Z
k
F p0Gp0kDkp: ð15Þ

Although the ladder series is an explicit solution of the
3 → 3 unitarity relations, it is dynamically controlled by
long-range exchanges between 2 → 2 subsystems. Once
the 2 → 2 amplitudes are known, solutions of Eq. (15) are
completely fixed. Figure 3 shows a diagrammatic repre-
sentation of the ladder series solution.
As noted in Ref. [26], and further explored in Ref. [31]

(see also Appendix B), the B-matrix representation can be
rewritten into a form where the ladder series is explicitly
separated from the remaining three-particle interaction.
This separation is useful in comparing to the HS-BHS
equations as they schematically follow the same procedure.
Genuine three-body interactions are introduced through an
additional term to the ladder series solution, known in
Ref. [12] as divergence-free amplitudes.7 Following the

derivation in Appendix B, the resulting 3 → 3 amplitude
has the form

Ap0p ¼ Dp0p þ
Z
k0

Z
k
L̃p0k0 T̃ k0kL̃kp; ð16Þ

where the first term is the ladder series that satisfies
Eq. (15) and the second term is the divergence-free
amplitude. The second term contains the amputated T̃ p0p
amplitude, which is determined by the integral equation

T̃ p0p ¼ Rp0p þ
Z
k0

Z
k
Rp0kL̃kk0 T̃ kp; ð17Þ

as well as a 2 → 2 rescattering function, L̃p0p,

L̃p0p ¼ F pδp0p þDp0p ð18Þ

¼ F pδp0p þ
Z
k
F p0Gp0kL̃kp: ð19Þ

In the second line we used the fact that Dp0p satisfies
Eq. (15) to write the rescattering dressing function as an
integral equation. Tildes on T̃ p0p and L̃p0p are used to
distinguish these quantities from the corresponding
HS-BHS amplitudes, which, though similar, have different
definitions. We discuss these differences later, when we
perform the direct comparison. The interpretation of the
divergence-free amplitude is now straightforward: T̃ p0p is
an amplitude that involves 3 → 3 interactions via short-
range dynamics. Rescattering functions then dress the
initial and final states with all rescatterings that involve
2 → 2 processes, i.e., with direct 2 → 2 amplitudes or
exchanges in the ladder series. The original B matrix,
Eq. (11), explicitly shows only the direct 2 → 2 amplitudes
dressing the initial and final state, while the ladder series
remains hidden. Figure 4 illustrates diagrammatically the
relations given in Eqs. (16), (17), and (19).
In Ref. [31], the authors proposed an initial-final-state

factorization model of the short-range amplitude, Rp0p,
under which Eq. (17) becomes algebraic, with the ladder
series having a different definition for the real part.
This construction may prove practical for analysis of data
relevant to resonance phenomena.

FIG. 3. Diagrammatic representation for the ladder series generated by particle exchanges, Eq. (15), where the black box
represents Dp0p.

7Divergence free means that the kinematic singularities from
all long-range exchanges are not included, as they are contained
in Dp0p in Eq. (15).
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B. HS-BHS representation

We now turn to the definitions of the on-shell 3 → 3
scattering equations of HS-BHS as given in Ref. [12]. We
remind the reader that the unsymmetrized elastic 3 → 3
amplitude, Ap0p, is a matrix in the angular momentum
space of the pair labeled by the spectator. The unsymme-
trized elastic 3 → 3 amplitude in HS-BHS representation is
given via the integral equation

Ap0p ¼ Dp0p þ
Z
k0

Z
k
Lp0k0T k0kL⊤

k0p: ð20Þ

The symmetrized amplitude can be recovered as in Eq. (7).
The ladder series, Dp0p, is defined exactly like in Eq. (15),
and the end cap operators, Lp0p, are defined by8

Lp0p ¼
�
1

3
þ F p0iρp0

�
δp0p þDp0piρp; ð21Þ

with L⊤
p0p defined with iρp on the left of F p0 and Dp0p. The

quantity ρp is the phase-space factor for the two particles in
the pair,9

½ρp�l0ml
0;lml

¼ δl0lδml
0ml

1

2!

1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

σp

s
; ð22Þ

where the 2! is the symmetry factor. The constant term can
be understood as the propagation of three particles without
pairwise interactions, whereas the second two terms are the
rescattering terms that appeared in Eq. (19). This reflects an
important difference between the two formalisms, that the
HS-BHS equations explicitly allow the possibility of no
rescatterings. Finally, T p0p is defined via the integral
equation

T p0p ¼ Kdf;p0p þ
Z
k0

Z
k
Kdf;p0k0iρk0Lk0kT kp; ð23Þ

where Kdf;p0p is the three-particle K matrix, which contains
all the short-range dynamical content of the scattering. The
meaning of Kdf;p0p is similar to that of Rp0p; however, we
see in the next section that the difference between the
two lies in how rescattering contributions are included.
The amplitudes T p0p and Kdf;p0p are matrices in angular
momenta, e.g.,

ð24Þ

We note that bothKdf;p0p and T p0p have different symmetry
properties then their counterparts in the B-matrix repre-
sentation. As defined in Ref. [12], T p0p and Kdf;p0p are
symmetric under interchange of any pair of initial or final
state particles, after we sum over the product of the
amplitude and its spherical harmonics of the pair orienta-
tions. Thus, the symmetric divergence-free K matrix is
given by

Kdf ¼ 4π
X
l0 ;ml

0
l;ml

Yl0ml
0 ðq̂⋆

p0 ÞKdf;l0ml
0;lml

ðp0; s;pÞY�
lml

ðq̂⋆
pÞ;

ð25Þ

with a similar expression for T p0p. Note that Eq. (25) is
different from Eq. (7) since the latter requires a further
symmetrization operation. The K matrix on the left-hand
side in Eq. (25) is fully symmetric under interchange of any
pair of particles in either the initial or final state.
T p0p is viewed as an amputated amplitude for which, in

addition to all 2 → 2 rescatterings being removed, the

(a)

(b)

(c)

FIG. 4. Diagrammatic representation of (a) the 3 → 3 ampli-
tude Eq. (16) in terms of the ladder series and the B-matrix
divergence-free amplitude dressed by initial and final state
rescatterings, (b) the integral equation for the B-matrix diver-
gence-free amplitude Eq. (17), and (c) the B-matrix rescattering
function Eq. (19).

8L is the same as the quantity Lðu;uÞ of Ref. [12]. To see this
requires accounting for the different integration measures used in
the two works: our measure includes a factor of 1=ð2ωpÞ that is
not present in the measure of Ref. [12].

9In Ref. [12], the two-body phase space is defined slightly
differently, ρpðRef: ½13�Þ ¼ −iρpHðpÞ. Thus there are no explicit
factors of i in the expression for L in Ref. [12], whereas we prefer
here to keep such factors explicit. The object HðpÞ is a cutoff
function, absent here because our momentum integrals implicitly
include an ultraviolet cutoff, as discussed above.
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possibility of no rescattering in either initial or final states is
included. This possibility is allowed by the term involving
the constant 1=3 in Eq. (21). The factor of 1=3 is due to the
partial wave definitions of T p0p andKdf;p0p, Eq. (25), which
is different than Eq. (7). Therefore, when we symmetrize
the amplitude in Eq. (20), we would overcount the terms
with no rescatterings if the 1=3 were not present.
Figure 5 illustrates diagrammatically the relations given

in Eqs. (20), (21), and (23). It is useful to compare Fig. 4
to 5, from which we see the primary difference is how the
rescattering contributions are organized. In the next section,
we explore this comparison in detail, and show how Rp0p
and Kdf;p0p are related.

IV. EQUIVALENCE OF THE B-MATRIX
AND HS-BHS REPRESENTATIONS

Having established the B-matrix and HS-BHS equations,
we now show that they are equivalent. To do so we assume
that the 3 → 3 amplitudes in both representations are equal,
and search for a relation between R and Kdf . We first
express the HS-BHS end caps, Lp0p, in terms of the B-
matrix rescattering functions, L̃p0p,

Lp0p ¼ 1

3
δp0p þ L̃p0piρp: ð26Þ

The result for L⊤
p0p simply has iρp0 and L̃p0p interchanged.

We find that the first term of Eq. (26) can be traced to the
differences in symmetrization and removal of 2 → 2
rescatterings between T̃ p0p and T p0p, while the iρp factor
in the second term is due to a difference in the definition of
on-shell amputation.

To proceed, we rewrite Eq. (26) as

Lp0p ¼
Z
k
L̃p0kUkp; ð27Þ

where Up0p is the “conversion factor”

Up0p ¼ iρp0δp0p þ
1

3
L̃−1
p0p ð28Þ

¼ iρp0δp0p þ
1

3
F−1

p0 δp0p −
1

3
Gp0p; ð29Þ

where the second line follows from the inverse of L̃p0p
obtained from Eq. (19). In a similar manner, the transpose is
given by L⊤

p0p ¼ R
k Up0kL̃kp. Now, equating the expres-

sions for A in the two formalisms, Eqs. (16) and (20), and
using Eq. (27), we find the equivalence if the following
relation holds,

T̃ p0p ¼
Z
k0

Z
k
Up0k0T k0kUk;p: ð30Þ

The amplitudes T̃ p0p and T p0p can be formally solved in
terms of Rp0p and Kdf;p0p, respectively, as one does in
matrix equations, e.g., T̃ ¼ ½1 −R · L̃�−1R, which is a
matrix in both angular and spectator momenta. Combining
the formal solutions for T̃ p0p and T p0p, the relation
Eq. (30), and using the definition of Up0p in Eq. (28),
we arrive at an integral equation relating Rp0p and Kdf;p0p,

Rp0p ¼
Z
k0

Z
k
Up0k0Kdf;k0kUkp

−
1

3

Z
k0

Z
k
Up0k0Kdf;k0kRkp: ð31Þ

When Kdf and the R matrix satisfy the above relation, the
two representations of the amplitude A are equivalent; i.e.,
they both describe the same physics. Knowing Kdf one can
solve Eq. (31) for the corresponding three-body matrix R
in the B-matrix representation,

Z
k

�
δp0kþ

1

3

Z
k0
Up0k0Kdf;k0k

�
Rkp ¼

Z
k0

Z
k
Up0k0Kdf;k0kUkp;

ð32Þ

as long as det ½1þ 1
3
U ·Kdf � ≠ 0. Since U describes a

general 2 → 2 subprocess and Kdf an independent 3 → 3
interaction this condition should be always satisfied,
unless some pathological cases for specific momenta are
considered.
The final step is to show that Eq. (31) is consistent with

the reality of bothR and Kdf . This result is not manifest, as
U is complex. Its imaginary part is readily found to be

(a)

(b)

(c)

FIG. 5. Diagrammatic representation of (a) the 3 → 3 ampli-
tude Eq. (20) in terms of the ladder series and the HS-BHS
divergence-free amplitude dressed by initial and final state
rescatterings, (b) the integral equation for the HS-BHS diver-
gence-free amplitude Eq. (23), and (c) the HS-BHS rescattering
function Eq. (21).
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ImUp0p ¼ 1

3
ð2ρ̄pδp0p − Cp0pÞ; ð33Þ

where we have used the 2 → 2 unitarity relation for the
inverse amplitude,

ImF−1
p ¼ −ρ̄p ¼ −ρpΘðσp − 4m2Þ; ð34Þ

which follows from Eq. (A2), as well as the result
Cp0p ¼ ImGp0p. To proceed we need the important results

Z
k
ImUp0kKdf;kp ¼

Z
k
Kdf;p0kImUkp ¼ 0; ð35Þ

which are demonstrated in Appendix C. Essentially, the
action of Cp0p on an object with the symmetry properties of
Eq. (25) yields a phase-space factor that cancels the first
term of Eq. (33). Combining these results, we find thatR is
real if Kdf is

ImRp0p ¼
Z
k0

Z
k
Up0k0 ImKdf;k0kUkp

−
1

3

Z
k0

Z
k
Up0k0 ImKdf;k0kRkp

−
1

3

Z
k0

Z
k
Up0k0Kdf;k0kImRkp: ð36Þ

By construction, ImKdf;k0k ¼ 0, eliminating the first two
terms, leaving the equation

Z
k

�
δp0k þ 1

3

Z
k0
Up0k0Kdf;k0k

�
ImRkp ¼ 0: ð37Þ

Assuming R is a solution to Eq. (32), i.e., the condition
det ½1þ 1

3
U ·Kdf � ≠ 0 is satisfied, we conclude that

ImRp0p ¼ 0, thus proving the reality condition required
by unitarity, and that the B-matrix and HS-BHS represen-
tations are equivalent. A similar argument can be made
assuming R is real and solving for the condition on Kdf .

The relationship between Rp0p and Kdf;p0p in Eq. (31) can be better understood if rewritten as

Z
k0

Z
k
L̃p0k0Rk0kL̃kp ¼

Z
k0

Z
k

�
1

3
δp0k0 þ L̃p0k0 iρk0

�
Kdf;k0k

�
1

3
δkp þ iρkL̃kp

�

−
1

3

Z
k0

Z
k

Z
k00

�
1

3
δp0k0 þ L̃p0k0iρk0

�
Kdf;k0kRkk00L̃k00p: ð38Þ

We now assume that Kdf;p0p is momentum independent, Kdf ¼ λ, with λ being a small constant. This isotropic form is the
leading contribution in an expansion about threshold [30]. Truncating the series solution of Eq. (31) at leading order inKdf ,
we obtain

Z
k0

Z
k
L̃p0k0Rk0kL̃kp ¼ 1

9
Kdf;p0p þ

1

3

Z
k0
L̃p0k0 iρk0Kdf;k0p þ

1

3

Z
k
Kdf;p0kiρkL̃kp

þ
Z
k0

Z
k
L̃p0k0 iρk0Kdf;k0kiρkL̃kp þOðK2

dfÞ; ð39Þ

which is represented diagrammatically in Fig. 6. Since
Kdf;p0p represents three-body interactions such as contact
interactions, the right-hand side shows that there is a
possibility that the interaction is not dressed by 2 → 2
rescatterings on either the initial or final state (or both).
Contrarily, the Rp0p matrix is always dressed by 2 → 2

interactions in both the initial and final state. Thus, theRp0p
matrix represents a different organization of amplitudes.
The factors 1=9 and 1=3 reflect the fact that Kdf;p0p has a
decomposition given by Eq. (25), which does not include
summing over all spectator momenta, and are needed to
remove the overcounting when we sum over all spectator

FIG. 6. Diagrammatic representation of the leading order relation between Rp0p and Kdfðp0;pÞ, Eq. (39), where the black diamond
represents Kdfðp0;pÞ.
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momenta in the initial or final state. We conclude that both
functions represent short-range dynamics. Finally, the left-
hand side has no iρp factors, whereas the right-hand side
does. This is due to the differences in how the amplitudes
are amputated. For the B matrix, which is based on
satisfying the unitarity relations, the amputation was made
by removing the partial wave amplitudes via Ap0p ¼
F p0Ãp0pF p, where the Ãp0p is the amputated partial wave
amplitude. This was convenient as it simplified the unitarity
relation (see Appendix A and Ref. [26] for details). This
amputation is not unique, as we can freely remove any real
quantity from Ãp0p, including ðiρpÞ2. The HS-BHS equa-
tions involve an all-orders summation of amplitudes in an
effective field theory, which includes loop integrals over
momenta of intermediate states. When the two-particle loop
integral is put on shell, the iρp factors naturally emerge.

V. NONRELATIVISTIC LIMIT
AND FADDEEV EQUATIONS

In the nonrelativistic limit, which is relevant for near
threshold processes, we can investigate the relation
between these representations to the Faddeev equations.
If we assume that the three-body interactions are negligible
compared to the two-body interactions, then we can set
the Kdf matrix [or equivalently the R-matrix by Eq. (31)]
to 0 at leading order, leaving only the ladder rescattering
solutions,

Ap0p ¼ Dp0p þOðKdfÞ: ð40Þ

The three-body amplitudes are dominated by exchanges
between 2 → 2 processes, as in typical Faddeev-type
approximations. In that case, as can be seen from
Eqs. (8) and (19), the unsymmetrized scattering amplitude
M becomes L̃, which gives

Mp0p ¼ F pδp0p þ
Z
k
F p0Gp0kMkp: ð41Þ

In the CMF, the nonrelativistic limit of the ½Gp0p�l0m0
l;lml

denominator in Eq. (13) becomes

ðPp − p0Þ2 −m2 ¼ ðEp − ωp0 Þ2 − ðpþ p0Þ2 −m2

¼ 2m

�
ΔE −

1

m
ðp02 þ p2 þ p · p0Þ

�
þOðp4Þ: ð42Þ

We approximated ωp ¼ mþ p2=2mþOðp4Þ and used the
fact that, close to threshold, E ¼ 3mþ ΔE, where ΔE is a
nonrelativistic energy of three particles. Finally, we also
neglected terms of the order p4,p04, and p2p02. The factor
2ωk in the integration measure of Eq. (41) becomes 2m.
Putting everything together, and writing angular momentum
indices explicitly, we obtain

½Mp0p�l0m0
l;lml

¼ δp0pδl0m0
l;lml

½F p�lml
−

4π

ð2πÞ34m2

X
l00;ml

00

Z
d3k½F p0 �l0m0

l

�
k⋆
q⋆p0

�
l0

×
Y�
l0ml

0 ðk̂⋆
p0 ÞYl00m00

l
ðp̂k

0⋆Þ
ΔE − 1

m ðp02 þ k2 þ k · p0Þ þ iϵ

�
p0⋆
q⋆k

�
l
½Mkp�l00m00

l;lml
: ð43Þ

Following the conventions of Ref. [32], we define the
nonrelativistic scattering amplitude as NRhoutjTjiniNR ¼
−2πδð4ÞðP0 − PÞMNR, which is different by a factor
of −ð2πÞ3 to our definition in Eq. (6). Moreover, non-
relativistic particle states are defined as jpi ¼
ð2πÞ3=2 ffiffiffiffiffiffiffiffi

2ωp
p jpiNR, such that the momentum eigenstates

are normalized as NRhp0jpiNR ¼ δð3Þðp0 − pÞ. Thus, the
relation between the nonrelativistic and relativistic 3 → 3
amplitude is

MNR ¼ −
�

1

ð2πÞ32m
�

3

M; ð44Þ

where we have taken the nonrelativistic limit for the particle
energies, e.g., ωp ¼ mþOðp2Þ. The 2 → 2 subprocesses

contains an extra δp0p ¼ ð2πÞ32ωpδ
3ðp0 − pÞ, which con-

serves spectator momenta, so the nonrelativistic 2 → 2
amplitude FNR

p is related to its relativistic counterpart by
an equation similar to Eq. (44), except that the conver-
sion factor is squared instead of cubed. Therefore, after
inclusion of spherical harmonics to recover full amplitudes,
we arrive at

MNR
p0pðqp0 ;qpÞ

¼ δ3ðp0 − pÞFNR
p ðqp0 ;qpÞ þ

Z
d3kFNR

p0 ðqp0 ;kÞ

×
1

ΔE − 1
m ðp02 þ k2 þ k · p0Þ þ iϵ

MNR
kp ðp0;qpÞ; ð45Þ

where
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MNR
p0pðqp0 ;qpÞ ¼ 4π

X
l0 ;ml

0
l;ml

Yl0m0
l
ðq̂p0 Þ½MNR

p0p�l0m0
l;lml

Y�
lml

ðq̂pÞ

ð46Þ

and similarly for FNR
p0 ðqp0 ;qpÞ. The barrier factors have

been implicitly absorbed in MNR
p0p and FNR

p .
Equation (45) is equivalent to the Faddeev equations, as

can be seen, for example, by comparing to Eq. (11) of
Ref. [33]. There, a symmetrized two-body matrix ts plays a
role of FNR

p and T matrix plays a role of MNR
p0p. Note that

both equations are not symmetrized with respect to inter-
changes of three interacting bosons as in Eq. (7).

VI. CONCLUSIONS

We have shown that the relativistic on-shell representa-
tion of the 3 → 3 scattering amplitude of Hansen and
Sharpe [12] and Briceño et al. [13], and the B-matrix
representation presented by Mai et al. [17] and Jackura I
[26] are equivalent, and their physical content is identical.
The results of the present work are consistent with the
conclusions of Ref. [28] that the HS-BHS approach is
unitary. The difference in these representations is how the
formalism incorporates rescattering effects. In the B-matrix
representation, the 3 → 3 amplitude is always dressed by
2 → 2 rescatterings in both the initial and final states,
as shown by Eq. (16). Contrarily, the representation by
Briceño et al. allows the possibility of no initial/ final state
rescatterings. It was shown in Sec. IV that the differences
between these rescattering functions manifest themselves
as differences in the real part of the on-shell equations,
giving the integral equation (31). The nonrelativistic limit
of both formalisms reproduced the Faddeev equations,
providing a consistency check to well-known low-energy
approaches. As was discussed in Ref. [26], the B-matrix
representations of Refs. [25,26] differ only in the real part
as a result of the latter approach using a cutoff on the
integration range that eliminated unphysical modes.
All of the proposed formalisms require regulation of the

high-energy modes in order to arrive at a convergent
solution to the integral equations. Regulating the divergent
behavior introduces additional cutoff dependence in the
equations. Physical quantities must, however, be cutoff
independent, and this is achieved by introducing cutoff
dependence into the real, K-matrixlike quantities in the
formalisms (i.e., R and Kdf ). For example, as was dis-
cussed in Ref. [26], the B-matrix representations of
Refs. [25,26] differ only in their real parts, as a result of
the latter using a cutoff in the integration range that
eliminated unphysical modes.
It remains to be seen if the quantization conditions

corresponding to the different formalisms are also identical.
Naively, one might assume that, since the infinite volume
equations are identical, the quantization conditions must

also be, at least up to exponentially suppressed corrections.
However, the details of transitioning from infinite to finite
volume, e.g., the handling of angular momentum mixing,
are nontrivial and have not yet been worked out. This is an
interesting area of study and must be completed to ensure
consistency.
An interesting direction for future studies is comparing

numerical results from each representation. Although
equivalent, parametrizations using the R matrix of
Ref. [26] or the K matrix of Ref. [12] may turn out to
be advantageous for particular numerical analyses.

ACKNOWLEDGMENTS

We thank Raúl Briceño and Maxwell Hansen for many
useful discussions. This work was supported by the U.S.
Department of Energy under Grants No. DE-SC0011637
(S. R. S.), No. DE-AC05-06OR23177, and No. DE-FG02-
87ER40365, U.S. National Science Foundation under
Award No. PHY-1415459, PAPIIT-DGAPA (UNAM,
Mexico) Grant No. IA101819, and CONACYT (Mexico)
Grants No. 251817 and No. A1-S-21389. V. M. acknowl-
edges support from Comunidad Autónoma de Madrid
through Programa de Atracción de Talento Investigador
2018 (Modalidad 1). The work of S. R. S. was partly
supported by the International Research Unit of
Advanced Future Studies at Kyoto University.

APPENDIX A: UNITARITY RELATIONS

Unitarity of the S matrix constrains the imaginary part of
on-shell scattering amplitudes. Given the unitarity con-
straints, one can construct an on-shell representation for
scattering amplitudes in terms of real quantities and
kinematic functions. We present here a brief summary of
the unitarity relations for identical particles. The relations
for distinguishable particles have been discussed in detail in
Ref. [26]. Elastic three-particle scattering satisfies the
unitarity relation

2ImM ¼ 1

3!

Y3
j¼1

Z
kj

ð2πÞ4δð4Þ
�X3

j¼1

kj − P

�
M�M; ðA1Þ

where the integration is over the on-shell intermediate state
momenta. Writing M in terms of the unsymmeterized
amplitudes, Eq. (7), and separating the disconnected 2 → 2
amplitude from the connected 3 → 3 amplitude via Eq. (8),
we arrive at two unitarity equations. The first is the well-
known 2 → 2 unitarity relation in angular momentum
space,

ImF p ¼ F †
pρ̄pF p; ðA2Þ

where ρ̄ is the two-body phase space defined in Eq. (34).
Equation (A2) admits the on-shell K-matrix representation
for F p,
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F p ¼ Kp þKpiρ̄pF p

¼ ½1 −Kpiρ̄p�−1Kp; ðA3Þ

where ½Kp�l0ml
0;lml

¼ δl0lδml
0ml

KlðσpÞ is the 2 → 2 K-
matrix, which is a real function of σp in the elastic
kinematic region, and diagonal in angular momenta space.
Since the phase-space factor contains the kinematic infor-
mation of two on-shell propagating particles, the K matrix
represents all the dynamical content of the two-particle
system, e.g., the short-range forces between pions in elastic
ππ scattering. This can, in principle, include virtual
exchanges leading to left-hand cuts or higher multiparticle
thresholds, e.g., four-particle production, which do not give
singular contributions in the elastic domain. Since 2 → 2
amplitudes are diagonal in angular momentum space,
Eq. (A3) reduces to a simple algebraic relation. It is
straightforward to verify that Eq. (A3) satisfies Eq. (A2).
The second unitarity relation is for the connected 3 → 3

amplitude, which in the plml-basis is

ImAp0p ¼
Z
k
A†

p0kρ̄kAkp þ
Z
k0

Z
k
A†

p0k0Ck0kAkp

þ F †
p0 ρ̄p0Ap0p þ

Z
k
F †

p0Cp0kAkp

þA†
p0pρ̄pF p þ

Z
k
A†

p0kCkpF p

þ F †
p0Cp0pF p; ðA4Þ

where Cp0p is the recoupling coefficient between a pair in
one state to a different pair in the same state, e.g., from an
angular momentum coupling (12)3 to (23)1, which is
defined as the imaginary part of the amputated OPE
amplitude, Eq. (13),

½Cp0p�l0ml
0;lml

≡ Im½Gp0p�l0ml
0;lml

¼ πδððPp − p0Þ2 −m2Þ
× 4πY�

l0ml
0 ðp̂⋆

p0 ÞYlml
ðp̂p

0⋆Þ: ðA5Þ

The recoupling coefficients are an additional feature of
three-body scattering that can be seen in Fig. 7 when a
diagram with a crossed exchange in the intermediate state is
cut. Diagrams that are cut where no exchange occurs give
rise to the conventional two-body phase space. One may be
concerned that the complexity of spherical harmonics is not
taken into account. The phases in the unitarity relation
cancel since the intermediate state sums over all possibil-
ities. To avoid this bookkeeping during intermediate
calculations, one can use real spherical harmonics, which
have the same completeness and orthonormality relations
as the usual ones, to formally manipulate the expressions.
Since the final results do not depend on the choice of

harmonics, we are guaranteed the validity of the unitarity
relations and the solutions.
Equation (A4) admits the on-shell representation given

by Eq. (11), which we now verify. We find the following
demonstration more direct than the one presented in
Ref. [26]. First, let us introduce amplitudes that have the
final state 2 → 2 amplitudes amputated, i.e., Ap0p ¼
F p0Ãp0pF p. Equation (A4) then simplifies to

ImÃp0p ¼
Z
k
Ã†

p0kF
†
kρ̄kFkÃkp

þ
Z
k0

Z
k
Ã†

p0k0F †
k0Ck0kFkÃkp

þ
Z
k
Cp0kFkÃkpþ

Z
k
Ã†

p0kF
†
kCkpþCp0p; ðA6Þ

and the corresponding amputated B-matrix representation is

Ãp0p ¼ Bp0p þ
Z
k
Bp0kFkÃkp

¼
Z
k
Bp0kðδkp þ FkÃkpÞ; ðA7Þ

where we remind the reader that Bp0p ¼ Gp0p þRp0p, where
Gp0p is given in Eq. (13) and Rp0p is a real function
that contains the unconstrained three-body dynamics. It is

FIG. 7. Diagrammatic representation for the 3 → 3 unitarity
relation for the amplitude Al0ml

0;lml
ðp0; s;pÞ. Closed loops yield

three-dimensional integrations over the labeled spectator mo-
mentum, and the dashed vertical lines represent placing all three
intermediate state particles on their mass shell. Momentum flow
is from right to left, as before, and each amplitude on the left of
the dashed line is Hermitian conjugated.
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straightforward to verify that Eq. (A7) satisfies Eq. (A6)
directly by taking the difference between the amplitude
and its Hermitian conjugate. Note that if the matrix elements
of Ap0p are Al0ml

0;lml
ðp0; s;pÞ, then the Hermitian con-

jugate, A†
p0p, has elements A�

lml;l0ml
0 ðp; s;p0Þ, since it acts

on both the angular momentum space and the spectator
space. The Hermitian analytic properties [34] of amplitudes
then state A�

lml;l0ml
0 ðp; s;p0Þ ¼ A�

l0ml
0;lml

ðp0; s;pÞ, so that

Ap0p −A†
p0p ¼ Ap0p −A�

p0p ¼ 2iImAp0p.
We begin by rewriting the difference by adding and

subtracting a judiciously chosen term, leading to

Ãp0p − Ã†
p0p ¼

Z
k
Ã†

p0kðFk − F †
kÞÃkp

þ
Z
k
ðδp0k þ Ã†

p0kF
†
kÞÃkp

−
Z
k
Ã†

p0kðδkp þ FkÃkpÞ: ðA8Þ

Next we insert Eq. (A7) into Ãkp on the second line of
Eq. (A8), and its Hermitian conjugate,

Ã†
p0p ¼ B†

p0p þ
Z
k
Ã†

p0kF
†
kB

†
kp

¼
Z
k
ðδp0k þ Ã†

p0kF
†
kÞB†

kp; ðA9Þ

into the Ã†
p0k on the third line of Eq. (A8). This gives

Ãp0p − Ã†
pp0 ¼

Z
k
Ã†

p0kðFk − F †
kÞÃkp

þ
Z
k0

Z
k
ðδp0k0 þ Ã†

p0kF
†
k0 Þ

× ðBk0k − B†
k0kÞðδkp þ FkÃkpÞ; ðA10Þ

which can then be simplified using F p − F †
p ¼ 2iImF p

and Eq. (A2), as well as the result that Bp0p − B†
p0p ¼

2iImGp0p since Rp0p is real. Then, since the recoupling
coefficients are Cp0p ¼ ImGp0p, we arrive at Eq. (A6), thus
proving that the B-matrix representation satisfies the
unitary condition.

APPENDIX B: EXPRESSING THE B MATRIX
IN TERMS OF THE LADDER

In this appendix, we show how the B-matrix represen-
tation can be expressed in terms of the full OPE ladder
summation and a remaining piece containing genuine
three-body interactions (see also Ref. [31]). The B-matrix
representation for the full amplitude is given in Eq. (11).
In the limit that the scattering is dominated by 2 → 2
interactions, and three-body interactions are negligible
(Rp0p → 0), the system is controlled by successive particle

exchanges between the 2 → 2 amplitudes. We defined
this process as the ladder amplitude, Dp0p, which satisfies
Eq. (15). We now want to remove the ladder solution
from the general three-body system. Following a similar
approach as HS-BHS, we define the divergence-free
amplitude, Adf;p0p ≡Ap0p −Dp0p, with the 3 → 3 ampli-
tude free from the ladder diagram and its singularities. We
can then separate the ladder solution from the B-matrix
representation and are left with an equation for Adf;p0p,

Adf;p0p ¼
Z
k
F p0Rp0kðFkδkp þDkpÞ

þ
Z
k
F p0 ðRp0k þ Gp0kÞAdf;kp: ðB1Þ

Now define the 2 → 2 rescattering function Eq. (19), and
amputate the end caps from the divergent-free amplitude,

Adf;p0p ¼
Z
k0

Z
k
L̃pkT̃ k0kL̃kp: ðB2Þ

Substituting Eq. (B2) into Eq. (B1) and collecting terms,
we arrive atZ

k0

Z
k
½δp0k0 − F p0Gp0k0 �L̃k0kT̃ kp

¼ F p0Rp0p þ
Z
k0

Z
k
F p0Rp0k0L̃k0kT̃ kp; ðB3Þ

where we have removed the rightmost rescattering func-
tion, and collected all terms with Rp0p on the right-hand
side. Finally, the combination on the left-hand side sim-
plifies toZ

k0
½δp0k0 − F p0Gp0k0 �L̃k0k ¼ F p0δp0k

þ
�
Dp0k − F p0Gp0kFk −

Z
k0
F p0Gp0k0Dk0k

�
; ðB4Þ

where the term inside the parenthesis is 0 from Eq. (15).
Factorizing the final 2 → 2 amplitude from the left-hand
side, we arrive at the resummed 3 → 3 amplitude,

Ap0p ¼ Dp0p þ
Z
k0

Z
k
L̃p0k0 T̃ k0kL̃kp; ðB5Þ

with the new amputated amplitude satisfying

T̃ p0p ¼ Rp0p þ
Z
k0

Z
k
Rp0k0L̃k0kT̃ kp: ðB6Þ

Equation (B5), along with Eqs. (15) and (B6), is an
alternative on-shell representation for the 3 → 3 scattering
amplitude that satisfies unitarity. We now proceed with
similar manipulations on the unitarity relation, Eq. (A4),
allowing one to derive Eq. (B6) directly from unitarity.
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It is clear from the demonstration in Appendix A that
Dp0p satisfies the same unitarity relation as Eq. (A4).
Therefore, the unitarity relation for the divergence-free
amplitude states

ImAdf;p0p ¼
Z
k

Z
q
A†

df;p0qðρ̄qδqk þ CqkÞAdf;kp

þ
Z
k

Z
q
A†

df;p0qðρ̄qδqk þ CqkÞL̃kp

þ
Z
k

Z
q
L̃†
p0qðρ̄qδqk þ CqkÞAdf;kp: ðB7Þ

Since F p obeys the 2 → 2 unitarity relation, Eq. (A2), and
Dp0p satisfies Eq. (A4), we can see that the rescattering
function L̃p0p satisfies the relation

ImL̃p0p ¼
Z
k
L̃†
p0kρ̄kL̃kp þ

Z
k0

Z
k
L̃†
p0k0Ck0kL̃kp: ðB8Þ

The amputated divergence-free amplitude can be defined as
in Eq. (B2), so that the unitarity relation becomes

ImT̃ p0p ¼
Z
k0

Z
k

Z
q
T̃ †

p0k0L̃†
k0qρ̄qL̃qkT̃ kp

þ
Z
k0

Z
k

Z
q0

Z
q
T̃ †

p0k0L̃†
k0q0Cq0qL̃qkT̃ kp

¼
Z
k0

Z
k
T̃ †

p0k0 ImL̃k0kT̃ kp: ðB9Þ

Using similar manipulations as in Appendix A, it is
straightforward to verify that Eq. (B6) satisfies the unitarity
relation Eq. (B9).

APPENDIX C: PROOF OF EQ. (35)

In Sec. IV, we showed that the R matrix and three-body
K matrix are related by an integral equation, Eq. (31).
Proving the reality of the Eq. (31) relied on the claim
Eq. (35), which we now prove.

From the definition, Eq. (28), we find that

3
X
l00;ml

00

Z
k
Im½Up0k�l0ml

0;l00ml
00 ½Kdf;kp�l00ml

00;lml

¼
X
l00;ml

00

Z
k
½2ρ̄p0δp0k − Cp0k�l0ml

0;lml
½Kdf;kp�l00ml

00;lml

¼
X
l00;ml

00
δl0l00δml

0ml
002ρ̄p0 ½Kdf;p0p�df;l00ml

00;lml

−
X
l00;ml

00

Z
k
πδððP − k − p0Þ2 −m2Þ4πY�

l0ml
0 ðk̂⋆ÞYl00ml

00 ðp̂0⋆Þ½Kdf;kp�l00ml
00;lml

; ðC1Þ

where in the second term, Eq. (A5) was used. We leave the first term as is, and focus on the second term. According to
Ref. [12],Kdf;kp is defined as a symmetric object after acting with spherical harmonics of the pair orientations onKdf;kp, and
summing over all angular momenta. We use this property to combine the product of the final spherical harmonic Yl00ml

00 ðp̂0⋆Þ
and Kdf;kp, and then switch the role of p0 and k, finally expanding in spherical harmonics of k̂⋆. This allows us to write

X
l00;ml

00
Yl00ml

00 ðp̂0⋆Þ½Kdf;kp�l00ml
00;lml

¼
X
l00;ml

00
Yl00ml

00 ðk̂⋆Þ½Kdf;p0p�l00ml
00;lml

: ðC2Þ

Now, Kdf;p0p is independent of k; thus we can perform the integrations

X
l00;ml

00

Z
k
πδððP − k − p0Þ2 −m2Þ4πY�

l0ml
0 ðk̂⋆ÞYl00ml

00 ðk̂⋆Þ½Kdf;p0p�l00ml
00;lml

¼ 1

4π

Z
∞

0

dk⋆ k⋆2
4ω2

k⋆
δðωk⋆ − E⋆

p0=2Þ
X
l00;ml

00

Z
dk̂⋆Y�

l0ml
0 ðk̂⋆ÞYl00ml

00 ðk̂⋆Þ½Kdf;p0p�l00ml
00;lml

¼ 2ρ̄p0
X
l00;ml

00
δl0l00δml

0ml
00 ½Kdf;p0p�l00ml

00;lml
; ðC3Þ
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where we converted to spherical coordinates in the final pair
rest frame, and used the composition properties of Dirac
delta functions to convert to the on-shell energy ωk⋆.
Orthogonality properties of spherical harmonics allow the
angular integration to be done, showing that the second term
is identical to the first of Eq. (C1). Thus, we conclude that

Z
k
ImUp0kKdf;kp ¼ 0; ðC4Þ

as claimed. The relation,
R
k Kdf;p0kImUkp ¼ 0, is verified in

an identical manner.
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