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Abstract SocialLink is a project designed to match social
media profiles on Twitter to corresponding entities in DB-
pedia. Built to bridge the vibrant Twitter social media world
and the Linked Open Data cloud, SocialLink enables knowl-
edge transfer between the two, both assisting Semantic Web
practitioners in better harvesting the vast amounts of infor-
mation available on Twitter and allowing leveraging of DB-
pedia data for social media analysis tasks. In this paper,
we further extend the original SocialLink approach by ex-
ploiting graph-based features based on both DBpedia and
Twitter, represented as graph embeddings learned from vast
amounts of unlabeled data. The introduction of such new
features required to redesign our deep neural network-based
candidate selection algorithm and, as a result, we experi-
mentally demonstrate a significant improvement of the per-
formances of SocialLink.

Keywords Social Media · Linked Open Data · Machine
Learning · DBpedia

1 Introduction

Today it is hard to imagine a public person or an organiza-
tion that does not have a social media account. Such entities
typically have a rich presence in the social media, sharing
content, engaging with their audience, maintaining and ex-
panding their popularity. They typically post new content
frequently and keep all the information in their profiles as
relevant and precise as possible, so that a potential consumer
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or a fan can be informed about the latest developments in no
time. Thus, social media have become a primary source of
information providing up-to-date knowledge on a wide va-
riety of topics, from major events to the opening hours of
stores or what books or songs a particular celebrity likes.
Coincidentally, such people and organizations often have
dedicated Wikipedia pages, and thus corresponding entries
in knowledge bases (KB) related to Wikipedia, such as DB-
pedia [20], YAGO [18], or Wikidata [10].

Data in social media and KBs present opposite charac-
teristics. On the one hand, KBs provide high-quality struc-
tured information (e.g., YAGO has 95% accuracy [18]) that
is easily accessible, e.g., due the use of open formats (RDF)
and online publishing as Linked Open Data (LOD), while
data from social media accounts is often noisy, unstructured,
and hidden behind restrictive APIs. To extract from social
media as much information as typically contained in a KB
entry, sophisticated pipelines have to be built implement-
ing tasks like event detection, user profiling, and entity link-
ing. These tasks typically exploit supervised learning [7,14,
15,21,22,23], which requires training sets that are scarcely
available and expensive to create manually. On the other
hand, social media provide up-to-date (real-time) informa-
tion, while contents in KBs may lag behind from hours to
months. For Wikipedia-related KBs, such lag comprises both
the time for changing the page (hours to months [12], based
on popularity) and, for automatically extracted KBs like DB-
pedia and YAGO, the time for that change to propagate in
the KB (months to years). Such lag may prevent using these
KBs in some application scenarios.

In light of these differences, we have started the So-
cialLink1 project to bridge the KB and social media worlds
by linking KB entities to their corresponding social media
profiles. Our motivation is to enable knowledge transfer be-

1 http://sociallink.futuro.media

https://link.springer.com/article/10.1007/s13748-018-0160-x
http://sociallink.futuro.media


2 Yaroslav Nechaev et al.

tween the two. Indeed, bringing high-quality knowledge from
KBs into social media enables and significantly simplifies a
wide variety of tasks including Entity Linking [7,23,6] and
User Profiling [24]. On the other hand, the up-to-date nature
of social media can be exploited to help keeping KBs up-
dated, providing new data and references2 to existing facts.

The original implementation of SocialLink targets DB-
pedia as KB and Twitter as social network, and consists of
a linking approach and a public LOD dataset. The linking
approach (described in [25]) is a three-phase pipeline that
(i) gathers, indexes and stores the data necessary to perform
the linking (data acquisition phase), (ii) proposes a set of
candidate social media profiles for each entity in a KB (can-
didate acquisition phase) and (iii) uses a deep learning-based
model to select (or abstain from selection) the best possible
candidate for the target entity (candidate selection phase).
The approach is trained and evaluated using the 56,133 ex-
isting links to Twitter found in DBpedia and Wikidata, and
is able to leverage large amounts of unsupervised data both
from DBpedia and Twitter to improve performances. Source
code and documentation are available in our GitHub repos-
itory.3 As the approach and most of the features it uses are
general, it may be potentially expanded to support additional
KBs and social media presenting characteristics similar to
the ones considered here (e.g., availability of names, tex-
tual content and connections for both KB entities and so-
cial media profiles). Concerning the LOD dataset (described
in [26]), it consists of almost 300K high quality (more than
90% precision) alignments, obtained by applying the above
linking approach to 2M living people and 500K currently ex-
isting organizations in DBpedia (entities from multiple DB-
pedia language chapters are considered for the LOD dataset).
Additionally, the dataset contains raw scores for each can-
didate alignment allowing end users to tune the precision /
recall balance as they see fit. We distribute the dataset in ac-
cordance with LOD best practices, reusing existing vocabu-
laries and providing a SPARQL endpoint. New versions are
produced periodically covering the latest data and algorithm
improvements. Relevant statistics and the latest dataset ver-
sion can be found on our website and Zenodo.4

Graph-based features, both on the social media and KB
sides, is an essential source of information little exploited
in the original SocialLink. On the social media side, the so-
cial graph plays a crucial role for many social media-related
tasks, where it reveals a significant amount of information
about the users. The social graph is basically a vibrant net-
work of connections between users that is typically repre-
sented by an explicit “follow” action, which manifests the
intent of a user (follower) to read content written by the fol-

2 https://meta.wikimedia.org/wiki/Grants:Project/

Hjfocs/soweego
3 https://github.com/Remper/sociallink
4 https://zenodo.org/record/820160

lowed user (friend). In one of our recent papers [24], we
have shown that by just using SocialLink along with a sim-
ple rule-based technique one can infer interests of a passive
user (i.e., a user not generating any content on his own) by
exploiting the social graph. The social graph has also been
used to determine user’s location [35], gender, and politi-
cal affiliation [39]. Moving to the KB side, knowledge is
often encoded in RDF triples and can naturally be repre-
sented as a knowledge graph with entities as vertices and
relations as edges. These connections between entities are
a powerful mechanism used in literature for solving a wide
range of tasks both in the Semantic Web and many other
domains [33]. Due to difficulties in acquiring and encoding
such graph-based features, previous versions of SocialLink
have utilized them only indirectly, through measures such as
the number of friends and followers of a social media profile
or the indegree and the outdegree of a KB entity.

In this paper, we build upon and significantly extend our
previous works [25,26] by presenting an improved version
of the SocialLink linking approach that addresses the above
shortcoming. Our contributions are threefold:

1. we introduce graph-based features trained from the large
amounts of unsupervised data available on both the so-
cial media and the KB sides;

2. we redesign our candidate selection step to accommo-
date those new features and a larger training set;

3. we provide an extensive evaluation of the algorithm im-
provements made since the original approach [25,26].

Concerning the first contribution, we explore the addi-
tion of graph-based features into the feature space in the
form of embeddings, i.e., low-dimensional vector represen-
tations of nodes learned using large amounts of unsuper-
vised data. Embeddings typically capture similarities among
the objects they encode, a particularly useful trait for link-
ing tasks like ours. On the social media side, we build on
Swivel [36] to derive social graph embeddings for Twitter
user profiles. In doing so, we address two fundamental chal-
lenges. Firstly, the social graph is typically very expensive
to acquire at scale, as many social media obscure or hide
the social graph altogether from third parties or, where it is
available, significantly limit the number of user connections
that can be sampled over a fixed period. In this paper, we
show that the social graph can be efficiently approximated
using retweet and mention relations mined from the sam-
pled tweet stream provided by the Twitter Streaming API
(the same stream we leveraged in [26] to overcome similar
limitations affecting the candidate acquisition phase). Sec-
ondly, there are much more users in the social media than en-
tities in the KB or words in any reasonable vocabulary, and
most of the embedding generation approaches are not rea-
sonably scalable to accommodate the complete social graph
of any major social media. For example, Cochez et al. [5]
provide embeddings with one of the largest vocabularies we

https://meta.wikimedia.org/wiki/Grants:Project/Hjfocs/soweego
https://meta.wikimedia.org/wiki/Grants:Project/Hjfocs/soweego
https://github.com/Remper/sociallink
https://zenodo.org/record/820160
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have seen, yet it is still two orders of magnitude smaller than
what is required by our task. We solve this issue by training
embeddings only for the limited subset of the most followed
users on Twitter and then treating other users as a weighted
sum of the users they follow. Moving to the KB side, we
leverage recent research results on RDF-based embeddings
by Cochez et al. [5], using precomputed models made avail-
able by them [34] that cover almost 9M entities from the En-
glish DBpedia. In particular, we have found that among the
models based on GloVe [29], the PageRank-based weighting
schemes provide the best improvement in our task, consis-
tently with the general findings reported by the authors.

Concerning the second contribution, the introduction of
the new features inevitably required modifications to our
original model. Initially, we have tried to use the embed-
dings by directly concatenating them with our old feature
sets. However, since we are simultaneously adding vectors
from two completely independent feature spaces, it becomes
hard for the densely connected neural network to consis-
tently find a solution that brings an improvement to the whole
task. To this end, we show that by changing the topology of
the network with the addition of a transformation layer fol-
lowed by the multiplication of the transformed embeddings,
instead of their simple concatenation, we are able to assist
the training algorithm in finding a better solution overall.

Concerning the third and final contribution of this paper,
it consists in an extensive evaluation of the new model in
comparison with the old one [25,26]. This evaluation is per-
formed on a new, larger gold standard for English DBpedia
entities, which includes recent Twitter data and fixes and ad-
ditions provided by the DBpedia and Wikidata communities,
resulting in an overall growth from 35,149 [25] to 56,133
alignments. We evaluate both the improved model here pre-
sented and our old model [26] and other two baselines on
this new gold standard, showing that the improvements in-
troduced in this paper significantly increase performances.

The rest of the paper is structured as follows. In Sec-
tion 2 we introduce the linking task in more details. Sec-
tion 3 provides an overview of the SocialLink pipeline in-
cluding the description of features in the old model. Sec-
tion 4 introduces the new graph-based features, while Sec-
tion 5 describes the new neural model. The evaluation of
the new additions is provided in Section 6. Section 7 briefly
present the LOD resource obtained from running the So-
cialLink pipeline. We present related work in Section 8 and
conclude summarizing our findings in Section 9, with Ap-
pendix A comparing different word embeddings for our task.

2 Problem Definition

Our goal is to find a profile of an entity (person or organiza-
tion) in a particular social network given the knowledge base

(KB) entry for the entity, which consists of a set of attributes
about the entity.5 In the following, we consider the DBpedia
KB and the Twitter social network, although the task defini-
tion and most of the remarks here are general and may apply
to other KBs and social media with similar characteristics.

The information available in a KB entry depends on the
KB considered and, within the same KB, may be differ-
ent from entity to entity. DBpedia itself, although based on
Wikipedia that is being updated by millions of people every
day, can have various issues including inconsistency, nois-
iness, obsolete knowledge and unavailability of entity at-
tributes. An entry about the President of the United States
can, for example, contain many attributes from different do-
mains, while an entry for a regional-level politician in a
non-English speaking country can basically contain a name,
a description and the occupational class. This heterogene-
ity requires an approach that can work with the bare min-
imum of information known about the target entity. Here,
we assume that a KB entry at least contains the name and a
textual description, person vs organization type information,
and some temporal information allowing the distinction be-
tween alive/existing entities and non-existing ones.

Working with social media from the outside also im-
poses a number of challenges. First, similar to entities, also
the amount and quality of information available in a social
media profile may vary. Specifically, profiles can be pri-
vate, have limited attributes available, and / or contain con-
fusing or inaccurate information. Therefore, a linking ap-
proach has to use the attributes that are most widely avail-
able in social media. They include, for example, user name,
social graph, posting behavior, textual description and user-
generated content and a special “verified” flag issued by the
social media that certifies the identity of the profile owner.

Second, for famous people and organizations, there typ-
ically exist impersonating and fan profiles that can be very
similar to the real one. Since most of the entities do not try to
acquire the “verified” flag, it can be hard even for a human to
distinguish them. Moreover, certain groups of people, e.g.,
politicians and athletes, tend to have multiple profiles that
correspond to various periods in their life. A politician might
create a new profile if he was elected, an athlete can do the
same when changing teams. Some famous people tend to
have an official and a personal profile. In all these cases,
finding the right profile among very similar options is hard.

Third, for Twitter and many other social media it is not
feasible to acquire the entire social network, due to its enor-
mous size and the API limitations. Therefore, to acquire
the candidate profiles for a target KB entity one has to use
the available API request quota sparingly, which limits the
amount of candidates and the types of candidate informa-

5 We start from KB entries as they are entirely known in advance,
differently from social network profiles that can be only queried or
(partially) acquired via expensive crawling.
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Table 1: Information in gold standard and DBpedia 2016-04,
including average # of names and description length (chars)

Live Entities
(per, org)

Persons
percentage

Avg.
# names

Avg. desc.
length

Gold standard 56,133 72.98% 1.81 547
DBpedia (EN) 1,123,735 71.05% 1.89 525
DBpedia (All) 2,589,023 78.62% 1.61 518

tion that can be acquired. While these limits can be soft-
ened using more sophisticated API crawling techniques (in
accordance with terms of use) and by leveraging possible in-
formation streams provided by the social network, like the
sampled tweet stream we exploited in [26] and in this work,
one cannot generally assume that all relevant candidates and
their information can be accessible when linking an entity, if
not only for the difficulty of processing such huge amount of
information (e.g., running a classifier over millions of users
for millions of KB entities). Therefore, in all the cases where
it is impossible to link an entity to a profile we cannot infer
that the entity is not present on the considered social net-
work, as the right profile for the entity may just be not ac-
cessible and thus unknown (open world assumption).

The task that we solve in this paper is similar to the well-
known problem of profile matching on social media, if we
look at a KB entry as a special kind of profile. However, KBs
do not contain attributes that were vital to matching profiles
in previous studies, such as usernames, user-generated con-
tent, and social graph. Therefore, the techniques outlined in
such studies cannot be directly applied in our case and can-
not provide a baseline for evaluating our approach.

3 Approach Overview

In this section, we provide an overview of SocialLink ap-
proach for linking DBpedia entities to Twitter user profiles.
We build on our previous work reported in [25,26], that we
organize and summarize here pointing out the improvements
contributed in this paper and further detailed in Section 4
(embeddings) and Section 5 (improved selection model).

Figure 1 highlights the three phases of the approach.
Processing starts with the data acquisition phase (Section 3.1),
where the required data from Twitter and DBpedia, enriched
with fresh data from Wikidata and including preexisting gold
standard alignments, are gathered, prepared, and indexed lo-
cally for further processing. Next, in the candidate acquisi-
tion phase (Section 3.2), for each DBpedia entity a list of
candidate Twitter profiles matching the entity is obtained by
querying the indexes. Finally, the candidate selection phase
(Section 3.3) uses the gold standard to train a neural net-
work that scores and selects the best matching candidate, or
abstains if there is no suitable candidate.

3.1 Data Acquisition

During this phase, we gather and process large amounts of
data to support further steps. This includes the retrieval and
local indexing of entity data (RDF triples) from DBpedia
and Wikidata and of user profile data from Twitter, as well as
the generation of entity and profile embeddings, i.e., dense
vector representations of objects learned from large amounts
of unlabeled data and used as features in our approach.

Entity Indexing Entity information exploited in SocialLink
consists of names, types, textual descriptions, live / not-alive
status, relations to other KB entities, and preexisting align-
ments to social media profiles that form our gold standard.
This data is mainly acquired from DBpedia6 for live person
and organization entities,7 which account for the majority
of the available DBpedia-Twitter alignments. We further en-
rich this data with more up-to-date alignments and entity
death / closing dates from Wikidata, mapping from Wiki-
data entity identifiers to DBpedia entity identifiers using the
owl:sameAs links from DBpedia and the RDFpro [8] tool
for URI rewriting. To speed up processing, and overcome
the limitations of public SPARQL endpoints, we build a lo-
cal entity index consisting of a Virtuoso triplestore populated
with all the required data. Here the 56,133 gold standard
alignments (40,967 persons, 15,166 organizations, available
on our website) are also extracted to be used for training the
candidate selection phase.8 Table 1 provides relevant statis-
tics for the gold standard, compared to DBpedia in general
(English chapter and all chapters, linkable live entities only).

Twitter Profile Indexing Profile information exploited in So-
cialLink consists of names, user-generated texts, and social
relations (e.g., follow, retweet, reply and mention relations).
This information can be obtained from the social media API,
that for Twitter consists of either the ReST API or the Stream-
ing API. We employed the first initially [25], but its rate
limits (e.g., 180 user queries every 15 minutes) make dif-
ficult to acquire data for all the candidate Twitter profiles
that may be linked to DBpedia. Consequently, we switched
to the Streaming API [26] that provides a continuous (sam-
pled) stream of tweets posted on Twitter, each one enriched
with metadata and information about its author.

6 English DBpedia version 2016-04, for what concerns the exper-
iments reported in this paper (to enable comparison with original ap-
proach in [25]). The SocialLink LOD dataset released online is instead
built using data from all language chapters of the most recent DBpedia.

7 Entity alive status is gathered from temporal properties
like dbo:deathDate, dbo:deathYear, dbo:closingYear,
dbo:closed, dbo:extinctionYear, dbo:extinctionDate,
wikidata:P570, wikidata:P20, wikidata:P509, or proper-
ties implying death like dbo:deathPlace, dbo:deathCause,
dbo:causeOfDeath.

8 Gold alignments derive from selected foaf:isPrimaryTopicOf and
wikidata:P2002 triples of entities assumed living.
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Fig. 1: The three processing phases of the SocialLink pipeline.

From the Twitter stream, we continuously collect and in-
dex the following data. First, the latest profile encountered
for each user is recorded. Since the Streaming API is al-
lowing us to observe only a subset of the complete Twitter
stream, it is not guaranteed that all possible profiles will be
extracted. However, this approach has yielded 241M most
active users, which we consider sufficient for our task. Sec-
ondly, all the available text generated by each profile is gath-
ered. This includes the tweets written by a user as well as the
(time-varying) textual descriptions found in the user profile
for the observed time period. Third, we extract the names
related to a profile along with the frequency for each name.
Finally, we record the interactions between users by extract-
ing mentions and retweets. This information is needed to
acquire an approximate social graph for each profile.

Collected user data is indexed in a PostgreSQL relational
database and a basic full-text search index is built to allow
efficient searching of profiles by name. Data processing is
implemented using Apache Flink,9 a framework providing
reliability (via automatic checkpoints) and scalability (via
automatic horizontal scaling). We have currently gathered
more than four years of raw Twitter data, out of which 450
GB of indexed and accessible user data are produced. This
setup of the system allows performing hundreds of queries
per second on a single machine and enables frequent, reli-
able, and fully automatic population and update of the So-
cialLink dataset. Additionally, the user index provides much
more user-related data compared to live querying of Twitter
ReST API, thus increasing alignment performances in both
candidate selection and candidate acquisition phases.

Embeddings To effectively exploit textual information of
DBpedia entities (short abstracts) and Twitter profiles (user
descriptions, tweets) and deal with lexical variability, in our
work [25,26] we leverage low-dimensional vector represen-
tations of texts — i.e., embeddings — computed using a La-
tent Semantic Analysis (LSA) approach [19,9]. These word
embeddings are derived from the term-by-document matrix
of the English Wikipedia via dimensionality reduction (ma-

9 http://flink.apache.org/

trix factorization via singular value decomposition).10 It is
worth noting that a number of approaches were proposed to
improve word embeddings in various ways over the last five
years. We have conducted additional tests (see Appendix A)
with some of them and, since such approaches did not in-
troduce significant improvement on our task, we decided
to stay with LSA to perform a proper comparison with the
model proposed in our previous work [25].

In addition to LSA embeddings, which account for text
information only, in this paper we introduce graph embed-
dings to account also for relational data, both in the KB and
the social media, which we did not leverage before. On the
KB side, we use the ‘PageRank Split’ variant of graph em-
beddings described in [5,4] and computed for the English
DBpedia (version 2016-04),11 which are a particular imple-
mentation of RDF graph embeddings [34]. On the social me-
dia side, we propose our own social graph embeddings that
capture the information of a user’s social relations, as de-
tailed in Section 4. Together, these graph embeddings allow
exploiting the large amounts of unlabeled RDF and Twitter
data available online and in our indexes, to learn effective
low-dimensional representations for entities and user pro-
files that can be exploited in the alignment task.

3.2 Candidate Acquisition

In this phase, given an entity to align to Twitter, we obtain a
list of candidate Twitter profiles that is expected to contain
the true candidate for the entity, if any. While we previously
queried the Twitter ReST API [25] to produce the candi-
date list, we now employ a full-text search query targeted
at our user index [26]. In both cases, the choice of query is
significant: we want to maximize recall, i.e., the probability
of finding the true candidate among the list, without intro-
ducing too much noise (i.e., unrelated candidates) that may
decrease performances in the following selection phase.

10 See [1, Section 3.2] for a detailed description of how LSA embed-
dings are computed.

11 PageRank Split embeddings downloaded from http:

//data.dws.informatik.uni-mannheim.de/rdf2vec/

models/DBpedia/2016-04/GlobalVectors/

http://flink.apache.org/
http://data.dws.informatik.uni-mannheim.de/rdf2vec/models/DBpedia/2016-04/GlobalVectors/
http://data.dws.informatik.uni-mannheim.de/rdf2vec/models/DBpedia/2016-04/GlobalVectors/
http://data.dws.informatik.uni-mannheim.de/rdf2vec/models/DBpedia/2016-04/GlobalVectors/
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Table 2: Example of candidate retrieval query.

Entity http://dbpedia.org/resource/Barack Obama

Names Barack Obama, Barack Hussein Obama

Query (Barack Obama) OR (Barack Hussein Obama)

Result @BarackObama (true candidate), @ObamaNews . . . other 38 candidates

Based on our previous experience, where we developed
and tested different query construction strategies [25], we
currently adopt a strategy that combines all known names
of a DBpedia entity as encoded by properties foaf:name and
rdfs:label. Names consisting only of first or last name (i.e.,
foaf:name matching foaf:givenName or foaf:surname) are
filtered out to prevent noisy results. Indeed, if for entity “John
Smith” we were to keep the name “John”, the list of poten-
tial candidates would contain all possible Johns, which is
not desirable. The remaining names are deduplicated and
the three most frequent ones (in collected foaf:name and
rdfs:label properties) are OR-ed to form the query, as shown
in the example in Table 2. If no results or too many results
are obtained, the query is modified by selecting a different
combination of names. The returned results are sorted based
on the frequency with which we saw a name referring to a
candidate profile in a stream of tweets. In the end, we save
at most the top k = 40 results returned by the user index as
candidates for the entity, this threshold empirically chosen
with the goal of maximizing recall while reducing noise. So
if the candidate with a name-based match is not mentioned
or retweeted as much as other matching candidates, it would
not appear in the resulting list.

Compared to live querying the Twitter ReST API, the
current approach based on the user index allows a greater de-
gree of flexibility in acquiring the candidate list for a DBpe-
dia entity, as it enables different query strategies and allows
bypassing API limitations in terms of query complexity and
request rates (at most one request / 20 candidates per entity
could be feasibly obtained with the ReST API), resulting in
an increase of recall.

3.3 Candidate Selection

In this phase, given a DBpedia entity and the corresponding
list of candidate Twitter profiles, we formulate a classifica-
tion problem where the classifier has to provide a probability
estimate of a candidate being a match of the target entity, for
each considered 〈candidate, entity〉 pair.

As classifier we employ a deep neural network (DNN)
trained on the gold standard DBpedia-Twitter alignments
described earlier. Our initial DNN model [25,26] consisted
of a stack (5 hidden layers with 256 units each) of densely-
connected layers with tanh as activation function and soft-
max applied on top to acquire probability estimates. The
DNN takes a feature vector as input consisting of the fea-

tures of Table 3 and all their pairwise combinations, scaled
to unit variance and zero mean and hereafter referred to as
BASE features. The Adam algorithm is used to train the net-
work, employing cross-entropy as cost function. Dropout
with the probability of 0.5 is applied to each layer, and L2
regularization is used to prevent overfitting. In this paper,
we revise and improve this architecture to include graph em-
beddings both for the entity and the candidate profile, as de-
scribed in Section 5.

After the probability estimates are computed, the can-
didate with the best probability is selected. SocialLink can
abstain from selection based on a minimal score threshold.
Like in our previous paper [25], Section 6 provides preci-
sion / recall curves produced by changing this threshold dur-
ing the evaluation on the gold standard dataset.

4 Graph-based Embeddings

The addition of graph-based embeddings in our case enables
exploiting connections among entities and users, which is
the data we have not used in our model before. Embeddings
provide a dense low-dimensional representation of objects
trained to reflect similarities between them. In case of neural
language models, for example, individual embeddings typi-
cally follow the distributional semantics hypothesis: words
that are used in the same contexts tend to have similar mean-
ings, which means that in the resulting vector space such
words will be close to each other according to some dis-
tance metric. Inspired by the overwhelming success of word
embeddings in many tasks, similar approaches appeared for
representing nodes in graphs. They follow the same princi-
ple: nodes that have similar neighborhood in a graph will
have similar representations.

In this section, we motivate and describe the algorithm
we have chosen to represent graph-based features from DB-
pedia, as well as present our novel approach for the social
graph in Twitter. Both algorithms are based on neural lan-
guage models, specifically, the global log-bilinear regres-
sion models that produce embeddings by factorizing12 the
co-occurrence matrix of objects (entities in case of DBpe-
dia, users in case of Twitter).

4.1 Global vectors from the co-occurence matrix

In order to construct the aforementioned co-occurrence ma-
trix following the distributional semantics hypothesis, one
has to define the focus object and one or many context ob-
jects. In case of natural language, where the objects are words,
for each focus word in a sentence, some neighboring words

12 The regression models described in this section perform an ap-
proximate matrix factorization rather than the exact one used, for ex-
ample, by LSA.
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Table 3: Basic features used in the DNN classifier. Compared to [25], we dropped the Wikipedia-specific features that provide
limited improvements.

Feature family Feature type Feature description

Name 4 scalars edit distances are computed for pairs 〈entity name, profile username〉 and 〈entity name, profile screen name〉
using two metrics: Jaro-Winkler and Levenshtein resulting in four scores. Since an entity can have an arbitrary
amount of names we compute average the scores across all of them. Such features are known to be useful when
aligning profiles [38,37].

Description 2 scalars two cosine similarity scores between the entity description (rdfs:comment) and the two texts derived from
user-related textual content in Twitter: profile text (description, location, pinned tweet) and the content of tweets
made by the user (as extracted from our stream of tweets). The average of tf-idf-weighted word embeddings was
used to represent text.

Core profile
metrics

4 scalars logarithms of friends, followers, tweets and listed counts for the profile, to measure the popularity and activity
level of the Twitter profile. These features capture the intuition that the true candidate profile for a KB entity is
often the most popular and/or active one (this is especially the case for famous KB entities).

1 binary set to 1 if the profile has been ‘verified’ by the social media provider. Even if the percentage of verified entities
is rather low, it is still one of the most effective features to help distinguishing a real profile from a fake one.

Homepage
links

3 binary we crawl links to Twitter profiles in DBpedia entity homepages (property foaf:homepage) and define three
features to specify: (i) if the profile is contained in the list of profiles scraped for the entity; (ii) if the profile is
the only one extracted; and (iii) if the profile contains a link back to the crawled homepage.

Entity type 2 binary entity type chosen among person (dbo:Person type) and organization (dbo:Organization type), to permit the
DNN classifier to learn a different strategy for persons and organizations.

are selected as its context. Each such occurrence is weighted
based on a weighting function, such as 1/d if the two words
are d words apart, and added to the co-occurrence matrix.

Following this approach through the unsupervised cor-
pus results in the co-occurrence matrix X ∈ Rv f×vc , where
v f is the size of the vocabulary of focus words and vc is the
size of the vocabulary of context words (for simplicity, the
same vocabulary size is typically used for both). Then, X is
factorized into matrices W ∈Rv f×d and W̃ ∈Rvc×d , where d
is the desired embedding size, by minimizing the objective:

JGloVe = ∑
i, j

f (xi j)(w>i w̃ j +bi + b̃ j− logxi j)
2 (1)

where f (xi j) is a weighting function and bi and b̃ j are bi-
ases. The model with objective (1) is referred to as the GloVe
model [29] and effectively encourages WW̃> to predict logX .
A similar model was subsequently investigated by Shazeer
et al. [36]. Their model, Swivel, instead estimates the point-
wise mutual information between the terms pmi(i; j), mod-
ifying the objective as follows:

Jswivel =
1
2 ∑

i, j
f (Xi j)(w>i w̃ j +bi + b̃ j−pmi(i; j))2

=
1
2 ∑

i, j
f (Xi j)(w>i w̃ j +bi + b̃ j− logxi j

− log |D|+ logxi∗+ logx∗ j)
2

(2)

where xi∗ = ∑ j xi j and x∗ j = ∑i xi j. The primary distinction
between Swivel and GloVe is the introduction of the “soft
hinge” loss for cases where xi j = 0:

Jhinge = log[1+ exp(w>i w̃ j− log |D|+ logxi∗+ logx∗ j)] (3)

This special case allows the unobserved co-occurrences to
contribute to the learning process, producing more stable es-
timates for rare words.

For both GloVe and Swivel, the resulting embeddings W
and W̃ are trained to estimate a particular word co-occurrence
matrix. Given that the notion of focus and the context objects
can be arbitrarily defined, the same approach can be applied
to any task including the representation learning of nodes in
a graph, provided a sufficiently large unsupervised dataset
from which to extract the co-occurrence statistics is avail-
able (as in our case). The notion of co-occurrence between
nodes and its weight can be defined differently to produce
the co-occurrence matrix. For example, random walks [30,
17] have been used to obtain sequences of nodes, which are
then treated as pseudo sentences similarly to language mod-
els. Cochez et al. [5] explore multiple weighting strategies
to produce and weight co-occurrences in RDF graphs.

4.2 Social graph embeddings

SocialLink considers 241M Twitter users during the candi-
date acquisition step and this number continues to grow as
we sample more data from Twitter. Each of those users can
potentially end up being a candidate and would require a full
set of features at the candidate selection step. Similarly to
RDF graph embeddings, we would like to have vector rep-
resentations for users in the social media based on the social
graph capturing similarities between those users. Here we
present an approach for computing such embeddings having
in mind two fundamental issues that inevitably arise when
trying to learn representations based on the social graph: the
acquisition of the social graph and the expected coverage.
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Social media APIs are incredibly restrictive: at the time
of writing, Twitter allows only one request per minute cov-
ering at most 5,000 social graph edges at a time. To resolve
this issue, instead of acquiring the exact social graph for
each user, we record interactions, such as retweets and men-
tions, between users extracted from the Twitter Streaming
API. In total, over 2.7B of such interactions were gathered.
In Twitter, the users are unlikely to see a piece of content or
a user that is not close to them in their social graph. This ob-
servation allows us to estimate the social graph by creating
a “follow” edge for each such interaction. Additionally, we
weight each edge in the graph by observing the locally nor-
malized frequency of interaction: sgi j = freqi j/∑k freqik. So
if the user is interacting with a particular set of profiles more
often, such profiles will have a more prominent weight.

The growing number of Twitter profiles in our user in-
dex poses unique requirements when designing user em-
beddings. Firstly, the learning approach has to be scalable.
Learning embeddings for each of the 241M users would
be simply impractical. Even though many of the methods
would scale linearly with the size of the vocabulary, when
increased by two orders of magnitude learning time and mem-
ory requirements would still become unreasonably high, not
to mention the portability of the result. Indeed, most of the
approaches would store embeddings in memory during train-
ing, which would quickly become a problem, especially if
trained on a GPU. DeepWalk and node2vec use random walks,
which are generated based on the number of nodes in the
graph. The log-bilinear factorization approaches described
above, in general, depend quadratically on the vocabulary
size. However, GloVe in practice scales much better, since
it is not utilizing unobserved co-occurrences in any way and
the co-occurrence matrix is typically increasingly sparse. By
comparison, Swivel would not benefit from such sparseness.

Scalability issues aside, the approach has to be able to
reliably represent out-of-vocabulary users, which would in-
evitably appear as we continue to sample the stream of tweets.
To address both issues, instead of learning embeddings for
each user, we learn them only for profiles that are being fol-
lowed (friends) and then represent other users as a weighted
sum of their friends. This procedure allows us to build em-
beddings for any given user as long as he is following some
profile for which we have the embedding.

To this end, for each user in our estimated social graph,
the list of friends was retrieved and represented as a se-
quence. Then, each profile in this sequence was treated as
a focus object while the rest were treated as co-occurring
context objects with unit weights. This mimics natural lan-
guage models by essentially treating users as documents and
friends as words where the particular order of words does
not matter. Since the computation of such co-occurrences
is quadratic in the size of the sequence and we do not get
much information by observing users with a large number

of friends, we limit the maximum sequence size to 30,000
to speed up the computation. This procedure yields a dataset
of almost 200M sequences from which the 500K most fre-
quent users were chosen to form a vocabulary, and the co-
occurrence matrix was calculated. Note that we consider
each co-occurrence equally important at this stage.

The co-occurrence matrix is then factorized using Swivel.
Swivel objective (2), compared to GloVe, bears two charac-
teristics essential for our task. First, training to estimate the
pointwise mutual information instead of the raw co-occur-
rence gives us a natural way to punish profiles that are very
frequent and, therefore, their occurring in the list of friends
do not bear much information. Second, co-occurrence matri-
ces of such size tend to become increasingly sparse. Consid-
ering that our estimation of the social graph is based on an
incomplete sample of Twitter, Swivel’s additional term (3)
for the unobserved co-occurrences is particularly important.

After the factorization, the matrix of embeddings U ∈
Rvsg×dsg including vsg = 499,712 vectors with dsg = 300 is
produced. For the other users, an embedding is calculated as
a weighted average of the embeddings of their friends:

embsg(user) =


∑ f∈fr(user)U f ∗sgu f

∑ f∈fr(user) sgu f
, if fr(user) 6=∅

u, otherwise
(4)

where fr(user) is a list of friends for which the embedding
exists and sgu f is the weight for a social graph edge from u
to f . The mean embedding u j = ∑i ui j is used if a target user
does not follow anyone we have the embedding for.

4.3 RDF graph embeddings

KBs typically consist of RDF triples, providing a natural
way of interpreting entities and relations between them as
a graph. The goal of RDF-based embeddings is, therefore,
to provide vector representations for each entity in the KB
for computing similarities between entities in our task.

Cochez et al. [5] propose a number of approaches for
building a co-occurrence matrix based on RDF data. They
treat each node in the RDF graph as co-occurring with its
neighbors and investigate the usage of Personalized PageR-
ank (PPR) to determine the weights of such co-occurrences.
They develop an efficient approximation of PPR based on
the Bookmark-Coloring Algorithm and devise 12 weighting
schemes to use along with it. After each edge in a graph
is weighted, the co-occurrence matrix can be formed. Then
the GloVe model is executed following the objective (1) and
computing an embedding vector for each entity in the vo-
cabulary (i.e., the RDF KB).

In our experiments, we tested the impact of those weight-
ing schemes on our task using the precomputed embeddings
provided by the authors, and we selected the “PageRank
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Split” variant that provides optimal performances. We con-
firm the authors’ findings that the weighting scheme signif-
icantly affects the performances on a given prediction prob-
lem. The provided embeddings K ∈ Rvkb×dkb include vkb =

8,876,676 vectors with dkb = 200 and cover most of the
entities required by our linking task. In cases where the em-
bedding of an entity is not available, the mean embedding
k j = ∑i ki j is used.

5 The Updated Candidate Selection Model

Once embeddings from both the social graph and the RDF
graph are available, we inject them into our candidate selec-
tion model introduced in Section 3.3.

The first aspect to consider concerns the way those em-
beddings are added to the model. The most trivial way of
adding new features into the model is to just concatenate
the old feature vector (BASE features) with both the embed-
dings for the candidate and the entity. However, considering
that the BASE feature space contains just 136 dimensions,
concatenating it with an additional 500-dimensional vector
(dsg + dkb) would make it harder for the model training to
arrive at a stable solution. Moreover, the BASE feature space
contains features that were handcrafted for this specific task
and can produce good performances on their own. We thus
aim to add new features in a way that does not interfere with
the network ability to learn from the old features too.

The second aspect to consider is that the candidate se-
lection phase is a binary classification task, where the goal
is to learn to match a particular entity with a particular can-
didate. So, the core motivation to have the graph-based fea-
tures in the model in the first place is to exploit similari-
ties between the RDF graph and the social graph. However,
since both vector spaces of embeddings were trained sepa-
rately, the model itself has to learn how to combine them in
a useful way, which makes the optimization problem unnec-
essary harder. During our early experiments with the simple
concatenation approach, we were unable to produce a con-
sistent enough improvement over the BASE model.

The third and last aspect to consider is that representa-
tion learning from unsupervised data is typically used as a
pre-training step. Then it is customary for a neural network
to modify those representations during back propagation to
trade the initial generality for performance in a particular
prediction task. Unfortunately, we cannot use the same tech-
nique here. We have built our approach to be general enough
to produce a SocialLink resource targeting at least 2.5M en-
tities, while our gold standard dataset contains only 56,133.
It is unlikely that training on such a gold standard will mod-
ify over 9M embeddings in a way that would produce a good
general solution for the larger task.

To address those three issues, we started with adding a
densely connected layer after each of the embeddings. This

200

embkbf1
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…f2
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fn
300

embsg

300
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136

…

match /  
not match

Fig. 2: Schematic view of the updated candidate selection
model, showing the new neural network architecture.

transformation layer further reduces the dimensionality of
embeddings to just demb = 50, acting as a global modifier
of the entire embedding feature space instead of modify-
ing individual vectors. To encourage the network to use this
transformation layer to map the original embeddings into the
same feature space, we introduce component-wise combina-
tions of features for the embeddings by adding a multiplica-
tion term. Then the multiplication term and the transformed
embeddings are concatenated with the BASE features, pro-
ducing a total of 286 features (demb ∗ 3 + 136), which go
through the same densely connected layers as before. By
modifying the topology of the network in this way we were
able not only to improve consistency during training but also
to further improve the results. Parameter demb was initially
chosen so that embeddings terms together would be roughly
the same size as BASE feature set. However, we did test
larger values with an increment of 25 up to demb = 150. We
did not notice significant performance changes with values
above 100 requiring more epochs to converge. The rest of
the network follows our previous approach described in Sec-
tion 3.3. Figure 2 shows the updated network architecture.

Finally, we have changed the way we interpret the prob-
ability estimates we receive from this pairwise classifica-
tion model. After acquiring each probability estimate pi for
candidates i = 1 . . .n, we have to decide whether to align
the entity to a candidate i or to abstain, i.e., decide that no
candidate matches the entity, a case that we denote with
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nil (analogously to nil in Entity Linking literature). Lack-
ing a specific estimate for pnil , we empirically set pnil =

1−maxi pi and then re-scale pi, i = 1 . . .n, so that after nor-
malization we have a proper probability distribution satisfy-
ing pnil +∑i pi = 1 (note that ∑i pi may be originally greater
than 1 as estimates pi are produced independently). We then
select the candidate i ∈ {1 . . .n} with the largest probabil-
ity estimate, if greater than a probability threshold chosen
to control the precision / recall balance. This estimate is
released along the SocialLink dataset and provides an indi-
cation of the alignment reliability, permitting users to set a
probability threshold to select only the most reliable align-
ments and thus operate different precision / recall balances.

6 Evaluation

We provide here an experimental evaluation of the improved
linking system described in this paper, starting by introduc-
ing the experimental setting (Section 6.1) and then report-
ing on the system performances on the overall linking task
(Section 6.2) and, separately, on the two main phases this
task is organized in: candidate acquisition (Section 6.3) and
candidate selection (Section 6.4). We also analyze the per-
formances on different entity and profile types (Section 6.5)
and conduct an error analysis (Section 6.6).

6.1 Experimental Setting

We denote the proposed improved system as BASE KB SG-
TL, as it integrates base features (BASE) with knowledge

base (KB) and social graph (SG) embeddings, combined us-
ing a translation layer (TL); we consequently concatenate
different subsets of those feature identifiers to denote sys-
tem variants obtained by ablation of selected features.

Since there are no publicly available datasets for our
task, we evaluate BASE KB SG TL and its variants on the
gold standard collected from DBpedia and Wikidata, con-
sisting of 56,133 alignments from English DBpedia enti-
ties (40,967 persons, 15,166 organizations) to correspond-
ing Twitter profiles. Of these profiles, 94.69% are in our user
index built from the tweet stream and may be successfully
aligned by the system. We use stratified 5-fold cross valida-
tion, with alignments computed for each test partition being
concatenated to form a single set of alignments for the whole
gold standard, over which our analyses are performed.

As our main performance measures, we use precision (P),
recall (R), and F1 score. These measures are computed con-
sidering as true positive (T P) every alignment produced by
the system that matches a gold standard alignment, as false
positive (FP) every system alignment not present in the gold
standard, and as false negative (FN) every gold standard

alignment not found by the system, with P = T P
T P+FP , R =

T P
T P+FN , and F1 = 2·P·R

P+R . We report P, R, and F1 scores to-
gether with their 95% confidence intervals computed via the
percentile bootstrap method, and assess the statistical sig-
nificance of the difference of those scores via the paired ap-
proximate randomization test [27] (significant if pvalue ≤
0.05). Since the output of the system is a set of alignments
each one associated to a probability estimate, different pre-
cision / recall balances and thus P, R, F1 scores can be ob-
tained by setting a varying threshold on that estimate. This
gives rise to a precision / recall curve that we report and ana-
lyze to study the performance of the system in different set-
tings that differ by the relative importance given to precision
and recall. From that curve, we pick the threshold producing
the best F1 score, and use the corresponding P, R, F1 triple
as the overall assessment of the system performances.

To assess the effectiveness of the improved system de-
scribed in this paper, we compare it against three baselines:

1. ISWC2017. This baseline employs the linking model we
previously proposed in [25] and reused in [26], which as
described in Section 3.3 consists in a simpler DNN not
leveraging relational information in the form of graph
embeddings, and where the probabilities estimated by
the DNN are directly used to select the best candidate
without any normalization, differently from the new strat-
egy that we described in Section 5.

2. MOST POPULAR. This baseline implements a straight-
forward approach where a DBpedia entity is aligned to
the most popular Twitter profile matching it. Here, match-
ing is defined as having one of the entity names in the
profile full name or screen name, and thus being in the
candidate list obtained by querying our user index. Most
popular is defined as being the matching profile “seen
the most” (i.e., authoring and/or being mentioned) in the
tweets collected from the Twitter stream.

3. MOST FOLLOWERS. Here we select as a correct align-
ment the Twitter profile with the most followers among
the ones in the user index matched to the entity.

Note that the MOST POPULAR baseline replaces the one
we used in [25] where we queried the Twitter ReST API
(instead of the Streaming API) for a target entity name and
we selected the first profile returned (if any) as the align-
ment for the entity. Both the old and the new baselines try
to simulate a user’s search for the matching profile, with the
difference that we now search on our own user index built
from Twitter data rather than querying Twitter directly, and
we use the popularity notion defined above as a proxy for the
ranking of query result provided by Twitter, which empiri-
cally appears to produce similar results. The newly added
MOST FOLLOWERS baseline similarly captures the popular-
ity of a candidate profile with an explicit metric: the audi-
ence size. Concerning the DNN-based ISWC2017 baseline,
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Model
Persons Organizations All entities

P R F1 P R F1 P R F1

BASE KB SG TL 0.856 ±0.004 0.602 ±0.005 0.707 ±0.004 0.727 ±0.010 0.406 ±0.008 0.521 ±0.008 0.831 ±0.004 0.549 ±0.004 0.661 ±0.004
ISWC2017 0.808 ±0.004∗ 0.604 ±0.005 0.691 ±0.004∗ 0.630 ±0.010∗ 0.397 ±0.008∗ 0.487 ±0.008∗ 0.768 ±0.004∗ 0.548 ±0.004 0.639 ±0.004∗

MOST FOLLOWERS 0.700 ±0.005∗ 0.583 ±0.005∗ 0.636 ±0.005∗ 0.542 ±0.010∗ 0.361 ±0.008∗ 0.434 ±0.008∗ 0.664 ±0.004∗ 0.523 ±0.004∗ 0.585 ±0.004∗

MOST POPULAR 0.669 ±0.005∗ 0.557 ±0.005∗ 0.608 ±0.005∗ 0.532 ±0.010∗ 0.355 ±0.008∗ 0.426 ±0.008∗ 0.637 ±0.004∗ 0.502 ±0.004∗ 0.562 ±0.004∗

(d)

Fig. 3: P/R curves of overall system: (a) all entities; (b) persons; (c) organizations; (d) precision, recall, and F1 scores for the
setting maximizing F1, with confidence intervals and statistical significance (∗) of difference wrt. best model

in [25] we have also investigated the use of an SVM for the
candidate selection phase, obtaining slightly worse F1 scores
when tuning the system for F1, and worse P scores when tun-
ing the system for precision. We refer the reader to [25] for
further details, as well as an analysis of BASE features.

6.2 Overall System Evaluation

Figure 3(a) reports the precision / recall curve of the im-
proved BASE KB SG TL system, compared on the same data
to the curve of the ISWC2017 baseline and to the single
〈P,R,F1〉 points of the MOST POPULAR and MOST FOLLO-
WERS baselines. Figures 3(b) and 3(c) provide the same com-
parison restricted respectively to the alignment of person
and organization entities only.

The BASE KB SG TL system outperforms the three base-
lines for all the P / R balances, except for low recall values
for organizations. P and F1 differences for the system config-
urations maximizing F1 are always statistically significant,

as shown in Table 3(d), while R differences are not statisti-
cally significant when compared to the ISWC2017 baseline.

Both figures and table show that persons are aligned bet-
ter than organizations. This difference is exhibited also by
the considered baselines and is consistent with our previous
results [25], suggesting that the considered linking task is
inherently more difficult for organization entities.

Both BASE KB SG TL and the baselines exhibit a sensi-
ble loss in terms of recall. Part of the loss is explained by
the fact that our user index contains only 94.69% of the pro-
files in the gold standard, which bounds the recall of any
approach using the index to 94.69% and thus limits the F1
score to 97.27%. The additional loss of recall can be ex-
plained by separately analyzing the two phases of the task.

6.3 Candidate Acquisition Evaluation

We analyze the internal behavior of the system starting from
the candidate acquisition phase. Table 4 provides relevant
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Table 4: Candidate acquisition statistics per entity type

Entity type Has some
candidate

Has true
candidate

Avg.
candidates

True candidate
avg. index

Persons 83.3% 65.1% 9.8 1.7
Organizations 66.7% 46.1% 10.5 2.3
All entities 78.8% 60.0% 9.9 1.9
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Fig. 4: Candidate acquisition recall, i.e., fraction of entities
whose fetched candidate list contains the true candidate

0 10 20 30 40 50 60 70 80
Threshold k

0.00

0.05

0.10

0.15

0.20

Re
ca

ll

990 1000

Fig. 5: Frequency distribution of the number of candidates
fetched per entity using our candidate acquisition strategy

statistics for this phase computed for all gold standard en-
tities and for persons and organizations only. They include:
(i) the percentage of entities for which some candidate is re-
turned by querying the user index; (ii) the percentage of en-
tities for which the returned candidate list contains the true
candidate for the entity, i.e., the candidate acquisition recall;
(iii) the average length of the returned candidate list, when
not empty; and (iv) the average position of the true candidate
in the candidate list, when not empty.

Similarly to what observed in the overall evaluation, can-
didate acquisition for person entities exhibits better perfor-

mances (recall, average true candidate index, non-empty can-
didate lists). For both kinds of entities and overall, the re-
call levels are limited, with the achieved recall of 60% (all
entities) introducing a further loss of 34% to the 6% loss
due to the right profile not being present in the user index.
This additional loss reflects the difficulty of matching the
entity names in the KB to the names used in the social me-
dia, which in some cases may be completely different. Since
there is no way for the system to produce an alignment if
the true candidate is not in the candidate list, the low re-
call levels obtained in this phase set hard limits to the recall
achievable by the system on the overall task.

Table 4 is complemented by Figure 4 that shows the re-
call obtainable by varying the maximum number of candi-
dates k fetched for each entity (see Section 3.2), and Figure 5
that shows the frequency distribution of the number of can-
didates fetched for an entity; the vertical lines correspond
to the chosen threshold k = 40. The histogram shows that
very few entities in the long tail have more candidates than
the threshold k = 40. This is reflected in the recall plot of
Figure 4, where going from the selected k = 40 to an hypo-
thetical k = 1000 will bring only a 1.57% increase in recall
(from 60.01% to the “plateau” value 61.58%), at the price
however of a sensible increase in computation costs and a
possible loss of precision in the overall task due to the intro-
duction of noisy candidates in the input to candidate selec-
tion. Therefore, k = 40 represents a good trade-off solution.

6.4 Candidate Selection Evaluation

We now turn our attention to the candidate selection phase,
whose performances are assessed in terms of precision / re-
call for the only entities for which a non-empty set of candi-
dates is returned by the candidate acquisition phase.

Figure 6(a) shows the precision / recall curves of BASE-
KB SG TL, the three baselines, and three variants of the pro-

posed system: the BASE KB TL and BASE SG TL variants,
obtained by removing the multiplication term from the DNN
and, respectively, the social graph and the KB embeddings,
and the BASE variant, obtained by removing both kinds of
graph embeddings but keeping the normalization of proba-
bilities and the other fine tunings applied to the DNN with
respect to the ISWC2017 baseline. Figures 6(b) and 6(c) pro-
vide the same comparison restricted however to person and
organization entities only, respectively. Table 6(d) reports P,
R, and F1 scores for the configurations with the best F1.

As for the overall task, BASE KB SG TL consistently out-
performs the three baselines, with P, R, F1 differences al-
ways statistically significant except overall recall with re-
spect to the ISWC2017 baseline. Notably, recall is high in
this phase, implying that the loss of recall in the overall task
is largely due to the candidate acquisition phase. Also in this
phase, performances are marginally better for persons.
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Model
Persons Organizations All entities

P R F1 P R F1 P R F1

BASE KB SG TL 0.873 ±0.004 0.908 ±0.004 0.890 ±0.003 0.802 ±0.009 0.822 ±0.009 0.812 ±0.008 0.856 ±0.004 0.892 ±0.003 0.874 ±0.003
BASE KB TL 0.866 ±0.004∗ 0.901 ±0.004∗ 0.883 ±0.003∗ 0.818 ±0.009∗ 0.797 ±0.010∗ 0.808 ±0.008 0.860 ±0.004∗ 0.876 ±0.004∗ 0.868 ±0.003∗

BASE SG TL 0.863 ±0.004∗ 0.900 ±0.004∗ 0.881 ±0.003∗ 0.798 ±0.010 0.799 ±0.010∗ 0.798 ±0.008∗ 0.855 ±0.004 0.874 ±0.004∗ 0.864 ±0.003∗

BASE 0.843 ±0.004∗ 0.901 ±0.004∗ 0.871 ±0.003∗ 0.783 ±0.010∗ 0.769 ±0.010∗ 0.776 ±0.008∗ 0.820 ±0.004∗ 0.885 ±0.003∗ 0.851 ±0.003∗

ISWC2017 0.820 ±0.004∗ 0.914 ±0.003∗ 0.865 ±0.003∗ 0.671 ±0.010∗ 0.812 ±0.009∗ 0.735 ±0.009∗ 0.789 ±0.004∗ 0.890 ±0.003 0.836 ±0.003∗

MOST FOLLOWERS 0.700 ±0.005∗ 0.895 ±0.004∗ 0.785 ±0.004∗ 0.542 ±0.010∗ 0.784 ±0.010∗ 0.641 ±0.009∗ 0.664 ±0.004∗ 0.872 ±0.004∗ 0.753 ±0.004∗

MOST POPULAR 0.669 ±0.005∗ 0.855 ±0.004∗ 0.750 ±0.004∗ 0.532 ±0.010∗ 0.770 ±0.010∗ 0.629 ±0.010∗ 0.637 ±0.005∗ 0.837 ±0.004∗ 0.724 ±0.004∗

(d)

Fig. 6: P/R curves of candidate selection phase: (a) all entities; (b) persons; (c) organizations; (d) precision, recall, and F1
scores for the setting maximizing F1, with confidence intervals and statistical significance (∗) of difference wrt. best model

When comparing the full BASE KB SG TL system to its
BASE KB TL, BASE SG TL, and BASE variants obtained via
ablation of graph-based features, both figures and table show
that each ablated feature contributes positively to the perfor-
mances of the system, with the best performances achieved
by combining both types of graph embedding features. In
particular, Table 6(d) shows that the F1 improvements for all
entities obtained by adding features are always statistically
significant. Finally, the positive impact of the new proba-
bility normalization and DNN fine tuning is demonstrated
by the difference in performances between the BASE system
variant and the ISWC2017 baseline.

In our experiments and as mentioned in Sections 1 and 5,
the transformation layer turns out to be crucial for success-
fully training the network. Without it — i.e., with the system
variant BASE KB SG that simply concatenates the BASE fea-
tures with the RDF graph (KB) and social graph (SG) em-

beddings — good models (P = 0.845± 0.006, R = 0.883±
0.006, F1 = 0.863± 0.005, for all entities) can be trained
only for two cross-validation folds out of five, while the
models obtained for the other folds are significantly under-
performing (P = 0.744± 0.006, R = 0.878± 0.005, F1 =

0.805±0.005), bringing down the average performances of
BASE KB SG over all folds (P = 0.746±0.004, R = 0.900±
0.003, F1 = 0.815±0.003). Even restricting to the two good
folds, the performances of BASE KB SG there are signifi-
cantly lower than the ones of BASE KB SG TL, making not
worthwhile any attempt at fixing the training issues with the
simple concatenation model BASE KB SG.

6.5 Evaluation by Entity and Profile Type

To investigate for which types of entities and profiles the ap-
proach performs best, in Table 5 we report the performances
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Table 5: Performances of candidate acquisition, candidate selection (best F1 setting of BASE KB SG TL), and joint task for
subsets of the gold standard, with confidence intervals and statistical significance (∗) of differences wrt. whole population

Gold standard subset # Samples
Candidate
acquisition

recall

Candidate selection Joint task

P R F1 P R F1

dbo:Person 41003 0.652 ±0.005∗ 0.865 ±0.004∗ 0.917 ±0.003∗ 0.890 ±0.003∗ 0.845 ±0.004∗ 0.608 ±0.005∗ 0.707 ±0.004∗

dbo:Artist 17764 0.617 ±0.007∗ 0.861 ±0.006 0.919 ±0.005∗ 0.889 ±0.005∗ 0.836 ±0.007 0.578 ±0.007∗ 0.683 ±0.007∗

dbo:Athlete 10207 0.632 ±0.010∗ 0.854 ±0.008 0.936 ±0.006∗ 0.893 ±0.006∗ 0.838 ±0.008 0.600 ±0.010∗ 0.699 ±0.009∗

dbo:OfficeHolder 2911 0.725 ±0.016∗ 0.884 ±0.013∗ 0.913 ±0.012∗ 0.898 ±0.011∗ 0.874 ±0.014∗ 0.672 ±0.017∗ 0.760 ±0.015∗

dbo:Politician 3628 0.714 ±0.015∗ 0.904 ±0.011∗ 0.946 ±0.009∗ 0.925 ±0.009∗ 0.895 ±0.012∗ 0.681 ±0.015∗ 0.773 ±0.013∗

dbo:Writer 1176 0.702 ±0.026∗ 0.901 ±0.021∗ 0.892 ±0.022 0.896 ±0.018∗ 0.879 ±0.023∗ 0.641 ±0.027∗ 0.741 ±0.024∗

dbo:Organisation 15175 0.461 ±0.008∗ 0.821 ±0.009∗ 0.800 ±0.010∗ 0.810 ±0.008∗ 0.775 ±0.009∗ 0.391 ±0.008∗ 0.520 ±0.009∗

dbo:Broadcaster 1054 0.493 ±0.030∗ 0.778 ±0.040∗ 0.633 ±0.041∗ 0.698 ±0.036∗ 0.702 ±0.040∗ 0.337 ±0.029∗ 0.455 ±0.032∗

dbo:Company 3363 0.543 ±0.017∗ 0.837 ±0.018∗ 0.752 ±0.020∗ 0.792 ±0.016∗ 0.790 ±0.018∗ 0.443 ±0.017∗ 0.568 ±0.017∗

dbo:EducationalInstitution 1373 0.239 ±0.023∗ 0.881 ±0.038 0.744 ±0.048∗ 0.807 ±0.038∗ 0.851 ±0.040 0.195 ±0.021∗ 0.318 ±0.029∗

dbo:Group 4705 0.529 ±0.014∗ 0.819 ±0.014∗ 0.903 ±0.012∗ 0.859 ±0.011∗ 0.769 ±0.015∗ 0.489 ±0.014∗ 0.598 ±0.014∗

dbo:SportsTeam 2313 0.513 ±0.020∗ 0.802 ±0.022∗ 0.806 ±0.023∗ 0.804 ±0.019∗ 0.775 ±0.023∗ 0.440 ±0.021∗ 0.561 ±0.022∗

more followers 26358 0.721 ±0.005∗ 0.918 ±0.004∗ 0.918 ±0.004∗ 0.918 ±0.003∗ 0.898 ±0.004∗ 0.675 ±0.006∗ 0.770 ±0.005∗

less followers 26357 0.558 ±0.006∗ 0.832 ±0.006∗ 0.859 ±0.006∗ 0.846 ±0.005∗ 0.805 ±0.006∗ 0.496 ±0.006∗ 0.614 ±0.006∗

more popular 26367 0.718 ±0.005∗ 0.919 ±0.004∗ 0.913 ±0.004∗ 0.916 ±0.003∗ 0.899 ±0.004∗ 0.668 ±0.006∗ 0.767 ±0.005∗

less popular 26348 0.561 ±0.006∗ 0.832 ±0.006∗ 0.866 ±0.006∗ 0.849 ±0.005∗ 0.805 ±0.006∗ 0.502 ±0.006∗ 0.619 ±0.006∗

verified 26194 0.755 ±0.005∗ 0.932 ±0.004∗ 0.939 ±0.003∗ 0.936 ±0.003∗ 0.915 ±0.004∗ 0.719 ±0.005∗ 0.805 ±0.004∗

not verified 26521 0.526 ±0.006∗ 0.807 ±0.006∗ 0.826 ±0.006∗ 0.816 ±0.005∗ 0.778 ±0.007∗ 0.453 ±0.006∗ 0.573 ±0.006∗

of candidate acquisition (recall), candidate selection (P, R,
F1), and joint task (P, R, F1) on different subsets of the gold
standard. As candidate selection model, we use the best per-
forming model BASE KB SG TL with the abstention score
threshold that maximizes F1 on the whole gold standard. As
subsets of the gold standard, we consider:

– person and organization subclasses in DBpedia that have
at least 1000 samples in the gold standard (to provide
more accurate performance estimates);

– entities whose profile has more vs. less followers on Twit-
ter, using the median number of followers measured on
the gold standard as separation value;

– entities whose profile is more vs. less popular in Twitter,
with popularity defined as the number of times we ob-
served the profile in the tweet stream and using the me-
dian number of occurrences measured on the gold stan-
dard as separation value;

– entities with a verified vs. not verified profile.

The table also reports the size of each subset, 95% confi-
dence intervals, and statistical significance of score differ-
ences with respect to the whole gold standard population.13

In terms of person and organization subclasses, Table 5
shows that each subset exhibits performances that differ from
the average population, with differences always statistically
significant for candidate acquisition and F1 of candidate se-
lection and joint task. Among persons, candidate selection
performances are similar while lower candidate acquisition
recall is observed for artists and athletes (more numerous),
which maps to higher recall and thus F1 in the joint task.

13 We compare the performances of the subset with the ones of its
complement using the non-paired approximate randomization test.

Among organizations, candidate selection performs better
for musical groups and worse for broadcasters, while educa-
tional institutions show a significantly low candidate acqui-
sition recall that maps to very low joint recall and F1 scores.

In terms of followers, popularity, and verified status, Ta-
ble 5 shows that entities whose profiles have these char-
acteristics are linked significantly better by our approach.
Apart being directly used as candidate selection features,
these characteristics generally imply less ambiguity as well
as the availability of more abundant and accurate data on the
social media side, which ease the linking task.

6.6 Error Analysis

Here we analyze the types of errors our joint pipeline com-
mits, providing examples and estimating their impact so to
inform possible extensions of the approach. We consider as
error any answer by the system that differs from the one
provided by the gold standard, including system abstention
(since the alignment exists). On the whole gold standard, our
pipeline with the best performing selection model BASE KB-
SG TL (best F1 setting) makes a total of 24,477 errors, orig-

inating from all three constituent processing phases. In each
of those phases we identify the types of errors, the detailed
breakdown of which is provided in Table 6.

Firstly, the user index built during the data acquisition
phase does not contain the entire population of Twitter. While
we can be all but sure that popular entities will end up be-
ing in our index, passive users (i.e., the ones that do not
tweet and retweet) will never be observed in the stream of
tweets and will never be linked to an entity. For example,
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Table 6: Error breakdown for the joint task using the best
performing model (BASE KB SG TL) as evaluated on a gold
standard. Abstention counts as an error.

Error type Share Total # per. # org.

ALL 100.00% 24,477 15,566 8,911

STREAM 9.54% 2,334 1,499 835

CA INDEX 78.57% 19,233 12,316 6,917
CA CUTOFF 3.60% 882 473 409

CS ABSTAIN 2.68% 656 349 307
CS DISAMBIG 5.61% 1,372 929 443

at the time of writing, the correct profile for the American
music band “The Spares” (dbr:The Spares), @thespares,
has never tweeted or interacted in any way with the rest of
the network, therefore will never appear in our user index.
Moreover, even when searched via Twitter itself, the correct
profile is not returned as one of the options. This type of er-
ror, which we identify with STREAM in Table 6, is responsible
for 9.54% of all errors.

Secondly, two types of errors, CA INDEX and CA CUT-

OFF, originate from the candidate acquisition (CA) phase.
CA INDEX errors amounts to 78.57% of all errors and oc-
cur if the profile, while being in the user index, cannot be
retrieved by our full-text search candidate acquisition ap-
proach. This happens if there is a mismatch between the
name contained in DBpedia (which we use for matching)
and the name of the Twitter profile, or if the DBpedia name
is too ambiguous (i.e., entity known with a popular name,
such as John) which will timeout the query and force our
candidate acquisition approach to rephrase it. An example
of this error occurs with basketball player Walter Tavares
(dbr:Walter Tavares), who is also known as Edy Tavares,
which is the name used in his official Twitter profile. This
name is not in the English DBpedia and, therefore, his pro-
file would not be returned as a candidate. In this specific
case, however, the recall loss can be mitigated by importing
names from other DBpedia language chapters or from Wiki-
data. Concerning CA CUTOFF errors, they amount to 3.60%
of all errors and occur when the correct profile is obtained
from the index, but its position in the candidate list is past the
cut-off k = 40 and it is thus discarded as part of our attempt
to reduce potential ambiguity and computational costs.

In third, in case the correct alignment is within the list
of candidates, the candidate selection model can commit a
CS ABSTAIN error by wrongly abstaining or commit a CS-

DISAMBIG error by selecting the wrong candidate. CS AB-

STAIN errors happen in 2.68% of cases and are caused by
the right alignment being rejected as having a score lower
than the minimum score threshold (set to 0.169 to maxi-
mize F1 on BASE KB SG TL). For example, for the politi-
cian and radio host Jason Lewis (dbr:Jason Lewis (ra-

dio host)), SocialLink correctly identified his two official
Twitter accounts, @Jason2CD and @RepJasonLewis, with
the DNN returning very high probabilities, 0.952 and 0.949
respectively. However, since the name has a high degree of
ambiguity — there are other American politicians with the
same name, not to mention an actor and a comedian, all of
which has social media presence — the rescaled scores (see
Section 5) for those two candidates decrease to 0.132 and
0.131, causing the model to abstain in this case.

CS DISAMBIG errors represent 5.61% of errors and most
frequently result from linking to (i) the profile of a related /
topically similar entity, or (ii) an alternative profile of the
target entity. An example of the first kind is Santiago Se-
gura (dbr:Santiago Segura), an actor and film director,
which is aligned to the profile of a namesake who is also
an actor. As often the case in such examples, the confidence
scores for their respective profiles are very similar (0.952
vs. 0.953), and here, without using image data, even for a
human it is hard to select a correct alignment. An example
of the second kind is U.C. Sampdoria (dbr:U.C. Sampdo-

ria), a football club, which is linked in the gold standard to
its official Italian Twitter account @sampdoria. SocialLink,
on the other hand, links to @sampdoria en, which is the
official English account of the same team. In this case, the
DNN emits very similar probabilities: 0.712 and 0.728 re-
spectively, which are both above the threshold after rescal-
ing. The third ranked candidate alignment for this entity,
@UCSampdoriaFeed, has a significantly lower score of 0.473
and is a fan account. Organizations, in particular, have a
strong tendency towards having multiple social media pro-
files targeted at different audiences based on language, mar-
ket or a group of products. Sometimes it is unclear what the
main profile is (if unique), and linking to one of the alter-
native profiles may not necessarily be a mistake and may
justify switching to a 1-to-N problem (and gold standard)
where an entity may have multiple corresponding profiles.

As can be seen, due to the way the candidate acquisi-
tion approach is designed, SocialLink rarely confuses en-
tities with different names but has a number of problem-
atic cases especially when it has to choose between profiles
within the same domain or associated to the same target en-
tity. Additionally, when evaluated on the gold standard, So-
cialLink generally favors precision over recall: the absten-
tion mechanism, designed for the open world case in which
we cannot know in advance if the entity has a profile on
Twitter, tends to abstain incurring in a false negative error
rather than risking to select the wrong candidate and incur
in both a false negative and a false positive errors.

7 Resource

The result of running the SocialLink pipeline is the Social-
Link dataset, a public LOD dataset that provides alignments
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for ∼270K entities and that can be exploited in different ap-
plications at the intersection of Semantic Web and Social
Media. We provide some brief information about the dataset
and its applications, referring the reader to SocialLink web-
site for up-to-date information and statistics on the resource.

SocialLink Dataset The SocialLink dataset is represented in
RDF as exemplified in Figure 7. DBpedia entities are iden-
tified using all their URIs, forming an owl:sameAs cluster
rooted at a canonical URI possibly taken from the language-
independent Wikidata, like wikidata:Q76 for person entity
Barack Obama in the figure. Twitter profiles, like twitter:Ba-
rackObama in the figure, are modeled as foaf:OnlineAccount
individuals, using properties foaf:accountName and dct:iden-
tifier to encode screen name and numeric identifier. The align-
ment between an entity canonical URI and the correspond-
ing Twitter account is expressed using property foaf:account,
and reified via sl:Candidate individuals (e.g., slr:Q76 Barack-
Obama) that are enriched with properties sl:confidence and
sl:rank to encode the candidate estimated probability and its
rank among the entity candidates, to simplify querying.

The SocialLink dataset is indexed on DataHub14 and Zen-
odo, is updated periodically to account for new data in Twit-
ter and DBpedia, and is publicly available for download on
the SocialLink website, together with the gold standard, the
schema documentation, and source code and binaries of the
SocialLink pipeline.15 A SPARQL endpoint16 is also avail-
able for use by end users and applications.

SocialLink Applications SocialLink establishes a link among
DBpedia and Twitter, enabling transferring knowledge from
one resource to another. Two examples of use cases ben-
efiting from SocialLink, which we have explored, are user
profiling and entity linking on Twitter.

User profiling aims at predicting user attributes and is a
popular task in social media research. Most approaches are
based on supervised learning techniques that require signif-
icant amounts of training data. SocialLink directly helps by
providing accurate machine-readable descriptions for hun-
dreds of thousands of Twitter profiles aligned to DBpedia,
whose DBpedia attributes can now be modeled without re-
lying on expensive manual annotation. Indirectly, SocialLink
also allows injecting more features to existing classifiers,
like providing DBpedia categories for the aligned followees
of a Twitter user, to help inferring his / her interests [2].

Entity Linking (EL) aims at linking named entity men-
tions in a text to corresponding entities in a KB such as
DBpedia, and is particularly challenging for short and noisy
texts like Twitter posts. In this context, SocialLink directly
helps by providing disambiguation for (aligned) @username

14 http://datahub.io/dataset/sociallink
15 http://github.com/Remper/sociallink
16 http://sociallink.futuro.media/sparql

mentions occurring in tweets. Through these mentions, So-
cialLink also indirectly supports injecting additional contex-
tual information from DBpedia into tweets, which can then
be leveraged for disambiguating other named entities occur-
ring in the text. SocialLink was used in this capacity in the
NEEL-IT 2016 challenge on EL for Italian tweets [7,23].

8 Related Work

Recently, some researchers have tried to link social media
accounts to Wikipedia categories as a way of inferring user
attributes, for example, interests. Faralli et al. [11] presents
an approach that links Twitter profiles to Wikipedia pages
using BabelNet and Babelfy and then to top 22 Wikipedia
categories to determine a target user’s or community’s cate-
gory. Besel et al. [2] introduced a similar interest inference
pipeline using MediaWiki Web API and used a spreading
activation technique on the Wikipedia Bitaxonomy to ac-
quire interests. Piao and Breslin [31] iterated on this idea
improving various steps of the pipeline. Nechaev et al. [24]
used an earlier version of SocialLink to perform the linking
and then propose a list of users to follow to conceal target
user’s interests as a way to defend against the inference ap-
proaches listed above. In these pipelines, the performance
of the linking approach is not as important. The recall is
mostly irrelevant in this case, and incorrect disambiguation
of a Wikipedia page does not matter if it acquires correct or
similar category in the end. In our case, we aim to disam-
biguate as best as we can for any given recall level, which
makes SocialLink suitable for a wider array of tasks.

To the best of our knowledge, no one has tried to link
KB entries to social media profiles. However, this task is
closely related to the profile matching (or profile aligning)
problem, whose goal is to align profiles of the same person
in different social media. A lot of research has been done for
this task, exploiting various attributes in profiles [28,15,22],
user-generated content [28,21,14], and social graphs [22].

Some researchers have pointed out that most of the at-
tributes that could theoretically be exposed in social media
are unreliable for profile matching [15]. Attributes might not
exist, might contain information of varying granularity, or
they might even be false. Attempts were therefore made to
use as little information as possible to align profiles, choos-
ing only the most reliable attributes. In studies by Zafarani
et al. [38,37] only the username (which is the unique iden-
tifier that exists in virtually any social media) was exploited
to align profiles. The authors showed that people tend to be
very consistent when choosing their usernames, which en-
ables identification even if the rest of the profile is filled with
incorrect information. Even though they proved that user-
name is a powerful feature, KBs typically do not contain ex-
amples of usernames, which makes this feature unavailable
for our task.

http://datahub.io/dataset/sociallink
http://github.com/Remper/sociallink
http://sociallink.futuro.media/sparql
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Fig. 7: RDF representation of alignments in the SocialLink LOD dataset.

Goga et al. [15] explored the reliability of attributes in
various social media. According to their study, only few at-
tributes like username and real name are available in so-
cial media reliably. For example, they reported that loca-
tion is present in 54% of Twitter profiles and is not con-
sistent across multiple social media. They exposed various
methodological and technical challenges in this area related
to the construction of ground truth datasets, attribute dis-
criminability and impersonability. Goga’s PhD thesis [13]
provides a more in-depth look into those issues.

Liu et al. [21] reported the largest experiment on pro-
file matching to date using a dataset of 10 millions profiles
across 7 social media. Their approach leverages a wide va-
riety of hand-crafted features based on textual and image
user-generated content, and demonstrates its importance for
profile matching. Note that user-generated content is usually
missing in KBs, so it cannot be used in our task as it is used
in the profile alignment task.

Goga et al. [14] showed that profiles can be matched ro-
bustly even if explicit attributes are hidden or intentionally
falsified. Their approach uses only implicit features present
in social media but generally unavailable in KBs, such as
writing style, messaging behavior, and location metadata.

Social graph has proven to be hard to acquire in social
media. It could be unavailable for crawling or there could be
very strict restrictions on API (most notably, in Twitter). Lu
et al. [22] were able to gather a small social graph dataset
and proved that it can be effectively matched to improve the
results of profile alignment. Entities in KBs often contain
links to other entities which can be interpreted as a kind of
social graph.

Finally, Peled et al. [28] gave an overview of the profile
alignment task and presented their own approach that uses
all available information in the profile to perform matching.
They presented three main use cases for their system, one of
which — searching for a user by similar name — is close to
the candidate acquisition part of our system.

To summarize, even though some researchers expressed
concerns [15,13] regarding the use of some attributes, every
piece of profile data contributes towards identifying the user.

In this work, we leverage and extend graph embeddings
(or network embeddings), a particular type of embeddings
that is an intensely researched topic in recent literature [16].
GloVe (Global Vectors for Word Representation) [29] is a
method for training word embeddings based on word-word
co-occurrence statistics from a corpus. Swivel (Submatrix-
wise Vector Embedding Learner) [36] extends GloVe by in-
troducing a soft hinge loss with special handling for un-
observed co-occurrences that allows producing more sta-
ble estimates for rare words. Alternatively, in node2vec [17]
and DeepWalk [30], random walks were employed to ac-
quire sequences of nodes, which are then used to maximize
the likelihood of preserving network neighborhoods. Both
Node2vec and DeepWalk are based on word2vec neural mod-
els and do not compute explicit global co-occurrence statis-
tics. This approach was adopted in RDF2Vec [32,34] pro-
ducing graph embeddings specialized for the RDF graphs
found in KBs. Subsequent work [5], used in this paper, have
investigated the usage of GloVe to produce embeddings for
RDF graphs. While this approach did not exhibit perfor-
mance improvement over RDF2Vec in most tasks, it is more
efficient, allowing to incorporate larger portions of the graph
without significant performance penalties.

9 Conclusions and Future Work

In this paper, we presented the latest version of SocialLink,
our supervised approach and associated resource for auto-
matically linking DBpedia entities to corresponding Twit-
ter profiles. Building on our prior works [25,26], we con-
tributed a new linking approach that allows leveraging graph-
based features both on the social media and KB sides, en-
coding them in the form of embeddings, i.e., low-dimensional
representations of objects trained from massive amounts of
unlabeled data, that we gather from both the DBpedia RDF
graph and the Twitter social graph.

For the social graph embeddings, we devised a custom
procedure to estimate the social graph from the publicly ob-
servable stream of tweets, followed by the application of the
co-occurrence matrix factorization method called Swivel. We
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showed that it is possible to acquire an approximation of the
social graph indirectly and calculate embeddings at scale.

For the RDF graph embeddings, we used the precom-
puted embeddings provided by Cochez et al. [5]. Testing
those embeddings on our task, we confirmed the findings
of their authors about the significance and impact on perfor-
mances of the weighting schema adopted in their production
when applying such representations to a particular problem.

Additionally, we found that the combination of hand-
crafted features and pre-trained embeddings in a prediction
task like ours requires significant redesign of the learning
approach. By changing the topology of our neural network,
we were able to achieve a stable performance improvement
from the adoption of the new features.

Finally, we evaluated in detail the effect that graph-based
features produce on our approach. We observed significant
improvements when applying new features separately, which
were still dominated by the complete model. In addition, we
provided an evaluation of the candidate acquisition approach
that was introduced in our resource paper [26].

In the future, we will continue to gradually update So-
cialLink by both improving the approach and expanding the
scope to accommodate a larger subset of LOD entities. A
significant goal in our current roadmap consists in the ex-
pansion of our approach to other social networks, such as
Facebook and Instagram, by generalizing the approach used
for Twitter and making SocialLink a resource truly connect-
ing the social media world to the LOD cloud. By introducing
more social media to SocialLink, we will be able not only to
improve coverage but also to exploit cross-network infor-
mation to validate our alignments, overall improving their
precision. From the approach side, a number of possible im-
provements could be proposed. The most promising future
direction would be to address the recall drop observed dur-
ing the candidate acquisition phase, by redesigning it using
machine learning-based techniques. Another interesting di-
rection consists in learning joint embeddings for both social
media profiles and knowledge base entities, to place them
into the same vector space. Finally, our pairwise candidate
selection solution could be reformulated to account for all
candidate profiles at once, for example, via learning to rank
instead of binary classification.
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A On the choice of word embeddings

Pre-trained word representations, or embeddings, have become a staple
technique for modeling textual data in a convenient low-dimensional

Table 7: Precision, recall, F1 scores for the setting maximizing F1 with
confidence intervals and statistical significance (*) wrt. ALL model

Model P R F1

ALL 0.854 ±0.004 0.880 ±0.003 0.867 ±0.003
LSA 0.842 ±0.004∗ 0.884 ±0.003∗ 0.862 ±0.003∗

GloVe 0.849 ±0.004∗ 0.870 ±0.004∗ 0.859 ±0.003∗

fastText 0.842 ±0.004∗ 0.877 ±0.004∗ 0.859 ±0.003∗
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Fig. 8: P/R curves of four models using the BASE KB SG TL model

form. Such word representations are typically allocated in the resulting
vector space according to the distributional semantics hypothesis, i.e.,
the words that appear in similar contexts tend to have similar meanings
and will be placed close to each other. Pre-trained word representa-
tions allow the usage of large unsupervised corpora to model the target
languages efficiently. Over the last five years, since the introduction
of the word2vec algorithm, many new approaches were proposed to
improve different aspects of such representations yielding better per-
formance than the original word2vec in many tasks. Before word2vec,
methods, such as LSA, HAL and autoencoders were also widely used.
However, to the best of our knowledge at the time of writing, there is
still no consensus in the community about whether any of the proposed
approaches is clearly superior to others and should be used by default
to represent text. This conclusion is consistent with the famous “no
free lunch” concept, meaning that for each task the choice of particular
word embeddings should be justified and supported with experiments.

In this appendix, we measure the impact of different pre-trained
word representations on our task. In our original paper, as mentioned
in Section 3.1, we chose the Latent Semantic Analysis (LSA) approach
to represent text. The choice was mainly driven by our confidence in
our LSA-based model that was used in DBpedia-related tasks before.
In this paper, in order to have a precise evaluation of the new feature
sets, we have opted to use the same model. However, we believe that
an additional set of experiments to measure the impact of different em-
beddings could serve as an extra data point for the community, not to
mention potentially improve the performance of our approach.

A.1 Experimental setting

We compare the previously chosen LSA model to two recent embed-
ding types: GloVe [29] and fastText [3]. To this end, we modify the
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computation of the “Description” scalars in our original BASE feature
set (see Table 3). Each scalar is computed as follows. Each user text
and entity text is converted into the sparse vector xsparse ∈ Rv, where v
is the size of the vocabulary for the given language model. Each vector
contains tf-idf scores for each token t present in a text:

xt = tf(t) · idf(t,D) = log(1+ freqt) · log
(

1+
|D|

1+ |{d ∈ D : t ∈ d}|

)
where D is a corpus on which a chosen language model was trained.
As can be seen, the computation of such vector requires IDF statistics
from the corpus. Here we use precomputed vectors provided by the
authors of the respective approaches which do not include such data
along with the embeddings. Therefore, we use the same IDF scores
acquired from Wikipedia for all models. Each approach is represented
by the embedding matrix M ∈ Rv×d , where d is the embedding size.
Then the dense text vector is acquired: xdense = xT

sparse ·M. Finally, the
Description scalars are computed as a cosine similarity between the
user text udense and the entity text edense. In short, in order to test other
representation approaches we substitute the embedding matrix Mlsa we
employed originally with MfastText and MGloVe.

We test four different models and measure their impact on the per-
formance of the BASE KB SG TL approach described in the paper:
1. LSA (v = 972,001;d = 100). The same LSA-based approach we

used throughout the paper. The model is derived from Wikipedia
and is described in [1].

2. GloVe (v = 1,917,494;d = 300). The model is trained on 42B
token Common Crawl corpus and provided by the authors on their
website.17 This approach is also described in Section 4.1 and used
to populate the RDF embeddings we used.

3. fastText (v = 2,519,370;d = 300). The word2vec-based model
exploiting subword information. The model was provided18 by the
authors and is trained on Wikipedia.

4. ALL. Description scalars produced by each model used together.
Effectively an ensemble of embeddings.
Additionally, we slightly modify our data acquisition phase. Dur-

ing this phase, we would typically gather the textual content for each
candidate from the stream of tweets. As a consequence, we would have
a lot of textual content for more popular users and much less (as little as
a description field in the profile) for others. This makes it so the “De-
scription” features get a strong implicit notion of the user popularity
instead of capturing only the textual similarity. To alleviate this bias,
we freshly captured the most recent 200 tweets for each candidate for
each entity in our gold standard using Twitter REST API.

All approaches are evaluated using stratified 5-fold cross valida-
tion, additionally computing 95% confidence intervals and performing
statistical significance test using the approximate randomization test
(see Section 6.1).

A.2 Experimental results

Evaluation results for the four models are provided in Table 7, while
Figure 8 provides the precision / recall curves. As can be seen, the dif-
ference between the four models is minimal. However, the ALL model
does provide statistically significant improvement over the LSA model
we employed originally, and similarly over fastText and GloVe.

The absence of significant differences between separate models
shows that our pipeline is not particularly sensitive towards the choice
of the particular word embeddings. In future, the model can be mod-
ified to include textual representations in a similar way we have in-
corporated the graphical ones, to give more opportunity for the neural
network to utilize textual data efficiently.

17 http://nlp.stanford.edu/data/glove.42B.300d.zip
18 https://github.com/facebookresearch/fastText/

blob/master/pretrained-vectors.md

http://nlp.stanford.edu/data/glove.42B.300d.zip
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
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