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Abstract 

Extensive molecular dynamics simulations of liquid sodium have been carried out to evaluate 

correlation functions of several dynamical quantities. We report the results of a novel analysis of the 

longitudinal and transverse correlation functions obtained by evaluating directly their self and 

distinct contributions at different wavevectors k. It is easily recognized that the self-contribution 

remains close to its k → 0 limit, which turns out to be exactly the autocorrelation function of the 

single particle velocity. The wavevector dependence of the longitudinal and transverse spectra and 

their self and distinct parts is also presented. By making use of the decomposition of the velocity 

autocorrelation spectrum in terms of longitudinal and transverse parts, our analysis is able to 

recognize the effect of different dynamical processes in different frequency ranges.  

 

 

1. Introduction. 

 In recent years, the study of dynamical properties of simple monoatomic liquids has 

received a strong impetus, due to the massive use of new experimental techniques. The large use of 

X ray [1] and neutron sources [2] along with advanced spectroscopic facilities have allowed the 

observation of dynamical processes occurring in the terahertz frequency range with surprising good 

accuracy. Since the seminal works on liquid alkali metals [3], attention has been devoted to other 
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liquid metals [4], often supplemented by molecular dynamics evaluation of the relevant quantities. 

The accurate experimental data have initially been exploited to derive the physical parameters 

necessary to reproduce the experimental spectra in the generalized hydrodynamic framework [3]. In 

fact, these systems have generally been regarded as “simple” liquids and consequently their 

theoretical description was carried out according to the same lines used at early stages for an 

analytical interpretation of the experimental and molecular dynamics results [5].  On the other hand, 

the detailed experimental lineshapes suggested the possibility of discerning the influence of 

dynamical effects other than those traditionally considered in the explanation of the so-called 

Rayleigh-Brillouin region. The underlying idea is that in the terahertz frequency region where the 

wavelength becomes close to the atomic nearest neighbor distance, a solid-like cage effect acts as a 

restoring force for transverse acoustic modes, which eventually can give a contribution to the 

dynamical structure factor S , . Therefore in most of the papers dealing with liquid metals [4] a 

search for the appearance of transverse contributions was accomplished both in S ,  and in the 

longitudinal current , . Particularly interesting are the results of liquid sodium obtained by 

Giordano and Monaco [6]. They showed that liquid sodium exhibits acoustic excitations of both 

longitudinal and transverse polarization at frequencies very close to those of the polycrystal, the 

only difference being restricted to line broadening. Molecular dynamics [MD] computations of the 

longitudinal and transverse current correlation functions at different wavevectors and their relative 

spectra showed a good agreement between experimental and MD peak frequencies [7].  

In the present paper, we present molecular dynamics calculations of the longitudinal and 

transverse currents and the separate contributions of their respective self and distinct terms. In 

discussing the corresponding spectra, we believe that a clear picture of the dynamical processes 

responsible for their behavior will emerge. In particular, our analysis will highlight the connection 

between collective propagation excitations (both longitudinal and transverse) beyond the 

hydrodynamic limit and single particle dynamical processes with long and short time scales. 
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We have performed the calculations for all the alkali metals but, for the sake of brevity, we report 

here only the results for liquid sodium, since no major differences are found to occur apart from a 

time scaling as suggested in a previous paper [8] 

 

2. Dynamical quantities of interest and simulation procedures. 

 

 Let us start defining the quantities of interest in our investigation. According to the usual 

notation, we start considering the current associated with the motion of N particles: 

, exp ∙  (1) 

 

and define the normalized longitudinal and transverse current correlation functions: 

,
〈 , ∗ , 0 〉
〈 , 0 ∗ , 0 〉

〈∑ 0, 〉

〈∑ 0 0 〉
 

 

(2) 

,
〈 , ∗ , 0 〉
〈 , 0 ∗ , 0 〉

〈∑ 0, 〉

〈∑ 0 0 〉
 

 

(3) 

 

having chosen the vector  along the z-direction. With obvious notations  represents the z-

component of the velocity of the i-th particle at time t, and   the z-component of its position. 

The brackets 〈… 〉 indicate a statistical average. We then evaluate the self-part of (2) and (3) by 

setting i=j in the double sums. They read: 

,
〈∑ 0 〉

〈∑ 0 0 〉
 

 

(4) 

,
〈∑ 0 〉

〈∑ 0 0 〉
 

 

(5) 
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so that: 

, ,
〈∑ 0 〉

〈∑ 0 0 〉
 

, ,  

 

 

(6) 

, ,
〈∑ 0 〉

〈∑ 0 0 〉
 

, ,  

 

 

(7) 

  

We obtain the distinct-part by subtraction of the self-part from the total that will be referred 

to as full in the following. An important observation is in order. At t = 0 the distinct-part turns out 

to be zero since it contains the statistical average of velocity components of different particles. As a 

consequence, the integral of its Fourier spectrum is zero and therefore must comprehend positive 

and negative contributions. Needless to say, it represents a quantity which cannot be derived by any 

direct experiment. 

In the subsequent discussions, a crucial role will be played by the normalized single particle 

velocity auto-correlation function:  

〈∑ ∙ 0 〉

〈∑ 0 ⋅ 0 〉
 

 

(8) 

 

as well as by the self-intermediate scattering function: 

,
1
〈 〉 

(9) 
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Molecular dynamics runs were carried out on liquid metals by using the classical potential 

model implemented by Price et al. [9]. We used a cubic box containing 512 sodium atoms, with a 

side length of 27.63 Å corresponding to a density of 927 kg/m3. The simulation was performed by 

an in-house developed code at a temperature of T=395 °K, fixed using a Berendsen thermostat with 

a coupling constant τ=1 ps. The system was equilibrated for 500 ps, after which we performed a 

production run of 2 ns, saving the trajectories for offline analysis by means of another in-house 

developed code. The timestep used was 2 fs. 

  

3. Results and discussion. 

In figure 1 we report the results of the longitudinal and transverse correlation functions and 

their components at the wavevector k= 0.394 Å-1. This is not the minimum wavevector accessible in 

our simulation, but it has been chosen because the transverse current shows clear oscillations 

indicating that shear modes are supported. We wish to point out that for all the wavevectors 

examined the dynamical structure factor shows a well-defined peak indicating that longitudinal 

waves are supported, as experimentally confirmed [3]. 

Firstly, we observe that the self-part is very similar in both longitudinal and transverse 

correlation functions. In fact, an inspection to equations (6) and (7) suggests the cause. The self-

contributions turn out to contain the correlation of the single particle velocity multiplied by the 

exponential of the displacement of the same particle i. If the time scale over which the velocity 

correlation of a single particle decays to zero is much shorter than the diffusion time, the 

factorization of the terms containing the velocity and the coordinate variables can be applied. As a 

consequence, the self-part of longitudinal and transverse correlation functions can be written as the 

product of the velocity auto-correlation function times the self-intermediate scattering function. 

Since at the wavevector k= 0.394 Å-1, ,  changes very little during the time over which  

decays to zero, the self-contribution of both the longitudinal and transverse correlation functions is 
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almost identical to the velocity auto-correlation function. This result will be exploited in the 

description of the corresponding spectra. 
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Figure 1. 

Longitudinal and transverse correlation 

functions along with their self and distinct 

contributions. k= 0.394 Å-1 

 

A quantitative measurement of such deviations is shown in figure 2. The difference does not 

exceed 1% and as is evident, the larger deviation is achieved by the longitudinal self-term, a 

characteristic that will be discussed later in combination with the evolution of the distinct-part at 

different wavevectors. 
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 Figure 2. 

Difference between the velocity auto-correlation 

function and the self-part of the longitudinal 

(points) and transverse (squares) correlation 

functions. k= 0.394 Å-1  

 

 Let us now discuss the behavior of the distinct-part. It contains the correlation of the 

velocity of different particles, i.e. it is a measure of how the velocity, let’s say of particle 1, is 

transferred to particle 2. This effect is mostly evident in the case of the transverse correlation. In 

fact, the distinct-term increases from zero to its maximum value at the time when the velocity of 

particle 1 has reached its minimum (see figure 1). Such a behavior is the evidence of what has been 

referred to as “momentum transfer”. A thorough analysis of this effect in Lennard-Jones fluids has 

been carried out by Balucani et al. [10], who stressed the importance of understanding the 

cooperative effects amongst nearest and next-nearest neighbors for better understand single-particle 

motion. The correlation established by the presence of the term  gives rise to the 

subsequent oscillations. The same effect is present in the longitudinal current even if it appears that 

the transfer of momentum is less complete since the correlation induced by the exponential term 

considerably reduces its influence. The presence of different components for the velocity (x-
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component) and the position (z-component) in the transverse current, contrasted with the situation 

of the longitudinal current (z-component for the velocity as well as for the position) can be the 

reason for this different behavior.  

 A great deal of basic information can be derived from the inspection of the longitudinal and 

transverse spectra and their components, shown in figures 3 and 4 respectively. For the sake of 

clarity, we call “full” the spectrum of the total correlation function, either longitudinal or transverse, 

and “self” the Fourier transform of what we call self-term of the currents; as already mentioned, 

“distinct” is the difference between “full” and “self”. 
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Figure 3 

Longitudinal current spectrum (full) along with 

its components (self and distinct) at k = 0.394 Å-1. 

The longitudinal and transverse contributions to 

the self-term, obtained from , are shown, 

dash-dotted (green) and dotted lines (pink) 

respectively. 
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Figure 4 

Transverse current spectrum (full) along with its 

components (self and distinct) at k = 0.394 Å-1. 

The longitudinal and transverse contributions to 

the self-term, obtained from , are shown, 

dash-dotted (green) and dotted lines(pink) 

respectively. 

 

As is evident, the distinct part of the spectra contains a negative contribution and therefore, 

it is not a physical quantity directly measurable by any real experiment. Nevertheless, the behavior 

in different regions of the spectrum gives important indications on the underlying physical 

processes, i.e. those involved in the single particle dynamics as well as those explicitly dependent 

on two particle correlations. The negative intensities in the spectra highlight the effect of these last 

terms. For example, the position of the well-defined peak in the longitudinal spectrum is a 

consequence of the fact that both at frequencies lower and higher than the frequency maximum 

there is a large subtraction of the intensity coming from the self-contribution, by the distinct 
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contribution. In the transverse spectrum, there is a large cancellation of intensity at frequencies 

larger than the maximum. In both cases, however, the intensity of the peak is the sum of self and 

distinct contributions. 

Let us firstly examine the self-part of the longitudinal spectrum. As already pointed out the 

self-part of the longitudinal current is close to the velocity correlation function. Indeed, it is easily 

recognized that the self-part of the longitudinal current correlation function turns out to be: 

,
1 1

2

2 ,
2  

(10) 

 

with 〈∑ 0 0 〉 and consequently the self-part of the spectrum reads: 

,
1 2

2 ,  
(11) 

 

As → 0, the self-spectrum coincides with the spectrum  of the normalized velocity auto-

correlation function and at larger k it starts to deviate from . At the present wavevector k= 

0.394 Å-1, we notice that, apart the region around 0	where the self-spectrum gets close to zero, 

,  is found to be almost coincident with , which is not reported in the figures.  

In the transverse spectrum, as pointed out in figure 4, this situation is even more marked; in 

fact, there is no analogue of equation (10) because different components of velocity and position are 

involved in the transverse current correlation function.  

This circumstance allows us a new and somehow deeper reading of the current spectra and 

possibly a better understanding of the underlying physical processes. To this aim, we resort to the 

representation of the  in terms of longitudinal and transverse currents introduced by Gaskell 

and Miller [11], i.e. 
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1
2

	 , 2 , ,  
(12) 

 

Where  is the Fourier transform of the quantity  that characterizes the microscopic velocity 

field. If the form factor  is chosen to be constant across a suitable length scale a (of the order of 

interparticle separation),  is given by: 

3
 

(13) 

 

where  is the spherical Bessel function of order one and n the number density. If one neglects 

the time dependence of , ,  turns out to be written as: 

 

2
3

, 2 ,  
(14) 

 

with obvious definition of the quantities  and . By using our computer simulation 

results for the current correlation functions and their relative spectra, we are able to perform the 

integral in equation (14) and find the longitudinal ( ) and transverse ( ) contributions of 

the spectrum of the normalized velocity autocorrelation function. In view of the fact that such 

spectrum is very near to the self-part ,  we are able to distinguish the role of these two 

components to the full spectrum. The results are reported in figures 3 and 4, where the longitudinal 

and transverse contributions are shown as dash-dotted and dotted lines, respectively.  

Let us start by examining the longitudinal spectrum (figure 3). In the low frequency range (0 

< ω < 1 THz), the self-part of the spectrum is mostly due to the transverse component , 

which is strongly depleted, in the full spectrum, by physical processes which rule the distinct part. 

In the frequency range between 1 and 2.5 THz, both contributions of self and distinct parts are 
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equally significant and give rise to a well-defined peak. At ω > 2.5 THz, where the transverse and 

longitudinal contributions to the spectrum of the self-part are about the same, there is again a strong 

cancellation that determines the rapid decrease of the longitudinal spectrum. 

The interpretation of the transverse spectrum is even simpler since the peak at ω ≈ 1 THz is 

due to the sum of contributions from the self-part (where the transverse component  is 

predominant) and from processes responsible for the distinct term. At larger frequencies, the 

cancellation due to the distinct part dominates and the spectrum goes rapidly to zero. 

Let us now consider larger wavevectors. In figures 5, 6 and 7 we present the results for the 

longitudinal and transverse current correlation functions and the relative spectra at k= 0.643	 Å-1 

respectively.  
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Figure 5. 

Longitudinal and transverse correlation 

functions along with their self and 

distinct contributions. k= 0.643	Å-1 
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Figure 6 

Same as figure 3 at k= 0.643	Å-1 
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Figure 7 

Same as figure 4 at k= 0.643	Å-1 

 

The most noticeable difference with respect to the previous wavevector is the initial 

behavior of the distinct part for the longitudinal current. In fact, it decreases becoming negative at 

short times, contrary to what happens at the smaller wavevector previously examined, and to the 

transverse distinct term in the present case.  
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As far as the spectra are concerned, an inspection to figure 6 confirms the large subtraction of 

intensity in the range between 0 and 2 THz in the longitudinal spectrum where the relevant 

contribution comes from the transverse component  of the self-spectrum. Considering the 

transverse spectrum, we notice that both the self and distinct parts contribute to the peak at 1 THz, 

whereas these two components have opposite signs in the region between 2 and 4 THz, resulting in 

cancellation. 

The last wavevector examined is k= 1.287	Å-1 and the relative correlation functions and spectra 

are reported in figures 9, 10 and 11 respectively. Whereas the distinct part of the longitudinal 

current becomes still negative at short times, the distinct component of transverse current is now 

very close to zero.  
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Figure 8. 

Longitudinal and transverse correlation 

functions along with their self and 

distinct contributions. k= 1.287	Å-1 

 

The longitudinal spectrum shows an even more marked cancellation of the self-contribution in 

the range 0<ω<2 THz. It is worthwhile to point out that at the present wavevector, which 
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corresponds to a wavelength 2 ⁄ 4.88	Å the dynamical structure factor presents still a 

well-defined peak, indicating that the system can always support longitudinal waves.  
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Figure 9 

Same as figure 4 at k= 1.287	Å-1 

 

 

The transverse spectrum, reported in figure 11, reveals that shear waves present at this 

wavelength reflect mostly the dynamical processes present in the self-part, being the distinct 

contribution in the range of the peak around 2.5 THz very feeble.    
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Figure 10 

Same as figure 4 at k= 1.287	Å-1 

 

The initial onset of the correlation functions can easily be inspected by evaluating the 

normalized second frequency moments of the self and distinct contributions to the longitudinal and 

transverse currents. Such a task has been tackled since the early study of simple monatomic liquids, 

with the aim of supplying a realistic interpretation of the dynamical structure factor [12] via the 

Mori-Zwanzig [13] theory of many body problems. The separate contributions of the self and 

distinct parts for the longitudinal currents, read: 

 

,
3 (14 a) 

, 2  (14 b) 

 

and for the transverse currents: 

,
(15 a) 

,  (15 b) 
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where  indicates the Boltzmann constant, T the temperature, m the mass and  the Einstein 

frequency. ;  are the spherical Bessel functions of order 0 and 2, where  is close to 

the core diameter and can be taken equal to the parameter a introduced in equation 13. A deeper 

discussion of the approximations leading to expressions (14 a,b) and (15 a,b) can be found in 

references [3,10,11]. We are able to evaluate separately , 	and , 	 using the value 

of  derived from ; the resulting quantities changed of sign provide the values of the second 

time derivatives of the proper correlation functions. Figure 11 shows these results. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-100

-80

-60

-40

-20

0

20

40

60

80

100

- 


2 di
st

in
ct
 (

ps
)-2

k (A-1)

 2

T, distinct
 theory

 2

L, distinct
 theory

 MD longitudinal
 MD transverse

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 S
(k

)

 S(k)

 

Figure 11. 

The second moment (changed of sign) of the distinct 

contributions to the longitudinal and transverse 

currents evaluated from equations (14b) and (15b) and 

obtained directly from the molecular dynamics 

results. For convenience we present also the structure 

factor . 
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It is worth stressing that according to the mentioned correspondence between second time 

derivative and second moment, a negative , ,  implies that the corresponding distinct 

current correlation functions initially decay from their zero time value. The agreement between 

molecular dynamics data and theory is excellent. Gaskell and Duffy [14], who gave an estimate of 

the distinct contribution to the transverse correlation function by using the velocity field approach 

[11] along with the Vineyard approximation to carry on the necessary calculation, have predicted 

the present MD results concerning the transverse current. In particular the fact that the second 

moment becomes very close to zero at large wavevectors. 

 

4. Conclusions. 

In this paper, we have presented the molecular dynamics results of dynamical correlations of 

liquid sodium. We concentrated on the longitudinal and transverse current correlation functions and 

for the first time we have evaluated the separate contributions of the “self” and “distinct” terms. We 

have thoroughly examined the variation of these quantities as a function of the wavevector. The 

rationale of this analysis comes from the recognition that the self-contribution, of both the 

longitudinal and transverse currents, is very close to another important dynamical quantity that 

characterizes the liquid phase, i.e. the autocorrelation function of the single particle velocity. This 

property, which is exact in the limit of  → 0, continues to be fairly well valid even at larger 

wavevectors. In fact, the possibility of reconstructing this correlation function by a sum of 

longitudinal and transverse currents, as proposed by Gaskell and Miller [11], allows a more direct 

insight into their dynamical behavior. In particular, such a result appears to be very illuminating 

when one examines the longitudinal and transverse spectra separated in terms of self and distinct 

contributions. The present results show that large cancellations due to the distinct contributions 

occur both in the longitudinal and transverse spectra in the frequency regions around the main peak 

and furthermore allow labelling the nature of the remaining intensity. These findings shed new light 

http://dx.doi.org/10.1063/1.5025120


19 
 

onto the largely debated question about the possible appearance of quasi-transverse modes in the 

dynamical structure factor and the corresponding longitudinal current. The analysis of the 

longitudinal current spectra in terms of self and distinct contributions, has demonstrated that what 

remains after the large cancellation at small frequencies, is largely due to transverse component of 

the self-part. 

The physical interpretation of the distinct term turns out not to be so evident when a 

comparison is performed between the longitudinal and transverse correlation functions. In 

particular, the short time behavior is easily interpreted in terms of “momentum transfer” for the 

transverse correlation since it appears to increase from its value at t=0, which by definition is 

exactly equal to zero, in the whole range of wavevectors examined. On the contrary, for the 

longitudinal currents it starts to diminish becoming negative at the wavevector k ≈ 0.6 Å-1, a result 

that invalidates the interpretation in terms of momentum transfer process. The comparison of our 

molecular dynamics results, regarding the short time dynamics of these distinct contributions with 

the theoretical estimates, points out that the validity of our results comes out from the recognition 

that position and velocity of a particle are strictly correlated when the same Cartesian components 

are taken into account as done in the longitudinal currents.  
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