
MMT: New Open Source MT for the Translation Industry
Nicola Bertoldi1, Roldano Cattoni1, Mauro Cettolo1, Amin Farajian1, Marcello Federico1,

Davide Caroselli2, Luca Mastrostefano2, Andrea Rossi2, Marco Trombetti2

Ulrich Germann3, David Madl2,3

1) Fondazione Bruno Kessler, Trento, Italy
2) Translated srl, Rome, Italy

3) University of Edinburgh, United Kingdom

Abstract

MMT is a new open source machine trans-
lation software specifically addressing the
needs of the translation industry. In this
paper we describe its overall architecture
and provide details about its major com-
ponents. We report performance results
on a multi-domain benchmark based on
public data, on two translation directions,
by comparing MMT against state-of-the-
art commercial and research phrase-based
and neural MT systems.

1 Introduction

MMT aims to consolidate the current state-of-the-
art technology into a single easy-to-use product,
evolving it and keeping it open to integrate the
new opportunities in machine intelligence, such as
deep learning. MMT was designed and developed
to overcome four technology barriers that have so
far hindered the wide adoption of machine trans-
lation software by end-users and language service
providers: (1) long training time before a MT sys-
tem is ready to use; (2) difficulty to simultaneously
handle multiple domains; (3) poor scalability with
data and users; (4) complex installation and set-up.
As we will describe in the next section, MMT on
the contrary is very fast to train, it instantly adapts
to a specific translation domain, it is designed to
scale well with data and users, and, finally, it is
very easy to install and configure.

This paper describes the current advanced pro-
totype of MMT, a statistical phrase-based machine
translation system, which already covers all the

c� 2017 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

above presented features and has being field-tested
in real industrial settings. A comprehensive docu-
mentation of MMT, including installation manual,
is available in the official website.1

We also report experiments conducted on a pub-
lic multi-domain benchmark covering technical
translations from English to German and English
to French.

2 Main Features of MMT

2.1 MMT Can Ingest New Data Instantly
MMT uses high-performance embedded databa-
ses2 to store parallel and monolingual language
data and associated statistics. Instead of pre-
computing feature function scores, these are com-
puted on the fly, at translation time, from raw
statistics. Thanks to its implementation with
databases, MMT is a fully incremental MT sys-
tem, that can ingest new parallel data while in use,
very quickly and without any interruption nor re-
training.

2.2 MMT Can Adapt Itself to the Task
Input to the system can be augmented with a snip-
pet of surrounding text. This context information
is leveraged by MMT to adapt the translation pro-
cess to a specific domain. Adaptation is performed
on the fly by biasing the data sampling process un-
derlying the computation of the feature functions
towards training data that is close to the provided
context. (see Sec. 3.2.5 below).

2.3 MMT Scales Easily
MMT is designed as a distributed multi-node ar-
chitecture, with cloud deployment in mind. There-
1http://www.modernmt.eu
2RocksDB: https://github.com/facebook/rocksdb

86



fore it can scale dynamically in response to cur-
rent demand, simply by adding or removing MMT
nodes in the cluster. Single-host deployment for
small use cases is also possible.

2.4 MMT Is Easy to Set Up

MMT is distributed as a ready to install package ei-
ther through Docker, or directly from binary files.3

In addition, instructions for installing MMT from
source code are also available.

3 System Architecture

3.1 Distributed Infrastructure

MMT’s distributed architecture is based on a
Leader-Follower network where nodes form a
cluster through the Hazelcast framework.4

Most inter-node communications are carried out
through shared in-memory data structures, suit-
able for small data and thus employed for service
communications and load balancing. When a node
receives a translation request, it sends it to an Ex-
ecutor that transparently extracts jobs from its in-
ternal pool, chooses a worker node, and finally
redirects the translation output to the original re-
questing node.

Bigger volumes of data are handled by the nodes
in persistent messaging queues (Kafka5) and in
an internal database (Cassandra6). The former is
mostly used to distribute newly ingested resources,
which any node may import during its life cycle;
the latter to handle persistent application-internal
data, like domains’ and contributions’ metadata.

Both the Followers and the Leader expose the
same REST APIs; the Leader in addition hosts the
messaging queue server and the internal database.
To join the cluster, a worker node only needs to
know the Leader IP.

All nodes in a cluster must have the same ini-
tial configuration. It is recommended to perform
the initial training on a single node and share the
resulting models to the others manually. Once a
node has received this initial configuration it can
join the cluster at any time, and will automatically
receive any new updates through the above men-
tioned messaging channels.

3Currently we distribute binaries for Ubuntu.
4https://hazelcast.com
5https://kafka.apache.org
6http://cassandra.apache.org/

3.2 MT Worker Nodes
The core architecture of each node is composed by
several interacting modules.

3.2.1 Tag Management
XML tags occurring in the input text are removed
and a map between the tags and their positions
is stored. According to the output and the word
alignment provided by the decoder, the XML tags
are re-introduced after applying a few consistency
checks and heuristics.

3.2.2 Numerical Expression Management
Numerical expressions, like numbers, currencies,
dates, etc., are transformed into format- and
position-dependent placeholders, and a map be-
tween the actual numerical values and their place-
holders is stored. The placeholders found in the
output of the decoder are finally transformed back
into their actual numerical values using the word
alignment and a few heuristics to resolve possible
ambiguities.

3.2.3 Tokenization and De-tokenization
The tokenizer and de-tokenizer, based on third-
party software credited in the official documenta-
tion, support 45 languages through a unique entry
point.

3.2.4 Central Vocabulary
Internally, words are represented by integer IDs

managed by a joint vocabulary for source and tar-
get language that allows incremental updates.

3.2.5 Context Analyzer
The Context Analyser (CA) is in charge of identi-
fying training data that best matches the provided
input context. To this purpose, parallel data is
sharded into chunks according to the customer,
subject area, genre, etc. In a very loose use of the
term, we refer to these shards as “domains”.

When queried, the Context Analyzer (CA) com-
putes a ranked list of matching domains, with as-
sociated weights7 that indicate how closely they
match the input text. The CA is built on top of the
Apache Lucene8 framework, in particular Lucene’s
Inverted Index data structure. The Inverted Index is
complemented with a filesystem-based data struc-
ture, called Corpora Storage, where all the original
indexed data are stored: one file corresponds to one
7The weights are computed by means of the tf-idf metrics and
the Cosine Similarity.
8https://lucene.apache.org/core/

87



data shard and new content can be appended to the
corresponding storage file. In this way, the Cor-
pora Storage always maintains the most updated
version of the data. When required, the Inverted
Index is synchronized with the Corpora Storage by
re-indexing the changed domains and adding the
new ones.9 This activity does not interfere with
the look-up operations of the CA; Lucene allows
concurrent reads and writes, always ensuring data
availability and consistency.

3.2.6 Word Aligner
The Word Aligner (WA) performs many-to-many
word-to-word alignment of sentence pairs.

The WA is built on top of FastAlign (Dyer et al.,
2013); it computes two directional alignments,
and symmetrizes them according to the grow-diag-
and-final policy.10 The WA is multi-threaded and
permits persistent storage and re-loading of the
alignment models after training. It is able to align
individual new sentence pairs without re-training
the models. The WA is trained on all parallel data
available at training time, irrespective of their do-
main.

3.2.7 Decoder
The decoder developed in MMT is an enhanced
version of the phrase-based decoder implemented
in Moses (Koehn et al., 2007). Differently from
Moses, MMT generates and scores translation hy-
potheses according to the context of the input sen-
tence. In particular, the decoder queries its models
with the domain weights computed by the CA from
the input context.

3.2.8 Translation Model
The MMT Translation Model (TM) is an enhanced
re-implementation of the suffix array-based phrase
table by Germann (2015). Its original implementa-
tion creates a phrase table at run-time by sampling
sentences from the pool of word-aligned parallel
data with a uniform distribution, extracting phrase
pairs from them, and computing their scores on the
fly. The new version provides two enhancements.
First, instead of a suffix array, it relies on a DB-
backed prefix index of the data pool, thus allow-
ing for fast updates (i.e., insertions and deletions
of word-aligned parallel data). Second, it keeps
track of the domains from which phrase pairs are
9For performance reasons, synchronization is subject to a
time-out.
10http://www.statmt.org/moses.

extracted and performs ranked sampling: extracted
phrases are ranked by their relevance (via the do-
main they were observed in). Translation scores
are then obtained by going down the ranked list
until a sufficient number of samples has been ob-
served. Hence, by associating with all sentence
pairs of each domain the corresponding weight, the
TM selects and scores phrase pairs giving priority
to the best-matching domain.

The TM scores are the forward and backward
probabilities at lexical and phrase level; the phrase-
level probabilities are weighted according to the
domain weights.

3.2.9 Lexicalized Reordering Model
The same incremental DB-based implementation
of the TM is also exploited by the Lexicalized Re-
ordering Model. Similarly, its scores are com-
puted on the fly exploiting the counts extracted
from the sampled sentences and the corresponding
word alignments, and some global counts stored in
the DB. The scores are the forward and backward
probabilities for monotone, swap, and discontinu-
ous orientations.

3.2.10 Language Model
The MMT LM linearly combines a static back-
ground LM with a context-adaptive LM.

The static LM, implemented with the KenLM
toolkit (Heafield et al., 2013), features 5-grams, in-
terpolation of lower-order models, and the Kneser-
Ney smoothing technique. It is trained on all
monolingual target text regardless the domain in-
formation, and does not change over time.

The context-adaptable LM is an internal mixture
LM (Federico and Bertoldi, 2001) using domain-
specific counts extracted from the corresponding
data shards and the weights of the CA.11 The LM
features 5-gram statistics, interpolation of lower-
order models, and Linear Witten-Bell smooth-
ing. Noteworthy, n-gram probabilities are not pre-
estimated in the training phase, but computed on
the fly, by exploiting domain-specific n-gram and
global statistics, which are stored in a key-value
DB.

3.2.11 Manager
The Manager controls the communication between
all components to satisfy the translation and updat-
ing requests.
11For efficiency, only the LMs actually activated by the CA
are included in the mixture.

88



3.3 Functionalities

From a functional perspective four phases can be
identified, namely training, tuning, updating and
translation.

3.3.1 Training

The training phase sets up MMT starting from
a collection of bilingual and (possibly) monolin-
gual corpora, which can be domain-specific or not-
specialized. In particular, the DBs required by
CA, LM and TM, are created, which respectively
exploit only the source side, only the target side,
or both sides of the training data. Texts are pre-
processed by the corresponding modules.

3.3.2 Tuning

MMT implements a standard Minimum Error Rate
Training procedure (Och, 2003) to optimize the de-
coder feature weights.

3.3.3 Updating

Once a system is trained, new bilingual data can
be added to it,12 either to an existing domain or es-
tablishing a new one. This operation is performed
by updating the corresponding DBs of the CA, the
TM and the LM. Such updates do not interfere with
the translation process.

3.3.4 Translation

In a standard scenario, MMT translates one docu-
ment as follows; it (i) processes and sends to the
CA the whole document, considered as context for
all its sentences, and gets the domain weights, (ii)
pre-processes and sends all sentences to the avail-
able decoders, independently and in parallel, and
gets their translations, and (iii) post-processes and
returns all translations by re-creating the original
document layout. More generally, however, MMT
is able to translate any single sentence provided
with some context, even made of a single word.

3.4 APIs

MMT system exposes APIs for its integration in
third-party software. Plug-ins are under advanced
construction to permit the integration of MMT in
various commercial CAT tools.

12For instance, new data can be a translation memory of a new
customers, or the post-edits of professional translators.

4 Evaluation

4.1 Points of Comparison

Although the main scope of the paper is the de-
scription of the components and features of the
MMT system, an experimental comparison is pro-
posed against a few popular MT engines. In par-
ticular, two phrase-based MT systems, Moses and
the Google’s web translation service, and two neu-
ral MT systems.

4.1.1 Moses
A Moses (Koehn et al., 2007) engine was trained
on the concatenation of all the available training
corpora. Word alignment models were trained
with FastAlign (Dyer et al., 2013) and a 5-gram
language model was estimated by means of the
KenLM toolkit (Heafield et al., 2013). Feature
weights were tuned with batch MIRA (Cherry and
Foster, 2012) to maximize BLEU on the pooled
dev sets. No adaptation was performed.

4.1.2 GT
The Google web translation service (GT), one of
the most used engines by the translation industry,
was accessed through its public API13 at the begin-
ning of March 2017.

4.1.3 Neural MT Systems
We developed two neural MT systems using an in-
house branch (Farajian et al., 2017) of the Nema-
tus toolkit14 implementing the encoder-decoder-
attention model architecture by (Bahdanau et al.,
2014). This first system is a generic NMT
(gNMT) system trained on all the pooled training
data. Then, following common practice (Luong
and Manning, 2015), adapted NMT (aNMT) sys-
tems were trained for each domain by tuning the
generic NMT system to the training data of each
domain.

4.2 Experiments

We present experiments carried out on two trans-
lation tasks involving a collection of eight domain-
specific corpora and two translation direction,
English-French and English-German. When com-
paring the four types of MT systems, we consider
translation quality (BLEU), training time, tuning
time, and translation speed (seconds per sentence).

13https://www.googleapis.com/language/translate/v2
14https://github.com/rsennrich/nematus

89



English-French English-German
segments source target segments source target

train dom 1,332,972 17,581,131 19,297,282 1,004,214 15,772,744 14,427,002
gen 4,255,604 92,363,974 101,236,914 4,165,505 104,489,832 98,381,272

dev dom 3,527 46,640 52,484 3,073 37,023 35,187

test dom 6,962 93,243 98,312 6,011 72,995 5,856
out 4,503 104,831 111,050 5,168 111,331 106,443

Table 1: Statistics of training, dev and test sets for the English-French and English-German tasks: number
of segments, source and target words. Figures refer to texts processed with the MMT modules.

English-French English-German
MMT Moses gNMT aNMT GT MMT Moses gNMT aNMT GT

dom 62.48 61.78 49.23 63.00 43.62 48.27 48.51 37.41 48.95 31.37
out 30.11 28.93 33.28 – 36.47 19.08 16.84 22.82 – 27.13
training 1h 10h 100h 100h – 1h 10h 100h 100h –
tuning 1h 10h – 10h – 1h 10h – 10h –
translation 1s 1s 1s 1s 0.1s 1s 1s 1s 1s 0.1s

Table 2: Quality and speed performance of MMT and few competitor systems: BLEU scores on dom and
out test sets for both English-French and English-German; overall time (order of magnitude in hours) to
complete training and tuning ; the average time (order of magnitude in seconds) to translate one sentence.

4.2.1 Data
We consider eight publicly available parallel cor-
pora as representatives of specific domains (dom):
European Central Bank, Gnome, JRC-Acquis,
KDE4, OpenOffice, PHP, Ubuntu, and UN doc-
uments.15 To increase the training data, two ad-
ditional generic corpora (gen) were added to the
pool, namely CommonCrawl16 and Europarl,17

which are not considered for the evaluation.
Each domain-specific corpus was randomly par-

titioned into training, development and test por-
tions. Additional test data from WMT18 was
prepared, in order to test the systems on out-of-
domain data (out). Duplicate sentence pairs were
removed from all dev and test sets. Statistics about
training, dev and test sets are reported in Table 1.

4.2.2 Performance
Table 2 reports the translation quality performance
(BLEU score), the overall computational cost for
the compared systems to complete training and
tuning, and the average time to translate one sen-
tence in isolation. Time measures have to be
taken with grain of salt because experiments were
15UN corpus is used only for English-French. All corpora are
available in http://opus.lingfil.uu.se
16http://www.statmt.org/wmt15/translation-task.html
17http://www.statmt.org/europarl/
18newtest2014 and newsdiscuss2015 for English-French, and
newstest2015 and newtest2016 for English-German.

not run under very comparable conditions. For
instance, neural MT systems were run on PCs
equipped with GPU cards, while MMT and Moses
were run only on multi-core CPUs. Hence, the or-
der of magnitude, which are definitely reliable, is
reported.

4.2.3 Discussion

In the following, we try to point out strengths and
drawbacks of MMT against the other competitors.

MMT vs Moses MMT and Moses perform sim-
ilarly as expected in terms of translation qual-
ity, because both share the same phrase-base MT
paradigm. MMT performs better than Moses in the
out-of-domain condition thanks to its adaptability
feature (+1.18 and +2.24 gains). While translation
speed is comparable, training and tuning of MMT
is one order of magnitude faster.

MMT vs gNMT The BLEU scores on the out-
of-domain condition (out) confirms that NMT has
a better generalization capability than MMT (-
3.17 and -3.74 losses), while MMT performs
largely better when translating domain specific
data (+13.25 and +10.86 gains). The training time
is largely in favour of MMT, hundreds of hours
for gNMT versus few hours for MMT. Translation
speeds are actually comparable.

90



MMT vs aNMT After adaptation of gNMT to
each specific domain, aNMT systems perform on
pair with MMT on the in domain condition (dom).
It is worth noticing, that under this condition dis-
tinct domain-specific NMT systems have to be
tuned and translation should be run in a supervised
way, by dispatching each test to the appropriate
system. As a difference, MMT requires one sys-
tem and does not require any domain labels at test
time. The extra time needed to tune the aNMT sys-
tems on each domain is tens of hours.
MMT vs GT The comparison of MMT against
Google Translate, show that the latter performs
significantly better on the out of domain test (-
6.35 and -8.05 losses), very likely due to the much
larger training data available to the commercial
system. On the contrary MMT perform largely
better than GT on the in domain condition (+18.86
and +16.09 gains). With respect to translation
speed, GT is significantly faster than MMT.

5 Conclusion
MMT aims to develop an innovative solution for
the translation industry, by providing both better
MT quality for post-editing as well as a better inte-
gration of MT with commercial CAT tools. MMT
actually targets two use cases: (i) the enterprise
use case, in which a language service provider or
localisation department of a large company installs
MMT to manage its translation workflow, and (ii)
the translator use case, in which single translators
install the MMT plugin in their favorite CAT tool
and use MMT as their preferred source of sugges-
tions/matches for their daily workflow.

For both scenarios MMT can provide machine
translation technology that instantly adapts to the
document to be translated and that quickly learns
from the users’ data – e.g. translation memories–
and their post-editing work.

In this paper, we have presented an advanced
phrase-based MT prototype of MMT, which
shows competitive performance against similar ap-
proaches. In order to improve the generalization
capability of MMT in operating conditions with
a severe domain mismatch between testing and
training data, work is in progress to integrate also
neural MT in the final MMT release, which is
planned for the end of 2017.

Acknowledgements
This work has been supported by the EC-funded
project ModernMT (grant no. 645487).

References

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua
Bengio. 2014. “Neural machine translation by
jointly learning to align and translate.” arXiv
preprint arXiv:1409.0473.

Cherry, Colin and George Foster. 2012. “Batch
tuning strategies for statistical machine transla-
tion.” Proc. NAACL-HLT, 427–436. Montreal,
Canada.

Dyer, Chris, Victor Chahuneau, and Noah A.
Smith. 2013. “A simple, fast, and effective
reparameterization of IBM Model 2.” Proc. of
NAACL, 644–648. Atlanta, GA, USA.

Farajian, M. Amin, Marco Turchi, Matteo Negri,
Nicola Bertoldi, and Marcello Federico. 2017.
“Neural vs. Phrase-Based Machine Translation
in a Multi-Domain Scenario.” Proc. of EACL.
Valencia, Spain.

Federico, Marcello and Nicola Bertoldi. 2001.
“Broadcast news lm adaptation using contem-
porary texts.” Proc. of Eurospeech, 239–242.

Germann, Ulrich. 2015. “Sampling phrase tables
for the Moses statistical machine translation sys-
tem.” The Prague Bulletin of Mathematical Lin-
guistics, 104:39–50.

Heafield, Kenneth, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. “Scalable mod-
ified kneser-ney language model estimation.”
Proc. of ACL (Volume 2: Short Papers), 690–
696. Sofia, Bulgaria.

Koehn, Philipp, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan, Wade Shen,
Christine Moran, Richard Zens, Chris Dyer,
Ondřej Bojar, Alexandra Constantin, and Evan
Herbst. 2007. “Moses: Open source toolkit
for statistical machine translation.” Proc. of
ACL (Interactive Poster and Demonstration
Sessions), 177–180. Prague, Czech Republic.

Luong, Minh-Thang and Christopher D Manning.
2015. “Stanford Neural Machine Translation
Systems for Spoken Language Domains.” Proc.
of IWSLT, 76–79. Da Nang, Vietnam.

Och, Franz Josef. 2003. “Minimum error rate
training in statistical machine translation.” Proc.
of ACL (Volume 1), 160–167. Sapporo, Japan.

91


