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Polarized electron beams elastically 
scattered by atoms as a tool for 
testing fundamental predictions of 
quantum mechanics
Maurizio Dapor1,2

Quantum information theory deals with quantum noise in order to protect physical quantum bits 
(qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to 
experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of 
electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a 
set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams 
elastically interacting with atomic targets, is described. Selected results of the program concerning 
Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the 
Sherman function for low kinetic energy of the incident electrons (1.5eV–350eV). It is demonstrated that 
the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in 
good agreement with experimental data down to energies smaller than a few eV.

Polarization phenomena are of huge technological and theoretical interest. Today it is possible to experimentally 
produce polarized ensembles, and the case of spin-polarized beams deserves particular attention for its simplicity, 
for its potential technological applications, and for its conceptual aspects. Indeed, an electron is an emblematic 
example of a physical quantum bit, or qubit1,2, as its spin has only two possible levels. Also the polarization of a 
photon and the states of an atom (ground-state and excited state) represent examples of qubits. Quantum noise 
(which is due to nature itself and not to our lack of information) affects qubits. It is therefore important to be able 
to model and control quantum noise. The aim of the modern quantum information theory, for example, is to 
create methods to properly deal with quantum noise in order to protect qubits from its effects2.

The study of electron beams interacting with atoms has many applications and it is, in particular, very impor-
tant for the Monte Carlo simulation of the transport of electrons in solid targets3–6. In particular, bremsstrahlung 
resulting from polarized electrons has been investigated using the Monte Carlo method in order to model of the 
polarization transfer from electrons to photons7 (BEPSI code).

Furthermore, the comparison between theoretical and experimental investigations about spin-polarized elec-
tron beams represents a very simple test for the fundamental predictions of quantum mechanics.

This paper deals with the study of spin-polarized electron beams produced by scattering with atoms. An 
electron beam is a quantum system in a mixed state of spin orientations. A beam of electrons is polarized when 
the electron spins have a preferential orientation8. In other words, in a polarized electron beam the two popula-
tions of spin orientations are different. A similar situation occurs in ferromagnetic materials, where the up- and 
down-spin electron densities of states are not the same9,10. On the one hand, the spins of electrons produced by 
thermal emission have arbitrary directions. On the other hand, today it is experimentally possible to produce 
electron beams with the two possible spin orientations not equally populated.

If all the spins have the same orientation, the beam is said to be totally polarized. A beam of electrons can also 
be partially polarized when the majority of the spins have the same orientation. When the two possible spin ori-
entations are equally populated, then the beam is said to be unpolarized8.

Within the density-matrix formalism a set of observable quantities can be defined8. These observables–the 
polarization parameters S, T, and U (see Section 2 for their definitions and details of calculations), which depends 
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on the scattering angle and on the incident electron kinetic energy–describe the elastic scattering process, pro-
viding a way for calculating the differential elastic scattering cross-section for spin-polarized electron beams. In 
fact, while for an unpolarized electron beam the differential elastic scattering cross-section can be determined 
without any knowledge of the S, T, and U spin-polarization parameters, for the case of polarized electron beams 
the cross-section depends on the S function (also known as the Sherman function, or the left-right asymme-
try function) and on the state of polarization of the beam. Furthermore it is possible to demonstrate that, after 
an elastic collision, an initially unpolarized electron beam acquires a polarization (whose magnitude is equal 
to the Sherman function S). In general, for an initially polarized beam, the final polarization after an elastic 
scattering collision is a function of all the S, T, and U spin-polarization parameters. The determination of the 
spin-polarization parameters in the elastic scattering of electrons from atomic targets has been investigated 
both experimentally and theoretically by many investigators11–43. Note that measurement of spin-polarization 
can be made by using Mott polarimetry, that has been demonstrated by Sromicki et al. to be applicable up to 
14 MeV35. Theoretical calculations about 3 MeV electrons has been recently proposed by Wlodarczyk et al.43. High 
energy does not immediately concerns quantum information, so that this paper is mainly interested in describ-
ing spin-polarization phenomena in the low energy regime. Also note that the code system ELSEPA (Elastic 
Scattering of Electrons and Positrons by Atoms)40 provides the scattering amplitudes (both direct and spin-flip) 
with the aim of calculating the differential, total, and transport elastic scattering cross-sections of Dirac particles 
(electrons, positrons) elastically interacting with atoms, positive ions, and molecules. From the calculated scatter-
ing amplitudes it is possible to easily determine the polarization parameters. On the other hand ELSEPA does not 
allow to made calculations down to a few eV: ELSEPA authors consider questionable the reliability of the results 
of the calculation when the electron energy is smaller than 100 eV. As a matter of fact, ELSEPA does not allow to 
made calculations when the electron energies are smaller than 10 eV.

The calculation of the S, T, and U spin-polarization parameters is crucial for the complete knowledge of the 
elastic scattering processes. This paper describes a program suite (named POLARe), based on the numerical solu-
tion of the Dirac equation in a central field and written for the calculation of the spin-polarization parameters of 
electron beams with low energy, down to 1.5 eV.

The POLARe program suite is presented together with selected results about elastic scattering collisions of 
electrons with Ar, Kr, and Xe atoms. Comparisons with both experimental data and ELSEPA results are also 
provided, in order to investigate the accuracy of the described methods for very low and intermediate electron 
kinetic energies.

Theoretical Remarks
The POLARe program suite is based on the Mott’s theory, that will be briefly summarized in the present section. 
Many details about the derivation of the formulas can be found in the Mott’s original paper11, and in the papers 
by the Lin et al.13, and by Bunyan and Schonfelder14. Concerning the equations describing the single- and double- 
scattering experiments, the reader can refer to the Kessler’s book8.

The relativistic partial wave expansion method (Mott’s theory)11 allows one to calculate the differential elastic 
scattering cross-section of electrons and positrons interacting with atomic targets. The Dirac’s equations for an 
electron (or a positron) in a central field may be written as
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where W is the particle energy expressed in units of mc2, V(r) is the atomic potential energy expressed in units of 
mc2 as well, r is the distance from the atom expressed in mc/  units, m is the electron (or positron) mass, c is the 
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the phase shifts δ ±
l  of the scattered waves in an elastic scattering experiment may be calculated by
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jl are the regular spherical Bessel’s functions and nl are the irregular spherical Bessel’s function (Neumann func-
tions). If we indicate with Pl(x) the Legendre’s polynomials and
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once the phase shifts are known, the direct and spin-flip scattering amplitudes [f(θ) and g(θ) respectively, where θ 
represents the scattering angle] are given by11
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This is the relativistic partial wave expansion method.
Once the scattering amplitudes are known, it is possible to calculate the differential elastic scattering cross 

section as
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and ki and kf are, respectively, the initial and final momenta of the electron (positron). In other words n̂ is the unit 
vector normal to the scattering plane. Let us indicate with s the spin operator for the spin 1/2 particles. Its compo-
nents are the 2 × 2 Pauli matrices divided by two. Concerning Pi, it represents the initial polarization vector. The 
polarization vector P is the mean value of 2s calculated over the functions of spin:

P s2 (14)⟨ ⟩=

Regarding S(θ) it is a real function known as the Sherman’s asymmetry function. It is given by
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Since an unpolarized electron (positron) beam is composed of equal numbers of particles polarized parallel 
and antiparallel to a given direction (for example the incidence direction), averaging over the initial spin orien-
tations we obtain
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An interesting results concerning the initially unpolarized electron (positron) beams (Pi = 0) is that, after 
scattering, the final polarization Pf is a function of the angle of scattering θ and is given by8

SP n( ) (18)f ˆθ= .

In words an electron (positron) beam initially not polarized, i.e composed of equal numbers of particles polar-
ized parallel and antiparallel to the incidence direction (density matrix µ̂, P = 0, see Supplementary information), 
due to the scattering become polarized (density matrix ρ̂, P ≠ 0, see Supplementary inforamtion). The magnitude 
of the polarization is the Sherman’s asymmetry function (sometimes called, for this reason, polarization function) 
and the direction is normal to the plane of scattering. The experimental evaluation of the asymmetry function is 



www.nature.com/scientificreports/

4SCiENTifiC RePorts |  (2018) 8:5370  | DOI:10.1038/s41598-018-23660-4

typically performed by the so called double scattering experiments8. Let be kf1 and kf2, respectively, the final 
momenta after the first and the second scattering. We have two scattering planes and the unit vectors normal to 
the two planes are
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×

| × |
n

k k
k k

,
(19)

i f

i f
1

1

1

n̂
k k
k k (20)

f f

f f
2

1 2

1 2
=

×

| × |

where, as before, ki is the initial momentum. The differential elastic scattering cross section for the second scatter-
ing, if the beam is initially unpolarized, is given by
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where θ1 and θ2 are, respectively, the first and the second scattering angle. Then the cross section depends on the 
scattering angles, the Sherman functions and the angle between the scattering planes. Considering only the scat-
terings occuring in the same plane we have n1ˆ  ⋅ n̂2 = ±1. Let us define
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In practice when the two scatterings occur in the same plane, ηl and ηr are the differential elastic scattering 
cross sections for the second scattering corresponding, respectively, to n1ˆ  ⋅ n̂2 = +1 and n̂1 ⋅ n2ˆ  = −1. It is easy to 
see that
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As a consequence a measure of ε for θ θ θ= =1 2  allows one to obtian θS ( )2 . Once S( )θ| | is known for a given 
angle θ , a second experiment is performed varying θ1 and keeping constant θ θ=2 . Since S( )θ| | is known from the 
first experiment, by utilizing the equation defining ε it is now possible to determine |S(θ1)| for different angles θ1.

In conclusion we note that, in the general case for which the initial polarization is not zero, i.e. for 0 ≤ |Pi| ≤ 
1, it is possible to show that8
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The experimental determination of T(θ) and U(θ) is performed by triple scattering experiments8.

The POLARe Program Suite Structure
The POLARe program suite consists of five c routines set up for calculating the observables of interest for the 
complete description of the elastic scattering of electrons with atoms (see the block diagram in Fig. 1). In particu-
lar, a routine is aimed at computing the static atomic potential energy (POTENTIAL), another at computing the 
relativistic phase shifts (RPS), another at computing the S, T, and U polarization parameters (POLAR), another at 
computing the differential elastic scattering cross-section (SIGMAD), and finally another at computing the total 
elastic scattering cross-section and the first and the second transport elastic scattering cross-sections (SIGMAT). 
The POLARe program suite is a user friendly code freely obtainable on request to the author.
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Description of the Program Suite.  The atomic potential energy is numerically assessed by the routine 
POTENTIAL in a radial grid (with origin in the nucleus) used as an input file by the program RPS, that calculates 
the phase shifts. In this work the atomic potential energy is taken from Cox and Bonham15. Since actually the 
only input required by the RPS routine is a set of (r, V) data, where r is the radial distance from the centre of the 
atomic nucleus and V is the atomic potential energy, the program POTENTIAL can be skipped. The numerical 
table including the potential can be obtained from other sources. For example, the Dirac-Hartree-Fock potential 
energy can be calculated ab-initio. In fact the modularity of the program suite allows to calculate the relativistic 
phase shifts, the differential elastic scattering cross sections, and the polarization parameters without any use of 
the POTENTIAL routine, if a numerical data-base of the potential energy is available. The POTENTIAL code 
can be, on the other hand, also used for the calculation of the potential energy using other best fits of the self 
consistent fields proposed in the literature such as, for example, the one given by Salvat et al.44. In fact the Salvat et 
al. potential has the same analytical form of the Cox and Bonham one, i.e. it is a superposition of a given number 
of Yukawa potentials (being the best fit of the previously calculated Dirac-Hartree-Fock-Slater potential). The 
program includes the set of potential parameters from Z = 1 to Z = 54 (Cox and Bonham potential15) and from 
Z = 1 to Z = 92 (Salvat et al. potential44). The sensitivity of the calculated data on the spacing of the grid of radii 
where the potential is tabulated is an important basic aspect, and it has been carefully considered. For the current 
calculations, the data spacing of the grid of radii was set to be equal to 2 × 10−6 nm.

The RPS program utilizes the previously calculated potential energy for numerically evaluating the phase shifts, 
according to the Mott theory briefly described in the previous section, using the fourth-order Runge-Kutta algo-
rithm. The phase shifts are calculated from l = 0 to a maximum l, lmax. The value of lmax is very important in order 
to obtain accurate results, and a reasonable criterium for its evaluation is then necessary. According to Salvat et al.28 
it can be established, for example, looking for the convergence (to a desired accuracy) of the series describing the 
total and the first transport cross sections. The ELSEPA code system, on the other hand, calculates all the phase 
shifts with moduli larger than 10−10 41. The RPS code estimates the value of lmax as l K rmax max∼ , where rmax is the 
radius beyond which the potential energy becomes negligible ( ∼ −r Å Å2 3max , depending on the atomic number 
of the target)45. However, according to Koonin and Meredith45, this estimate is slightly low. Then the RPS code 
takes lmax = 2K rmax. The special functions of the mathematical physics, used for the calculations of the phase shifts 
(Legendre polynomials Pl, Bessel functions jl, Neumann functions nl) are calculated using recursion formulas, 
according to Abramowitz and Stegun46. See below for details about the calculation of the special functions of math-
ematica physics. For further numerical details about the RPS routine, see refs31,38,47. In the quoted references, it was 
demonstrated that the program works correctly in the interval of energies 350–1500 eV. On the other hand, the 
program was never validated for the evaluation of the Sherman function in the energy range 1.5–350 eV.

Once the phase shifts are known, they represent the input data for the POLAR and the SIGMAD codes, which 
calculate the S, T, and U parameters (POLAR) and the differential elastic scattering cross-section (SIGMAD) 
according to the theory depicted in Section 2. A further routine, named SIGMAT, can be used for calculating, by 
using the differential elastic scattering cross-sections provided by SIGMAD as input data, the total elastic scatter-
ing cross-section, and the first and the second transport elastic scattering cross-sections. SIGMAT uses the Bode’s 
quadrature formula for integrating the differential elastic scattering cross-section.

Special Functions of Mathematical Physics.  POLARe reserves a particular attention to the accurate cal-
culation of the special functions of mathematical physics (Legendre polynomials Pl, Bessel functions jl, Neumann 
functions nl). They are obtained using recursion formulas. In particular, the Legendre polynomials are calculated 
by using the following equation46:

Figure 1.  Block diagram of the POLARe program suite.
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+ + = + .+ −l P u lP u l uP u( 1) ( ) ( ) (2 1) ( ) (29)l l l1 1

A forward recursion in l allows to obtain Pl for any value of l starting from the explicit values P0(u) = 1 and 
P1(u) = u.

Figure 2.  Radial density for Ar, Kr, and Xe. Solid lines: Cox and Bonham screening function15. Dashed lines: 
Salvat et al. screening function44.

Figure 3.  S, T, and U functions of 1.5 eV–10 eV polarized electrons from Xe atoms. POLARe calculations (Cox 
and Bonham screening function15).
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If we indicate by fl any linear combination of the Bessel and Neumann functions (fl = ajl + bnl), where a and 
b are arbitrary coefficients, we have46:

− + + = .− +xf l f xf(2 1) 0 (30)l l l1 1

While the Neumann functions (a = 0, b = 1) can also be calculated using a forward recursion procedure 
(starting from the known functions n0(u) = −cos u/u and n1(u) = −cos u/u2 − sin u/u), the calculation of the 
Bessel functions (a = 1, b = 0) obtained using such a procedure introduces gross errors as l increases. POLAREe 
utilizes instead a backward recursion procedure, which provides very accurate results45. In the present version of 
the code, we start the backward procedure for the calculation of the Bessel functions with j232(u) = 0 and j231(u) = 
9.9999 × 10−300, an arbitrarily small number, and then recur backwards to l = 0. The sequence obtained in such a 
way reproduces the Bessel functions to within an arbitrary normalization. The sequence of numbers obtained by 
the described backward procedure is then normalized so that j0(u) = sin u/u.

Selected Results
The theory described in the Section 2 was implemented in the POLARe program suite which can perform, in 
particular, the calculation of all the polarization parameters S, T, and U.

Figure 4.  Left-right asymmetry function S(θ) of 350 eV polarized electrons from Xe atoms. Red solid line: 
ELSEPA calculations. Dashed black line: POLARe calculations (Cox and Bonham screening function15). 
Symbols: Berger and Kessler experimental data25.

Figure 5.  Left-right asymmetry function S(θ) of 100 eV polarized electrons from Xe atoms. Red solid line: 
ELSEPA calculations. Dashed black line: POLARe calculations (Cox and Bonham screening function15). 
Symbols: Berger and Kessler experimental data25.
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We will first show the results of the calculation of the radial electron density for Ar, Kr, and Xe obtained using 
two popular screening functions, one proposed by Cox and Bonham15 and the other one by Salvat et al.44. The 
knowledge of the atomic potential energy is necessary to solve the Dirac equation and to calculate the electron 
radial density, using the Poisson’s equation.

Then we will present the calculations, performed using the POLARe code, of the Xe polarization parameters 
S, T, and U as a function of the scattering angle and of the incident electron kinetic energy. We will compare the 
calculations of the S function of Xe with the ELSEPA predictions. In the end the POLARe results will be compared 
with the Schackert16, Beerlage et al.21, Berger and Kessler25 and Dümmler et al.29 experimental data of Ar, Kr, and 
Xe.

Calculation of the Electrostatic Atomic Potential and of the Electronic Density.  The electrostatic 
atomic potential energy can be calculated as the product of the Coulomb potential energy multiplied by a screen-
ing function ψ(r), expressed as a superposition of Yukawa functions. The screening function is given by

r r( ) exp( )
(31)i

p

i i
1

∑ψ γ λ= − .
=

The values of the parameters p, γi and λi can be established by looking for the best fit of the electrostatic atomic 
potential previously calculated using the Hartree-Fock method. POLARe can use the values of the parameters p, 
γi and λi provided by Cox and Bonham15 (best fit of Hartree-Fock calculations) and by Salvat et al.44 (best fit of 
Dirac-Hartree-Fock-Slater calculations). The electronic density can also be easily calculated, using the Poisson’s 
equation, as
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In Fig. 2 we present the radial density for Ar, Kr, and Xe obtained using the Cox and Bonham and the Salvat et 
al. screening functions. The screening function of Cox and Bonham provides a rather accurate description of the 
details of the electronic radial density, while that of Salvat et al. gives an average of them.

Calculation of S, T, and U as a Function of Scattering Angle and Energy of Electrons in Xe Atoms.  
The calculated polarization parameters S, T, and U of electrons in Xe atoms provided by POLARe are shown in 
Fig. 3 as a function of the scattering angle and of the incident electron energy (1.5 eV–10 eV) (Cox and Bonham 
screening function).

When the electron energy is higher than 10 eV, also ELSEPA allows to calculate the S function. A comparison 
of the POLARe and of the ELSEPA results concerning the S function for energies higher than 10 eV can thus be 
performed. It is then very useful to investigate the agreement of the results of the two codes with the available 
experimental data. The comparison between the POLARe and the ELSEPA calculations of the S function of Xe for 
350 eV electrons is presented in Fig. 4. Also the Berger and Kessler25 experimental data are presented in the same 
figures. The calculations made with the two codes for this electron energy give results practically indistinguish-
able, and in very good agreement with the experimental data. In Fig. 5 and in Fig. 6 a comparison between the 
results of the two codes is also presented for the cases of 100 eV and 10 eV electrons in Xe, respectively. In these 
two cases the calculations provide results showing some differences. In general, even in these cases a reasonable 

Figure 6.  Left-right asymmetry function S(θ) of 10 eV polarized electrons from Xe atoms. Red solid line: 
ELSEPA calculations. Dashed black line: POLARe calculations (Cox and Bonham screening function15). 
Symbols: Dümmler et al. experimental data29.
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agreement with the experiment by Berger and Kessler25 (100 eV) and Dümmler et al.29 (10 eV) is obtained using 
both codes. The observed differences between the results of POLARe and ELSEPA can be attributed to the differ-
ences in the atomic potentials utilized. The effect of the choice of potential becomes more and more important as 
the electron energies decrease. It tends to disappear as the electron energy increases above 100 eV.

The comparison between the POLARe calculations–obtained using the Cox and Bonham screening func-
tion–of the S function and experimental data concerning 1.5 eV–150 eV electron beams impinging on Xe atoms 
is presented in Fig. 7.

Basic reasons are at the origin of the observed deviations between experiment and theory, in particular for 
very low electron kinetic energy (<10 eV). In fact the assumption of a rigid static potential is probably inaccu-
rate when the electron kinetic energy is small. Atomic cloud polarization (note that it has not to be confused 
with the spin polarization of the electron beam), due to the passage of very slow electrons, is often considered as 

Figure 7.  Left-right asymmetry function S(θ) of 1.5 eV–150 eV polarized electrons from Xe atoms. Solid lines: 
POLARe calculations (Cox and Bonham screening function15). Symbols: Dümmler et al. experimental data29 
(1.5 eV–10 eV); Berger and Kessler experimental data25 (100 eV–150 eV).
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responsible for the observed discrepancies between theory and experiment. In fact, dynamical effects due to the 
polarization of the charge cloud of the target atom modify the potential. The induced dipole moment attracts the 
electrons so that, if the partial wave analysis is based on a rigid static potential, it provides results that can differ 
from the experimental data. For example, it is known that, neglecting the polarization of the cloud charge, the 
electron elastic mean free path in solid targets predicted by the partial wave analysis at very low energies is abnor-
mally small. According to Ganachaud and Mokrani48 the elastic scattering cross-section obtained with a rigid 
static potential should be multiplied by a “cut-off ” function which has the role to appreciably reduce the elastic 
effects in solid targets at low energies. According to Salvat et al.40 the inclusion of the polarization Buckingham 
potential in the ELSEPA code also improves the accuracy of the calculation of the elastic scattering cross-section 
of slow electrons.

Thus, on the one hand, the polarization of the charge cloud, not included in the Cox and Bonham potential 
(which does not depend on the electron kinetic energy), could be the cause of the observed discrepancies between 
the calculations and the experimental data about the Sherman function. On the other hand, for the case of the 
presented calculations of the Sherman function, the disagreement between theory and experiment is surprisingly 
small, even when the electron energy is very low, i.e. from 1.5 eV to 10 eV.

Figure 8.  Left-right asymmetry function S(θ) of 50 eV polarized electrons from Ar atoms. Solid lines: POLARe 
calculations (Cox and Bonham screening function15 with exchange). Dashed line: POLARe calculations (Cox 
and Bonham screening function15 with exchange calculated according to Furness and McCarty18). Filled 
symbols: Schackert experimental data16). Empty symbols: Beerlage et al. experimental data21.

Figure 9.  Left-right asymmetry function S(θ) of 50 eV polarized electrons from Kr atoms. Solid lines: POLARe 
calculations (Cox and Bonham screening function15 without exchange). Dashed line: POLARe calculations 
(Cox and Bonham screening function15 with exchange calculated according to Furness and McCarty18). Filled 
symbols: Schackert experimental data16). Empty symbols: Beerlage et al. experimental data21.
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The reasonable agreement we found out between calculations and experimental data for very low energy 
electron beams can be attributed to the fact that the cloud atomic polarization, induced by low energy electrons, 
is very small for Xe, as the potential of this atom is reasonably rigid even for a few eV electrons (therefore only 
slightly affecting the calculation of the Sherman function).

Exchange Effect.  Another possible cause of the observed differences between experiment and theory is 
related to the exchange effect. In fact, in order to improve the accuracy of the calculation, also the exchange effect 
should be taken into account when the incident particles are electrons. It is not easy to deal with the exchange 
effect because, as in the case of bound states, it generates a non-local term in the wave equation28,49.

Anyway, when the atomic number is relatively low (Z < 40), exchange effect can be described by an 
approximation proposed by Furness and McCarty18 that transforms the non-local term in a local form. The 
non-relativistic Furness and McCarty formula18 is given by

πρ= − − − +V E V E V e a1
2

[ ] 1
2

4 , (33)oex s s
4

where Vs is the atomic potential energy,

ψ= −V Ze
r

r( ) , (34)s

2

ψ(r) is the screening function, (that can be calculated using the Cox and Bonham best fit parameters [see Eq. 
(31)]), and ρ is the electron density [see Eq. (32)]. Figures 8–10 show the comparison of the POLARe calculations 
with the experimental data of Schackert16, Beerlage et al.21, and Berger and Kessler25 of 50 eV electrons in Ar, Kr, 
and Xe, respectively. In order to study the effect of the use of the Furness and McCarty non-relativistic approx-
imation on the calculation of the spin-polarization, in Figs 8–10 the POLARe calculations were presented with 
and without exchange.

The comparison shows that, as expected, the inclusion of the exchange using a non-relativistic approximation 
provides a better agreement with the experimental data when the atomic number is relatively low (Ar, Z = 18 and 
Kr, Z = 36). For the case of Xe (Z = 54), on the other hand, the inclusion of the Furness and McCarty model in 
the calculation of the potential worsens the agreement. A possible explanation of this behavior is related to the 
non-relativistic arguments used to obtain the Furness and McCarty formula.

In conclusion, on the basis of the present observations, the inclusion of the exchange effect by the use of the 
Furness and McCarty non-relativistic approximation is recommended, but only when the atomic number of the 
target is relatively low.

Conclusion
The density-matrix formalism was used to investigate spin-polarization phenomena in the electron-atom elastic 
scattering. The POLARe code, a computer program written to calculate the spin-polarization parameters char-
acterizing the elastic scattering of electrons with atomic targets, was described. Selected results of the program 
concerning Ar, Kr, and Xe atoms were presented. We found out a reasonable agreement with experimental data 
even when the incident electron kinetic energy was very low (smaller than 10 eV).

Figure 10.  Left-right asymmetry function S(θ) of 50 eV polarized electrons from Xe atoms. Solid lines: 
POLARe calculations (Cox and Bonham screening function15 without exchange). Dashed line: POLARe 
calculations (Cox and Bonham screening function15 with exchange calculated according to Furness and 
McCarty18). Symbols: Berger and Kessler experimental data25.
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