
InriaFBK at Germeval 2018: Identifying Offensive Tweets Using
Recurrent Neural Networks

Michele Corazza†, Stefano Menini‡, Pinar Arslan†, Rachele Sprugnoli‡
Elena Cabrio†, Sara Tonelli‡, Serena Villata†

†Université Côte d’Azur, CNRS, Inria, I3S, France
‡Fondazione Bruno Kessler, Trento, Italy

{michele.corazza,pinar.arslan}@inria.fr
{menini,sprugnoli,satonelli}@fbk.eu
{elena.cabrio,serena.villata}@unice.fr

Abstract

In this paper, we describe two systems
for predicting message-level offensive lan-
guage in German tweets: one discrim-
inates between offensive and not offen-
sive messages, and the second performs
a fine-grained classification by recognizing
also classes of offense. Both systems are
based on the same approach, which builds
upon Recurrent Neural Networks used with
the following features: word embeddings,
emoji embeddings and social-network spe-
cific features. The model is able to combine
word-level information and tweet-level in-
formation in order to perform the classifi-
cation tasks.

1 Introduction

The widespread use of social media platforms such
as Twitter and Facebook yields a huge number of in-
teractions on the Web. Unfortunately, social media
messages are often written to attack specific groups
of users based on their religion, ethnicity or social
status, and they can be particularly threatening to
vulnerable users such as teenagers.

Due to the massive rise of hateful, abusive, offen-
sive messages, social media platforms such as Twit-
ter and Facebook have been searching for solutions
to tackle hate speech (Lomas, 2016). As a conse-
quence, the amount of research targeting the detec-
tion of hate speech, abusive language and cyberbul-
lying also shows an increase (Waseem et al., 2017).
Various (predominantly supervised) classifiers have
been used for hate speech detection (Greevy and
Smeaton, 2004; Warner and Hirschberg, 2012). In
recent research, deep learning approaches with Re-
current Neural Networks were also used (Mehdad
and Tetreault, 2016).

In this paper, we build our model on Recurrent
Neural Networks (RNN) for both binary and fine-

grained classification tasks. We combine recur-
rent layers with feed-forward layers so that we
can combine word embeddings with other features,
i.e., emoji embeddings and social network-specific
features. We also apply some specific dropout tech-
niques not only to recurrent layers but also to feed-
forward layers, aimed at reducing the variance of
our model.

2 Data

Within the Germeval evaluation, two different tasks
were proposed: one for the detection of offensive
messages, and the other for a fine-grained classi-
fication in four classes, namely Profanity, Insult,
Abuse and Other. For both Task I (binary classifi-
cation) and Task II (fine-grained classification), we
used the data provided by the Germeval organizers.
It consists of 5,009 German tweets from Twitter
with a manual annotation at the message level.

Task I - Binary classification: The two labels
are ‘offensive’ and ‘other’. The latter was re-
served for tweets which were not offensive. The
binary classification task involved 1,688 messages
with ‘offensive’ label and 3,321 messages with the
‘other’ label.

Task II - Fine-grained classification: The four
classes annotated are ‘profanity’, ‘insult’, ‘abuse’
and ‘other’. In the corpus, there are 595 messages
for ‘insult’, 71 for ‘profanity’, 1,022 for ‘abuse’,
and 3,321 messages for ‘other’.

3 System Description

Given that the amount of training data is enough
to adopt a supervised approach, we select the best
classifier by using a grid-search approach over dif-
ferent machine learning models, such as Neural
Networks (NN), Support Vector Machines (SVM)
and Logistic Regression (LR). Both ngram-based
models and recurrent models using embeddings

80

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018



were tested, but we will describe in detail only the
model performing best on our validation set, using
Recurrent Neural Networks.

In order to evaluate our system, the training set
was split in three parts: 60% was used for training,
while the remaining 40% was split in half to create
a validation and a test set. This was achieved by
using the train test split function of scikit-
learn. In order to be able to compare the results
of the experiments, a seed value of 42 was used as
input to that function.

3.1 Pre-processing

One of the challenges that arise from working on
social media interactions derives from the specific
language used in posts, including misspelled words,
neologisms and jargon. As a consequence, most
standard models built for news are unsuitable for
tweets. In order to extract as much information as
possible from such interactions and use them for
classification, some pre-processing steps are neces-
sary. The simplest ones involve the normalization
of URLs and ‘@’ mentions, which we performed
using simple regular expressions that replace URLs
with the string ‘URL’ and mentions with the string
‘username’.

Another aspect that is typical of social media
interactions is the presence of hashtags, that some-
times convey a semantic content in a concise way.
It is therefore important to normalize them by split-
ting them in a sequence of meaningful terms, as
some of them are composed of multiple words that
would not be recognized as such if they are not
tokenized correctly. To this purpose, we propose
an extension of the tokenizer presented by Bazio-
tis et al. (2017), which is tailored to social media
messages but is available only for English.

Once a hashtag composed by two or more con-
catenated words (e.g., #StandwithBoris) is found
in a post, the algorithm uses n-grams (both uni-
grams and bigrams) to obtain word probabilities
and identify the most likely way to split the input
string (e.g., ‘Stand with Boris’). In order to adapt
it to German, we use as n-gram model all German
Google n-grams starting from year 2000. We avoid
older n-grams considering them less representative
of the current language.

3.2 Feature description

In order to identify offensive language, a small
set of features was used, that are derived from the

textual information included in the tweets. The
features we used are the following:

• Word Embeddings: we use German fastText
word embeddings (Bojanowski et al., 2016)1,
pre-trained on Wikipedia.

• Emoji Embeddings: the German fastText
embeddings were extracted from Wikipedia,
where there are basically no emojis. How-
ever, emojis are very frequent in social media
data, and are often used to conveyed emo-
tions and feelings associated with offenses
or ironic messages. Therefore, we needed to
add this information for classification, which
we perform in two steps: first, we download
the embeddings trained on 10 millions En-
glish tweets containing also a representation
for emojis (Barbieri et al., 2016). We use this
corpus because no equivalent dataset of this
size is available for German, Then, we fol-
low the approach by Smith et al. (2017) to
align the English vector space containing the
emojis with the German one, using a bilingual
dictionary.

• Social-network specific features: a collec-
tion of features that capture some aspects of
social media interactions is considered. They
include the number of hashtags and men-
tions, the number of exclamation and question
marks, the number of emojis, the number of
words that are written in uppercase.

3.3 The Recurrent Neural Network model

In order to tackle the complexity of offensive mes-
sages in social media, we believe that recurrent
neural networks are a useful tool, as they have an
advantage over the classic feed-forward models:
they consider the data they process in order and
they remember the whole sequence of inputs. In
the context of Natural Language Processing, this al-
lows the network to remember the whole sequence
of words or characters provided as input in the
order in which they appear.

The models were implemented using Keras
(Chollet and others, 2015), a Python library for
deep-learning that makes it easy to prototype differ-
ent models without re-writing the core layers that
are needed. Our models combine both recurrent
layers and feed-forward layers, to combine word

1https://github.com/facebookresearch/fastText

81

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018



embeddings (that have a variable length and encode
each tweet as a sequence) and tweet-level features
such as the number of emojis. To achieve that, we
adopt an asymmetric topology for the model. First,
a recurrent layer is used to process the word em-
bedding sequences. The output that the recurrent
layer produces at the last timestep is then concate-
nated with the other features and passed through
a variable number of hidden feed-forward layers
that use the Rectified Linear Unit (ReLU) as their
activation function.

The output layer of the network varies depend-
ing on the task. We use a sigmoid-activated single
neuron for the coarse classification task, while we
use 4 neurons with a softmax activation function
for the fine-grained classification. For binary clas-
sification, the binary cross-entropy function from
Keras is used, while categorical cross-entropy is
used for the multiclass version of the model.

In order to reduce the variance of the model, dif-
ferent techniques were tested, in particular we have
used various dropout techniques and batch normal-
ization. Specifically, three different dropout meth-
ods have been used: a simple dropout layer (Srivas-
tava et al., 2014) is applied to the output of the feed-
forward layers. Furthermore, to increase the noise
of the input for the recurrent layer, a dropout on the
embeddings input is applied (Gal and Ghahramani,
2016). This technique operates by dropping a sin-
gle embedding at a time, instead of dropping only
part of each embedding. This is motivated by the
fact that for the embeddings input, the whole vector
is important and therefore dropping part of each
embedding would cause some loss of information.
In addition to these techniques, dropout is also ap-
plied to the recurrent layer of the model, using the
approach proposed by Gal and Ghahramani (2016).

As for batch normalization (Ioffe and Szegedy,
2015), from experimental results it was clear that
applying it directly to the output of a recurrent layer
introduces too much noise and results in worse per-
formance. We therefore apply batch normalization
only to the output of the hidden feed-forward lay-
ers.

While evaluating the model’s hyperparameters,
both a Long Short Term Memory (LSTM) (Gers
et al., 1999) layer and a Gated Recurrent Unit
(GRU) (Cho et al., 2014) layer were tested. The
latter is very similar in nature to an LSTM, but it
has the advantage of using a smaller number of
weights, reducing overfitting on the training data.

Details on which configuration was chosen for each
task and the submitted runs are reported below.

3.4 System description - Task 1

For the coarse classification task, the aforemen-
tioned architecture was used. We performed a grid
search to select the best performing parameters on
the validation set. We selected among two different
sets of models, one with two feed-forward layers
and one with one feed-forward layer.

The first submitted run
(InriaFBK coarse 1) is the best perform-
ing one among the models with two hidden
feed-forward layers. We used no dropout on the
embeddings and no dropout on the feed-forward
layers, while the recurrent dropout is set to 0.2.
No batch normalization was applied, and a GRU
layer was used as the recurrent layer. The two
feed-forward layers have 500 neurons each, while
the recurrent layer has size 300.

The second submitted run
(InriaFBK coarse 2) is the best perform-
ing one among the models with one hidden
feed-forward layer. We used no dropout on the
embeddings, a dropout layer on the output of the
hidden layer (dropout value of 0.5), thr recurrent
dropout was set to 0.2. Batch normalization was
used. The recurrent layer is a GRU of size 300,
while the hidden layer has size 200.

The third submitted run
(InriaFBK coarse 3) is derived from
the parameters of the first run, but we reduced the
size of both the hidden and the feed-forward layers.
The dropouts, batch normalization, recurrent layer
type are therefore the same as in the first run. while
the two hidden feed-forward layers have size 200.
The recurrent layer has size 100.

3.5 System description - Task 2

For the fine-grained classification task, an approach
similar to the first task was used. Grid search was
performed over two different sets of models, with
one and two feed-forward layers, respectively.

The first submitted run (InriaFBK fine 1)
is the best performing one among the models with
two hidden feed-forward layers. It uses no batch
normalization and no recurrent dropout. Dropout
was applied on the output of the feed-forward layer,
with value 0.2. The size of the hidden layer is 500,
and the recurrent layer has size 300. We use a GRU
as the recurrent layer.

82

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018



The second submitted run
(InriaFBK fine 2) is the best perform-
ing one among the models with one hidden
feed-forward layer and batch normalization. It
uses recurrent dropout with value 0.2. Dropout
was applied on the output of the feed-forward
layers with value 0.5. The size of the hidden layer
is 500, and the recurrent layer has size 300. We
use a GRU as the recurrent layer.

The third submitted run (InriaFBK fine 3)
is the best performing one among the models with
one hidden feed-forward layer but no batch nor-
malization. It uses recurrent dropout with value
0.2. Dropout was applied on the output of the
feed-forward layer, with value 0.5. The size of the
hidden layer is 500, the recurrent layer has size 300.
We use a GRU as the recurrent layer.

The system developed for the two tasks is avail-
able at https://gitlab.com/ashmikuz/
creep-cyberbullying-classifier.

4 Evaluation

We report in this Section the preliminary results on
the test set, using the splits described in Section 3.

4.1 Preliminary Results - Task 1

Results on Task 1 show that there are only slight
differences among the three runs submitted for the
task. The configuration coarse 1 achieves the best
performance on the ‘Offensive’ class, while on the
‘Other’ class coarse 2 it yields a slightly better
improvement. Overall, it seems that coarse 1 is
less sensitive to the imbalance of the two classes,
since it can classify better the offensive tweets with
less training instances.

Category P R F1 Support
Offensive 0.65 0.72 0.68 333

Other 0.85 0.80 0.83 669
Macro AVG 0.75 0.76 0.75 1002
Micro AVG 0.78 0.78 0.78 1002

Table 1: Results for InriaFBK coarse 1

Category P R F1 Support
Offensive 0.70 0.62 0.65 333

Other 0.82 0.87 0.84 669
Macro AVG 0.76 0.74 0.75 1002
Micro AVG 0.78 0.78 0.78 1002

Table 2: Results for InriaFBK coarse 2

Category P R F1 Support
Offensive 0.67 0.64 0.65 333

Other 0.83 0.84 0.83 669
Macro AVG 0.75 0.74 0.74 1002
Micro AVG 0.77 0.77 0.77 1002

Table 3: Results for InriaFBK coarse 3

4.2 Preliminary Results - Task 2
Results on Task 2 show that the configuration with
one hidden feed-forward layer (fine 2) is gener-
ally best performing on all categories apart from
‘Profanity’, which is outperformed by the model
with two hidden feed-forward layers (fine 1) . The
reason behind this difference will be further inves-
tigated in the future with additional experiments.

Category P R F1 Support
Abuse 0.51 0.51 0.51 210
Insult 0.37 0.44 0.40 111

Profanity 0.43 0.25 0.32 12
Other 0.84 0.82 0.83 669

Macro AVG 0.54 0.51 0.52 1002
Micro AVG 0.71 0.71 0.71 1002

Table 4: Results for InriaFBK fine 1

Category P R F1 Support
Abuse 0.59 0.51 0.55 210
Insult 0.37 0.44 0.40 111

Profanity 0.50 0.17 0.25 12
Other 0.83 0.85 0.84 669

Macro AVG 0.57 0.49 0.51 1002
Micro AVG 0.72 0.72 0.72 1002

Table 5: Results for InriaFBK fine 2

Category P R F1 Support
Abuse 0.60 0.50 0.55 210
Insult 0.38 0.41 0.40 111

Profanity 0.50 0.17 0.25 12
Other 0.82 0.86 0.84 669

Macro AVG 0.58 0.49 0.51 1002
Micro AVG 0.73 0.73 0.73 1002

Table 6: Results for InriaFBK fine 3

The differences between fine 2 and fine 3 are
minimal, with all F1 values being identical between
the two sets of classes (apart from the Micro AVG).

Please note that the three runs submitted to the
shared evaluation for each Task were obtained by

83

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018



re-training the models with the configurations de-
scribed above, keeping the same validation set
(20%) and merging the training and the test in-
troduced in Section 3 to increase the amount of
training data.

5 Conclusions

In this paper, we have described the system sub-
mitted to Germeval 2018 by a team composed of
researchers from INRIA Sophia Antipolis and Fon-
dazione Bruno Kessler in Trento. We adopt an
approach based on Recurrent Neural Networks that
does not require any external lexicon or semantic
resource, and that is based on features extracted
directly from text. It also makes use of the fastText
embeddings and emoji embeddings extracted from
a large English corpus and automatically aligned to
the German ones. We chose this approach because
we want to build a framework able to work on mul-
tiple languages, given a language-specific training
set. Indeed, we plan to participate with the same
system to another task for hate speech detection in
Italian.

Acknowledgments

Part of this work was funded by the CREEP
project (http://creep-project.eu/), a
Digital Wellbeing Activity supported by EIT Digi-
tal in 2018. This research was also supported by the
HATEMETER project (http://hatemeter.
eu/) within the EU Rights, Equality and Citizen-
ship Programme 2014-2020.

References
Francesco Barbieri, Francesco Ronzano, and Horacio

Saggion. 2016. What does this Emoji Mean? A
Vector Space Skip-Gram Model for Twitter Emojis.
In LREC.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. DataStories at SemEval-2017 Task 4:
Deep LSTM with Attention for Message-level and
Topic-based Sentiment Analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada, August. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching Word Vec-
tors with Subword Information. arXiv preprint
arXiv:1607.04606.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
LSTM.

Edel Greevy and Alan F Smeaton. 2004. Classify-
ing racist texts using a support vector machine. In
Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 468–469. ACM.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Natasha Lomas. 2016. Facebook, Google, Twitter
commit to hate speech action in Germany.

Yashar Mehdad and Joel Tetreault. 2016. Do Char-
acters Abuse More Than Words? In Proceedings
of the 17th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 299–303.

Samuel L. Smith, David H.P. Turban, Steven Hamblin,
and Nils Y Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. arXiv preprint arXiv:1702.03859.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the World Wide Web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26. Association for Computational
Linguistics.

Zeerak Waseem, Wendy Hui Kyong Chung, Dirk Hovy,
and Joel Tetreault. 2017. Proceedings of the First
Workshop on Abusive Language Online. In Pro-
ceedings of the First Workshop on Abusive Language
Online. Association for Computational Linguistics.

84

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018


	InriaFBK at Germeval 2018: Identifying Offensive Tweets Using Recurrent Neural Networks Michele Corazza, Stefano Menini, Pinar Arslan, Rachele Sprugnoli, Elena Cabrio, Sara Tonelli & Serena Villata

