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Brain effective connectivity aims to detect causal interactions between distinct brain

units and it is typically studied through the analysis of direct measurements of the

neural activity, e.g., magneto/electroencephalography (M/EEG) signals. The literature

on methods for causal inference is vast. It includes model-based methods in which a

generative model of the data is assumed and model-free methods that directly infer

causality from the probability distribution of the underlying stochastic process. Here,

we firstly focus on the model-based methods developed from the Granger criterion

of causality, which assumes the autoregressive model of the data. Secondly, we

introduce a new perspective, that looks at the problem in a way that is typical of the

machine learning literature. Then, we formulate the problem of causality detection as a

supervised learning task, by proposing a classification-based approach. A classifier is

trained to identify causal interactions between time series for the chosen model and by

means of a proposed feature space. In this paper, we are interested in comparing this

classification-based approach with the standard Geweke measure of causality in the time

domain, through simulation study. Thus, we customized our approach to the case of a

MAR model and designed a feature space which contains causality measures based

on the idea of precedence and predictability in time. Two variations of the supervised

method are proposed and compared to a standard Granger causal analysis method. The

results of the simulations show that the supervised method outperforms the standard

approach, in particular it is more robust to noise. As evidence of the efficacy of the

proposed method, we report the details of our submission to the causality detection

competition of Biomag2014, where the proposed method reached the 2nd place.

Moreover, as empirical application, we applied the supervised approach on a dataset

of neural recordings of rats obtaining an important reduction in the false positive rate.

Keywords: causal inference, brain effective connectivity, Granger causality, machine learning, Geweke measure

in time, causal interaction classification

1. INTRODUCTION

A main part of neuroscience research is concerned with brain connectivity and aims to
investigate the pattern of interactions between distinct units within the brain (Horwitz, 2003).
The concept of brain units is strongly related to the level of the adopted scale. Thus, brain
connectivity can be studied from the microscopic level of single synaptic connections to
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the macroscopic level of brain regions. Moreover, depending
on the type of interactions of interest, brain connectivity is
divided into structural, functional, and effective connectivity.
In the first case the connectivity patterns are referred to the
anatomical links i.e., the neural pathways. In the second case,
to the statistical dependencies between brain activity in different
units. In the last case, the connectivity patterns are referred
to the causal interactions between them (Sakkalis, 2011). In
particular, effective connectivity provides information about the
direct influence that one or more units exert over another and
aims to establish causal interactions among them (Friston, 2011).

Electrophysiological signals are among the most suitable
ones for studying effective connectivity. First, because they
directly measure neuronal activity, even though at an aggregated
level. Second, because their temporal resolution is compatible
with the processing time at the neuronal level, that is in
the order of milliseconds (Schoffelen and Gross, 2009). These
signals can be measured with invasive or non-invasive methods.
Invasive methods allow a high quality and spatially precise
acquisition, by implanting electrodes on the brain. On the other
side, non-invasive techniques such as magneto- and electro-
encephalography (M/EEG) are widely used because of the high
sampling frequency and, by means of source reconstruction
techniques, they provide increased signal-to-noise ratio and
spatial resolution (Brookes et al., 2012).

The interest in studying causal interactions from
neuroimaging data is not only limited to effective connectivity
but it has a more general scope. The original definition of
effective connectivity provided in Friston (2011), refers to the
directed influences that neuronal populations in one brain area
exert on those in another one. Thus an estimator of effective
connectivity should consider the physiological structure and
dynamics of the system (Friston et al., 2014). This constraint is
particularly demanding since it means modeling the underlying
physical processes. To overcome such issue, a relaxed version of
effective connectivity was introduced in Bressler and Seth (2011)
under the name of causal connectivity. Causal connectivity
refers to a causality measure that infers the causality structure
without requiring it to be representative of the underlying
neuronal network. The term causality analysis is commonly
used when studying the direct interactions among brain signals.
As highlighted in Chicharro and Ledberg (2012), a causality
analysis may have different meanings. Its purpose could be
to infer the existence of a direct causal connection, thus the
estimate of the so-called causal structure or (binary) causal
graph (Eichler, 2005). A different goal is to study the mechanism
underlying a causal connection. This means focusing on how a
causal connection is physiologically implemented. And a third
question concerns the quantification of the interaction, thus it
requires both an appropriate modeling of the dynamics and a
clear understanding of what the causal effect actually means, see
Schelter et al. (2009).

In this work, we focus on the problem of inferring the binary
causal graph from a given set of time series. This means that
our purpose is to establish the existence of causal interactions
without necessarily considering the underlying mechanism and
quantification issues.

1.1. Approaches for Causal Inference
Different frameworks have been proposed to infer
causality, e.g., Potential Outcomes (Holland, 1986), Granger
Causality (Granger, 1969), Dynamic Causal Modeling (Friston
et al., 2003), Causal Bayesian Networks (Pearl, 2000), and
Structural Equation Models (Spirtes et al., 2001). These
frameworks differ in many aspects and a main one is the
assumption on the input data, which can be observational or
interventional. Here, we focus on the case of causal inference
from purely observational data, in particular time series.

Commonly, a method of causal inference is based on a
specific causality criterion from which a measure of causality
is derived (Chicharro, 2014). A criterion of causality defines
which condition has to be satisfied in order to establish that
two processes are causally interacting, or not. Given a certain
criterion and according to how it is formulated, different measure
of causality can be developed. There are cases in which the
measure is defined by assuming a model for the underlying
process of data generation, the so-called parametric formulations
of the criterion. Or in case of a model-free approach, the
formulation is said to be non-parametric. Figure 1 summarizes
the main blocks of these two approaches and introduces the main
blocks of the alternative approach that is proposed in this paper,
which is called the parametric supervised approach. The figure is
horizontally divided in three parts, one for each approach. They
all start by requiring a criterion of causality and a multivariate
time series, as input dataset. And they all end with an estimate of
the casual graph of the input dataset.

In the parametric approach, a criterion of causality is chosen
and then, according to it, a model of the generative process is
assumed and a measure for causality is defined. Commonly, the
computation of the causality measure requires the identification
of the model, which, in general, is not trivial (Valdes-Sosa et al.,
2011). Moreover, to obtain the causal graph from the computed
measures, the significance of the non-zero values needs to be
tested. This can be done, for example, by means of bootstrap
techniques, or by knowing the actual distribution under the null
hypothesis.

In the non-parametric approach, given a criterion of causality,
its definition of causal interaction is formulated in terms of
equations between probability distributions. Afterwards, a metric
is adopted in the information-theoretic framework in order to
test whether the equality holds (Solo, 2008; Vicente et al., 2011).

Differently from the parametric and non-parametric
approach, here we propose a novel direction to attack the
problem of detecting causality, which we call supervised
parametric approach. The supervised approach is based on
machine learning techniques and, specifically, on learning from
examples. Each example comprise a multivariate time series
together with their true causal structure. The idea of proposing
causal inference as a learning theory problem is not new,
especially in the area of observational data causality (Schölkopf
et al., 2013; Mooij et al., 2016). One of the first examples
is (Lopez-Paz et al., 2015a,b), where the authors adopted a
supervised approach for bivariate causal inference with the use
of kernel mean embeddings for feature mapping. Here, the same
idea of a supervised detection of causal interactions is used but

Frontiers in Neuroinformatics | www.frontiersin.org 2 November 2017 | Volume 11 | Article 68

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Benozzo et al. Supervised Causality Detection

FIGURE 1 | Given a criterion of causality, the estimation of causality structure can be implemented in three different ways: the standard non-parametric approach

(top), the parametric one (mid), and the proposed parametric supervised one (bottom).

with a different implementation. Moreover, we specifically target
the context of time series analysis. In our variant, the model
is not used to derive a measure but to generate a dataset of
multivariate time series together with their actual causal graphs.
The purpose of this dataset is to be used as training set for a
classification algorithm, aimed to predict the causal graph of
future multivariate time series.

A consequence of the proposed approach is that we need to
build a feature space in which to represent the dataset, such
that the specific aspects of the chosen causality criterion are
represented. Moreover, it is interesting to notice that model and
feature space do not need to derive from the same causality
criterion. This means that the proposed supervised approach
allows to disentangle the mechanism of data generation from the
criterion used to describe the causal structure.

In this work, the proposed supervised parametric approach
is compared with the standard parametric formulation. For
this reason, we refer to the standard parametric approach as
to the unsupervised parametric one. In the context of the
Granger criterion of causality (Granger, 1969), we conduct
the comparison through a simulation study. Granger causality
is the most adopted criterion for causal inference in brain
recordings (Seth et al., 2015) and it is based on the assumptions
of precedence and predictability of the cause with respect to its
effect. Precedence means that a cause has to temporally precede
its effect. Predictability is referred to the conditional dependence
that exists between the past of the causes and the future of the
effect, conditioned on the past of the effect itself.

1.2. Causality Measures Based on the
Granger Criterion
In the following, we provide a brief summary of the most
important measures of causality that have been developed
from the Granger criterion, both for the non-parametric and
parametric cases.

For the non-parametric approach, a widespread
causality measure is transfer entropy, which compares the
probability distributions between the candidate effect and
the past of the candidate cause, under the hypothesis of
independence (Schreiber, 2000; Amblard and Michel, 2010,
2012). Specifically, transfer entropy computes the Kullback-
Leibler divergence between the probability distribution of the
candidate effect conditioned on it own past and the same effect
conditioned also the past of the candidate cause. By definition,
this measure is non-negative and zero only when the two
distributions are equal. Moreover, the fact that KL-divergence
does not consider any specific statistical moment of a given
order, is particularly suited for detecting non-linear interactions.
Beyond transfer entropy, other non-parametric measures have
been proposed (Ancona et al., 2004), such as the measure based
on Fisher information.

The parametric representation of the Granger criterion
assumes a linear autoregressive model of the process. This
assumption refers to how time series are interacting with each
other, without explicitly modeling the physical mechanism of
generation. The autoregressive representation has led to different
formulations of measures of causal interaction. The temporal
formulation tests the presence of causality by comparing the
residual variances of the effect in which the candidate cause
is initially excluded vs. when it is included, during model
identification. The causal measure is defined as the natural
logarithm of the ratio of the residual variances, that we refer to
as the Geweke measure in time domain. A meaningful reduction
of the residual variance when the candidate cause is included
in model identification means a better model for the effect. In
such case, the time series evaluated as possible cause is said to
Granger cause the time series evaluated as effect (Bastos and
Schoffelen, 2015). We will use this measure as baseline estimate
of causality in the upcoming experiments. In the literature, the
Geweke measure is also known as the Granger index, here we
adopt the choice of Chicharro (2014) to distinguish between the
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criterion and the measure and so to refer to the criterion as the
Granger criterion and to the measure as the Geweke measure.
It has been proven that this measure of causality is a test of
Granger causality on the first moment statistic of the underlying
probability distributions (Granger, 1980), since it is based on the
linear assumption of the process. This is in contrast with transfer
entropy where, by definition, the whole probability distribution
of the processes is considered (Barnett et al., 2009).

The autoregressive parametric formulation of the Granger
criterion was also implemented in the spectral domain. It
was introduced in Geweke (1982) and named Geweke spectral
measure of Granger causality. In the bivariate case, the Geweke
spectral measure from x and y at the frequency ω, is defined
as the natural logarithm of the ratio of the power spectrum of
y computed considering the possible contribution of x and the
power spectrum of y computed alone, in both cases evaluated
at ω. It is interpreted as the portion of the power spectrum
associated with the residuals that do not take into account the
presence of y (Chicharro, 2011). The Geweke spectral measure
does not have its equivalent formulation in the information-
theoretic framework. As shown in Chicharro (2011), the lack
of a temporal separation between the past and the future of
the involved processes is what defines a spectral formulation
of a parametric formulation. Differently, in the non-parametric
formulation, a spectral measure is not available, because no way
to avoid temporal separation has been proposed yet.

Other examples of causal measures developed in the spectral
domain are the Partial Directed Coherence (PDC) (Baccalá
and Sameshima, 2001) and the Direct Transfer Function
(DTF) (Kaminski and Blinowska, 1991). Both were initially
developed under the assumption of identity matrix as covariance
matrix of the innovation process and then generalized
in Takahashi D. Y. et al. (2010b), where they are named
the information PDC (iPDC) and the information DTF (iDTF).
Both are defined as a coherence measure between two processes
thus they have an interpretation in term of mutual information
rate. Moreover, both are measures to test for Granger causality,
but only in the case of DTF, a direct connection between the
bivariate Geweke spectral measure and the bivariate iDTF exists.
iPDC assumes an autoregressive model for the process while
iDTF starts with the moving average representation of the
autoregressive model.

In the neuroscience domain, the multivariate extension
of the causality measures introduced so far has great
importance (Pereda et al., 2005). In the case of the
bivariate iPDC and iDTF, the multivariate extension are
straightforward (Takahashi D. et al., 2010a). Also the Geweke
measure in time domain has a direct multivariate extension
from the bivariate case, by conditioning on the processes that
are not included in the pair (Barrett et al., 2010). Less immediate
is the extension of the spectral representation: for a detailed
explanation see Geweke (1984).

1.3. Proposal
The aim of this work is to investigate the proposed supervised
formulation by adopting a parametric model of the Granger
criterion of causality. We propose a simulation study in the

context of the autoregressive model, specifically in the time
domain. With these ingredients, it is possible to have a fair
comparison against the standard conditional Geweke measure
in time domain. Across the experiments, we compare the
proposed method against a standard Granger causal analysis
(GCA) method (Barnett and Seth, 2014). In particular, our
interest is in facing the problem of high false positive rate
that is typical for the Geweke measure when applied on
noisy data. Moreover, we aim to overcome the fact that
most of the approaches based on the Granger criterion,
are also pairwise-based. And so they do not consider the
multivariate nature of the signals. The way used to face these
problems includes the supervised framework and a definition
of a feature space that takes into account the multivariate
aspect.

The proposed approach is analyzed in a series of experiments
that are grouped in two parts. What differs between them
is the generative process used for the training and for the
testing/prediction phase. In the first group, the model is the
same for the training and the testing phases. The first group is
meant to evaluate the proposed approach under the three main
aspects of the method: the generative model, the feature space
and the classification task. In the second group, the generative
model differs between training and testing sets. This case is quite
common in practical cases, because the recorded signals may not
fully respect the assumptions of the generative model assumed
for the analysis.

In addition, we report the details of the solution computed
with the supervisedmethod that we submitted to the Biomag2014
Causality Challenge (Causal2014)b1, which reached the second
place of the ranking (Benozzo et al., 2016). Such competition
adopted an autoregressive model as generative process to
simulate brain signals. The model generated a three-dimensional
multivariate time series, given a randomly generated causal
graph2. The competition distributed a large set of these
multivariate time series and the task was to reconstruct their
causal graphs.

In the second part of the experiments, we introduced a
mismatch between the generative process of the training phase
and the process of the prediction phase. The purpose of studying
such situation is to assess how strong is the bias of the
generative model, i.e., the one used to create the training set,
when predicting data coming from a (partly) different process.
Two different cases are analyzed in the second part: one with
simulated datasets and the second with neural recordings from
rats.

2. MATERIALS

In this section, we describe the multivariate autoregressive model
(MAR) used in our simulations and then the neural recordings
used for testing the proposed method in a real setting.

1http://www.biomag2014.org/competition.shtml, see “Challenge 2: Causality

Challenge.”
2Represented as a 3× 3 binary matrix.
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2.1. The MAR Model
The final output of the MARmodel is the multivariate time series
X = {X(t), t = 0, 1, . . . ,N − 1},X(t) ∈ R

M×1 that is defined as
the linear combination of two M-dimensional multivariate time
series Xs and Xn

X = (1− γ )Xs + γXn (1)

Xs carries the causal information, Xn represents the noise
corruption and γ ∈ [0, 1] tunes the signal-to-noise ratio. The
choice of this formulation of the MAR model, with additive
noise included, is motivated by the facts that Granger metrics
are strongly affected by both uncorrelated and linearly mixed
additive noise (Vinck et al., 2015; Haufe and Ewald, 2016) and
because it was also adopted in the Causal2014 competition. Each
time point of Xs and Xn is computed by following the MAR
model

Xs(t) =

p
∑

τ=1

A(τ )⊤
s Xs(t − τ )+ εs(t)

Xn(t) =

p
∑

τ=1

A(τ )⊤
n Xn(t − τ )+ εn(t)

(2)

where p is the order of the MAR model and represents the
maximal time lag, εs(t) and εn(t) are realizations from a M-

dimensional standard normal distribution and A
(τ )
s ,A

(τ )
n ∈

R
M×M , τ = 1, . . . , p, are the coefficient matrices modeling the

influence of the signal values at time t − τ on the current

signal values, i.e., at time t. The coefficient matrices A
(τ )
s are

involved in the process of causal-informative data generation.
They are computed by multiplying the non-zero elements of the
M × M binary matrix A with uniformly distributed random
numbers. In essence, A is called causal configuration matrix
and represents the causal graph that leads the MAR model.
Specifically Aij = 1 means signal i causes the signal j. On

the other hand, coefficient matrices A
(τ )
n lead the noisy part of

the signals and they are obtained by randomly generating p

diagonal matrices. After that, if both sets of matrices A
(τ )
s and

A
(τ )
n fulfill the stationarity condition, each time point of Xs and

Xn is generated by Equation (2).

2.2. Neural Recording Dataset
The neural recording data that have been used for the real
application experiment, belong to the hc-3 dataset (Mizuseki
et al., 2009, 2013). The dataset and related details on the
acquisition are available online at https://crcns.org/data-sets/hc/
hc-3. Neural time series were recorded from rats while they were
performing multiple behavioral tasks. We only used local field
potentials from session eco013.156 of three specific shank probes,
i.e., the ones associated to the Cornu Ammonis (CA1) and the
entorhinal cortex (EC3 and EC5). Each shank has eight recoding
sites. Signals were low pass filtered at 140 Hz, down-sampled
at 600 Hz and epoched into non-overlapping segments of 5 s
duration. Moreover, we averaged across recording sites in each
shank. Our final dataset contains 102 trials each of 3 time series
with 5 s length associated to the three brain areas (CA1, EC3, and

EC5). In order to quantify the accuracy of the evaluated methods,
the true causal graph was defined by assuming the following
chain of interactions: EC3→CA1→EC5, as in van Strien et al.
(2009).

3. METHODS

In this paper, we propose a parametric supervised approach to
the problem of causal inference. The idea is to define the causal
inference in a supervised machine learning framework, in which
a classifier learns how to discriminate among a set of predefined
classes, i.e., causal configurations, though a training phase. The
approach is parametric because a model of the generative process
is assumed and used to generate examples for the training phase.
In details, there are two main ingredients to handle the problem
in a parametric supervised way: the first is a model for the
stochastic process underling the time series and the second is a
feature space able to capture the causal relationships of a given set
of time series. The choice of the model is a step in common with
all other parametric criteria for causal inference. The difference
is that, in our case, the model is used for the generation of the
training set instead of the formulation of a measure of causality.
In order to compare the supervised framework with the Geweke
measure of causality in time domain, we instantiated our method
with the MAR model. Moreover, we designed a feature space
based on the idea of predictability and precedence in time, as in
the Geweke measure3. In the following we report all the details of
this procedure.

3.1. Data Generation and Causal
Configuration
The training dataset, that is class-labeled and denoted as L, is
generated considering the total number of causal configuration
matrices A that can be produced by a given number of time
series. In a general setting, each trial X is composed by M time
series and the final goal of causal inference is to estimate its
M × M configuration matrix A. Thus, there are M(M − 1)
free binary parameters and 2M(M−1) possible causal configuration
matrices4. Considering that Lmust be representative of the entire
population of configurations, it will be generated so that multiple
trials are included for each possible causal graph.

3.2. Classification Schema: MBC and CBC
Here we describe two versions of the parametric supervised
method, they differ in the definition of the class label. In the
first, the entire causal configuration matrix A is considered the
class label of the trial. This choice implies that one classifier is
trained to discriminate among 2M(M−1) classes. We will refer at
this solution as thematrix-based classification (MBC) method. In
the second version of the parametric supervisedmethod, each cell
of the configuration matrix is analyzed independently from other
cells. Since each cell can be only 0 or 1, then the whole problem of
predicting the causal configuration is transformed intoM(M−1)

3Python implementation at: https://github.com/FBK-NILab/supervised_causality_

detection
4The diagonal is not relevant since by definition time series are autoregressive.
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binary classifications problems, one for each cell. We call this
approach the cell-based classification (CBC).

3.3. Definition of the Feature Space
The feature space is defined on the same assumptions done in the
case of the autoregressive implementation of Granger causality.
Thus, each trial is mapped into a vector of measures, that quantify
the ability to predict one time series at a given time point, i.e.,
the effect, from the past of each possible subset of the M time
series in the trial, i.e., the possible causes. We call the pair, made
by causes and effect, causality scenario. In other words, chosen
one of the M time series as the effect in the causality scenario,
the related possible causes are all the subsets that can be formed
from the whole set of time series. For M time series, the number
of scenarios is

∑M
i=1

(M
i

)

M = (2M − 1)M, by using the binomial
theorem. In Table 1, we report the causality scenarios in the case
of M = 3. Thus, the possible causality scenarios are 7 for each
xi(t), i = 0, 1, 2, i.e., time series that defines a trial, so 21 causality
scenarios in total.

For each causality scenario, a plain linear regression problem
is built by selecting, as dependent variable, the time points from
the signal in the effect column. Each of these dependent variables
has a regressor vector composed by the p previous time points
selected from the signals in the causes column, where p is the
order of the MAR model, see section 2.1. Table 2 shows how
the regression problems are defined when M = 3, by specifying
fromwhich time series and time points, regressors and dependent
variables are extracted. In the following, in order to simplify the
notation, we will use xti instead of xi(t), i = 0, 1, 2 and t ∈

T,T ⊆ {p, . . . ,N − 1}. Figure 2 explains how, for the specific
time point t = 30 and for p = 10, the input of the regression
problem is built for the last causality scenario (7) of Table 2 and
i = 2: {x0, x1, x2} → x2. Lastly, the regression problem of each
causality scenario is scored, by common metrics like the means
squared error. Such scores are used as features in the feature space
representation of the training set L.

3.4. Relationship with the Geweke Measure
As summarized in Table 1, the feature space is defined by
exploiting all possible causality scenarios among a set of M time
series. Differently, in the bivariate case, the Geweke measure
separately tests for each pair (xi, xj) the cases of xi → xj and
xj → xi. In terms of the scenarios described above, the bivariate
evaluation of xi → xj corresponds to the cases xj → xj and

TABLE 1 | For each effect xi (t) and M = 3, we report the seven possible causality

scenarios.

Causes Effect

1 x0(t) xi (t)

2 x1(t) xi (t)

3 x2(t) xi (t)

4 x0(t), x1(t) xi (t)

5 x0(t), x2(t) xi (t)

6 x1(t), x2(t) xi (t)

7 x0(t), x1(t), x2(t) xi (t)

{xi, xj} → xj. This means that, when considering 3 or more
time series, the Geweke measure would consider only a pairwise
analysis.

Similarly, the conditional-bivariate implementation of the
Geweke measure tests the causal interaction by including in the
set of causes of each causality scenario theM − 2 time series that
are not in the pair under analysis.

In the analysis of the proposed method, we will also consider
the subsets of feature space that corresponds to the bivariate
and conditional-bivariate cases, by removing scenarios that are
not included in those cases. For clarity, we call the two reduced
features spaces as pairwise (pw) and conditional-pairwise (c-pw).
In both cases, given M time series and selected one as effect, its
possible causes defineM−1 causality scenarios plus the causality
scenario that involves only the effect itself, i.e., xj → xj. Thus,
we obtain M causality scenarios for each effect, and M2 in total.
In our example of M = 3, the number of scenarios is 9, instead
of 21.

TABLE 2 | Description of how the 21 linear regression problems are defined for

each trial.

Regressors (causes) Dependent variable (effect)

[x
t−p
0 , . . . , xt−1

0 ] xt
i

[x
t−p
1 , . . . , xt−1

1 ] xt
i

[x
t−p
2 , . . . , xt−1

2 ] xt
i

[x
t−p
0 , . . . , xt−1

0 , x
t−p
1 , . . . , xt−1

1 ] xt
i

[x
t−p
0 , . . . , xt−1

0 , x
t−p
2 , . . . , xt−1

2 ] xt
i

[x
t−p
1 , . . . , xt−1

1 , x
t−p
2 , . . . , xt−1

2 ] xt
i

[x
t−p
0 , . . . , xt−1

0 , x
t−p
1 , . . . , xt−1

1 , x
t−p
2 , . . . , xt−1

2 ] xt
i

xti , i = 0,1,2 and t ∈ T,T ⊆ {p, . . . ,N − 1}, are the three time series of a trial.

FIGURE 2 | Example of how the sample associated at the time point t = 30 is

built in order to form the input of the last regression problem in Table 2, for the

case i = 2 and p = 10.
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3.5. Evaluation Metrics
In the experiments described in section 4, the ability to identify
the correct causal configuration on simulated and real datasets,
will be quantified in terms of receiver operating characteristic
(ROC) curve and the related area under the curve (AUC). In
this way, the obtained results will not be biased by the possible
different cost of false discovery that may change in different
applications.

The computation of the ROC curve in the cases of the
standard Granger causality analysis (GCA, see Barnett and
Seth, 2014) and cell-based classification (CBC) is straightforward,
because GCA is a conditioned pair-wise method and CBC
predicts the single cells of the causality matrix. The ROC curve
can then be computed from the false positive (FP) rate and
the true positive (TP) rate obtained by varying the classification
threshold5 and by averaging over all cells and all trials.

In the case of matrix-based classification (MBC), the
classification problem is multiclass and the ROC curve cannot
be obtained in a straightforward way, in general. Nevertheless,
in our specific case, each predicted causal matrix is a binary
matrix, as in the case of CBC. The only difference is that,
with MBC, all entries of the matrix are jointly predicted
instead of being individually predicted each by a different
classifier, as in CBC. Anyway, by jointly varying the classification
threshold in all entries of the matrix, we can compute the
ROC curve for MBC, allowing a fair comparison with CBC
and GCA.

4. EXPERIMENTS

The purpose of our empirical analysis is to compare the
proposed supervised methods, described in section 3, against
the best practice in the literature, which is based on an
unsupervised estimate of the parameters of the MAR model.
The comparison is performed mainly with synthetic data
where the ground truth of effective connectivity is known in
advance, by design. Additionally, on real data, we investigate the
behavior of the supervised approach when the underlying exact
generative model is not known in advance. To conclude, we also
report the empirical investigation proposed by the Causal2014
challenge1.

4.1. Data Generation Process and Feature
Space
Before describing each experiment, we provide details on the
initialization of the MAR model to generate the dataset L and
on how to create and improve the feature space described in
section 3.3. The parameters of the MAR model were set as
p = 10, N = 6, 000, and M = 3. Regarding the parameter γ ,
since the presence of additive noise affects the performance of a
Granger-basedmetric, we generated two versions of the L dataset.
One version that we call LMAR, contains only the autoregressive
component and no noise corruption. This practically means
keeping γ = 0 in Equation (1). In a second version, with explicit

5We assume to use classifiers that produce a classification score, like the probability

of having a causal interaction.

noise corruption, γ is picked uniformly at random for each trial.
We refer to this last dataset as L. Given this setting, there are
26 = 64 possible causal graphs/configurations. One thousand
trials were generated for each configuration, thus in total 64,000
trials comprised LMAR and L.

As explained in section 3.3, as feature space we computed
two regression metrics: the mean square error and the coefficient
of determination r2. Both were included because we noticed a
significant improvement in the cross-validated score, although,
intuitively, they could seem redundant. Additionally, we included
an estimate of the Granger causality coefficients6. As a further
step, we enriched the feature vector by applying standard
feature engineering techniques, like simple basis functions. These
consisted in extracting the 2nd power, 3rd power, and square
root of the previously defined features, together with the pairwise
product of all features. Adding extracted features was motivated
by the need to overcome the limitation of the adopted linear
classifier, see Domingos (2012).

4.2. Experiments with the Same Process of
Data Generation
The experiments presented here have in common that the
same process of data generation was used for both the training
and the evaluation sets. The experiments with simulated data
were designed according to the three main components of the
supervised approach: (i) the generative model, (ii) the encoding
of the signals into the feature space, and (iii) the use of a
classification task.

The first experiment aimed to investigate the effect of
including additive noise to the data generation process. Both the
unsupervised (GCA) and supervised methods were applied to
the two datasets LMAR and L. For the implementation of GCA,
we adopted the toolbox proposed in Barnett and Seth (2014).
For the supervised approach, after the mapping of the datasets
to the proposed feature space, the logistic regression classifier7,
with ℓ2 regularization, was applied in a five-folds cross-validation
framework.

The second experiment aimed to characterize the properties
of the feature space proposed in section 3.3, that we call complete
feature space, and to compare it with its pairwise (pw) and
conditional-pairwise (c-pw) versions described in section 3.4.
Such restricted/reduced feature spaces were introduced to mimic
the Geweke measure, which addresses the bivariate case. The aim
is to understand the gain of introducing the complete feature
space that accounts also for the multivariate case.

The third experiment considered the two alternative
schema to formulate the classification task: the matrix-based
classification (MBC), which jointly predicts all entries of the
causal matrix, and the cell-based classification (CBC), for
which each matrix cell refers to a different binary classifier, see
section 3.2. Since M = 3, in the case of MBC we trained one
classifier to predict among 64 different classes, one for each
possible causal configuration matrix. In the case of CBC, 6 binary
classifiers were trained, one for each cell of the causal matrix.

6See GrangerAnlayzer in NiTime, http://nipy.org/nitime
7http://scikit-learn.org

Frontiers in Neuroinformatics | www.frontiersin.org 7 November 2017 | Volume 11 | Article 68

http://nipy.org/nitime
http://scikit-learn.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Benozzo et al. Supervised Causality Detection

Both versions were applied to the two simulated datasets LMAR

and L.
As an additional evaluation of the supervised approach, here

we report the detail of our submission to the Causality2014
challenge. In this setting we know in advance the generative
model, i.e., the MAR model, but the ground truth of the causal
graph of each trial is unknown. We used the L dataset as training
set with the MBC method with the complete feature space.
The posterior probabilities computed by the logistic regression
classifier were converted into predicted classes considering the
costs provided by the competition for true positives (+1) and
false negatives (−3).

4.3. Mismatch between Generative
Processes
In this experiment, we artificially introduced amismatch between
the generative model of the training set and the actual process of
signal generation. This is a frequent scenario in practical cases,
because generative models are only approximations of the real
physical process creating the data. For this reason, we wanted to
compare the proposed supervised approach with respect to the
standard analysis under such scenario. In practice, we applied
CBC to the L dataset after training it on the LMAR dataset and,
as feature space, we adopted its complete version.

As a second experiment on the mismatch of the generative
processes, we trained the CBCmethod on the L dataset and tested
on the real neural recording dataset described in section 2.2. The
experiment was repeated with different configurations, i.e., by
changing the sampling frequency of the neural signals and the
related model order p. As sampling frequency, we set it to 600,
800, and 1,000 Hz and the model order was computed in order
to have time windows of 5, 10, 15, 20, and 25 ms. For each pair
of sampling frequency and model order the AUC was computed
using as true causal graph the causal chain reported in section 2.2,
i.e., EC3→CA1→EC5, as in van Strien et al. (2009).

5. RESULTS

In this section, we report the results of the multiple experiments
described in section 4. There, we presented two groups of
experiments that we report here too.

In the first group of experiments the model of data generation
is exactly the same of the dataset to be analyzed. In other words,
the training and testing sets of the supervised approach are
generated with the same data generation process. The results
of the first experiment, i.e., comparing GCA and the propose
supervised methods on data with and without additive noise,
are presented in Table 3 as ROC AUC scores (higher is better).
As expected, with no additive noise, see row LMAR, all methods
predict identically, because classification is perfectly accurate in
all cases. When adding noise, i.e., row L, the AUC score changes
from 0.72 for GCA to 0.91–0.92 for the supervised methods.

The second experiment of the first group compares the
different features spaces for the supervised approach. In Table 4,
the AUC of the complete feature space (columns CBC), of the
pairwise one (column CBC pw), and of the conditional-pairwise

TABLE 3 | AUC values of GCA, CBC, and MBC on the two datasets LMAR and L.

GCA CBC MBC

LMAR, i.e., γ = 0 1 1 1

L, i.e., 0 ≤ γ ≤ 1 0.72 0.92 0.91

The standard deviation is lower than 0.0015 in all cases.

TABLE 4 | AUC values of CBC with the complete and reduced feature spaces, on

LMAR and L.

CBC CBC c-pw CBC pw

LMAR, i.e., γ = 0 1 1 1

L, i.e., 0 ≤ γ ≤ 1 0.92 0.91 0.90

The standard deviation is lower than 0.0015 in all cases.

one (column CBC c-pw), are reported. The corresponding ROC
curves are illustrated in Figure 4.

The third experiment of the first group, compares our two
different approaches to classification, i.e. the cell-based (CBC)
and the matrix-based (MBC) ones. In Table 3, columns 2 and 3,
the AUC scores are reported together with those of GCA. The full
ROC curve is presented in Figure 3.

The first group of experiments is concluded by the results of
the Causal2014 challenge, reported in Table 5. The results are
five-fold cross-validated on the training set, because the causality
matrices of the test set of the competition were not disclosed.
The table reports the confusionmatrices of GCA, CBC, andMBC
estimated on L, following the competition guidelines.

The second group of experiments, investigates the effect of a
generative model that differs from the actual generation process
of the data to analyze, i.e., there is a mismatch between the two
models. The first experiment, where CBC was trained on LMAR

and tested on L, resulted in a ROC AUC score of 0.85. Despite
the difference between training set and testing set, the result is
superior to the 0.72 obtained by GCA, see Table 3. The results of
the second experiments, of CBC on the neural recording dataset
(see section 2.2), are reported in Table 6, in terms of AUC score
for different choices of the sampling frequency and order of the
MAR model (p), i.e., the window width. We computed the AUC
score also for GCA, obtaining chance-level results, i.e., AUC ≈

0.5, in all cases. We observed that GCA estimated the existence
of causal links in almost all cases/interactions, clearly generating
a very large number of false positives. At the same time, we
observed that the neural recording data have high autocorrelation
and cross-correlation, which may explain such behavior.

6. DISCUSSION

In this paper, we propose a new approach for causal inference in
the framework of machine learning. Specifically, we developed
a classification-based method by assuming a model for the
stochastic process and a causality measure, and created a suitable
feature space. Our idea is to use themodel to generate a simulated
dataset, representative of the problem of which we want to infer
the causal interactions. Then we map this dataset into a suitable
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FIGURE 3 | ROC curves estimated on the results of the three analyzed causal inference methods: Granger Causality Analysis (GCA), Cell-based Classification (CBC),

and Matrix-based Classification (MBC).

FIGURE 4 | ROC curves estimated on the results of CBC when applied on three different feature spaces: the complete one in contrast with the pw and c-pw ones.

The ROC curve of GCA is shown as benchmark.
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TABLE 5 | Confusion matrices of GCA, CBC, and MBC on the Causal2014 dataset, taking into account for the bias for reducing the false-positives.

Pred. (GCA)

1 0

True
1 99.6% 0.4%

0 80.1% 19.9%

Pred. (CBC)

1 0

True
1 59.4% 40.6%

0 2.8% 97.2%

Pred. (MBC)

1 0

True
1 57.8% 42.2%

0 2.2% 97.8%

The values are conditional probabilities given the true class, i.e., each row sums up to 1.

TABLE 6 | AUC computed by applying CBC to the empirical dataset with different

sampling frequencies and time window widths.

5 ms 10 ms 15 ms 20 ms 25 ms

600 Hz 0.80 0.82 0.82 0.83 0.82

800 Hz 0.82 0.82 0.82 0.73 0.62

1 kHz 0.82 0.82 0.75 0.61 0.64

The standard deviation is lower than 0.009 in all cases.

feature space. After that, a classifier is trained on the dataset in
order to predict the causal graph of a future set of time series, i.e.,
to predict a set of binary variables. As a consequence, the causal
inference is directly dependent both on the chosen generative
model and on the designed feature space.

We put this general framework in practice, by customizing it
in the case of the Geweke causal inference in time, see section
3, and, as a consequence, of the autoregressive model as the
generative process of the multivariate time series. Moreover,
another consequence is the assumption of precedence and
predictability in time, for the identification of a causal interaction.
In sections 3 and 4, we designed a feature space coherent.

In the experiments of section 4, we compared the performance
of different methods for causal inference, when applied to a
multivariate autoregressive dataset, with and without additive
uncorrelated noise. The results are shown in terms of AUC
value and ROC curve, see Figure 3. The estimated AUC of
each method on each dataset is reported in Tables 3, 4. In
the absence of correlated noise, i.e., with dataset LMAR, all
methods perfectly predicted the correct causal configurations,
which is a positive sanity check of the supervised approach.
With the presence of additive noise, predicting the correct causal
configuration becomes more difficult. In particular, we observed
that GCA is more sensitive to additive noise than the supervised
approaches, scoring AUC = 0.72, with respect to 0.90–0.92
of the supervised methods. Figure 3 confirms that both the
supervised methods CBC and MBC perform better than GCA.
It is interesting to note that the ROC curve of GCA does
not exist for false positive rate lower than 0.55. This occurs
because the poor granularity of the scores of GCA does not
allow to put thresholds that result in a false positive rate lower
than 0.55. Specifically, GCA assigns probability 1.0 to a large
amount of causal interactions that are not existent. In these
result and other experiments, we observed that GCA tends to
overestimate the presence of causal interactions. Differently, both
CBC and MBC have much more granularity and higher AUC
scores, i.e., 0.92 and 0.91, respectively. Given that both CBC

and MBC operate on the same feature space, we can conclude
that a joint prediction of all causality interactions, which is
what MBC provides, does not result in an advantage over the
individual predictions of each interactions, which is what CBC
provides.

The proposed supervised approach allows to study
multivariate causal interactions. This is different from the
Geweke measure, that is a conditioned pairwise method. In the
supervised case all the multivariate dependencies among time
series are taken into account through the causality scenarios
included in the designed feature space, see section 3.3. For this
reason, the proposed approach goes beyond what the pairs of
cause/effect time series can give. In Figure 4 and Table 4 the
results of the analysis on the role of the proposed features space
are reported. When considering only the pairwise (CBC pw) and
conditional pairwise (CBC c-pw) portions of the feature space,
the AUC score is lower than the full feature space (CBC), even
tough by a margin.

Considering the specific case of the Causal2014 challenge, we
reported in Table 5 the confusion matrices computed with GCA,
CBC, and MBC on the training set through cross-validation,
considering the cost model defined in the competition, see
section 4.2. From this example, we clearly see that GCA provided
a very large fraction of false positive, i.e., 80.1%. Differently, both
CBC and MBC correctly followed the bias of the competition
of reducing the number of false positives, which was 2.8 and
2.2% respectively. Our submission to the competition, with
MBC8, reached the 2nd place in the ranking, which is positive
evidence that, in the case of the Geweke measure, the supervised
approach is a meaningful alternative to the current state of the art
unsupervised causal inference methods.

In practical cases, generative models may not accurately
describe the observed data coming from neuroimaging
experiments. For this reason, we wanted to test the effect of
introducing a systematic change between the training set and the
testing set. Such change may have particularly negative impact
for classification-based methods. Then, CBC was trained on
LMAR and then tested on L. As reported in section 5, in this case
AUC dropped to 0.85, from 0.92 of the case where L was both
the training set and the testing set. Such result is still superior
to AUC = 0.72, obtained with GCA. Such evidence supports
the hypothesis that CBC is also robust to some violations in the
assumption of the generative model.

On the neural recordings dataset introduced in section 2.2, the
assumption of the MAR model may be incorrect. In section 4,
we reported that on such data GCA performed poorly, around

8At the time of the competition we had developed only MBC and not CBC.
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chance-level, in all cases. This may be explained by both
incorrect assumptions and by the high autocorrelation and cross-
correlation in the time series. Differently from GCA, in Table 6

we show that CBC reaches high AUC scores, i.e., around 0.82, for
all sampling frequencies. We notice that, for larger time windows
and higher frequencies, the AUC drops to 0.61, probably due to
the increase in high frequency noise in the data. Nevertheless, it
has to be noted that these results assume the validity of the causal
chain EC3→CA1→EC5 that was introduced in van Strien et al.
(2009).

6.1. Computational Limitations
In the experiments proposed in this work, we limited the number
of time series to M = 3. Following the explanations in sections
3.2 and 3.3, this results in 64 classes, in case of MBC, or 6
binary problems, in case of CBC, and a feature space of 21
dimensions9. The first and the last number increase exponentially
with M and the second quadratically with M. For M = 4, the
three numbers become 4,096, 12, and 60, respectively. For this
reason, MBC becomes unfit to be used when M > 3, because
the training set necessary to fit the parameters for a very large
number of classes would be unfeasible to obtain and to manage.
Nevertheless, even the use of CBC cannot address a large number
of time series, because the feature space grows exponentially
withM.

Nevertheless, it is interesting to note that the feature space
proposed in this work is not bound to the generative model
considered here, i.e., the MAR model. The causality scenarios
defined in section 3.3 are based on the causality measure, i.e.,
the Geweke measure. This opens interesting avenues for further
research, which investigates how the inference based on the
same feature space would change when different models of the
generative process are used.

9Without considering the additional feature engineering step described in

section 4.1.

7. CONCLUSIONS AND FUTURE WORK

In this work, we presented how the problem of causal inference
among time series can be tackled with supervised learning
methods. We defined a novel feature space based on the
principles of Granger causality and trained a classification
algorithm on examples generated from the MAR model. We
compared the proposed method with a standard approach in the
literature, i.e., GCA, and showed a strong reduction in the false
positive rate, together with a sizable improvement in AUC score.
The experimental evidence in support to our claims comes from
simulation and from the analysis of neural recordings from rats.

In future, we want to address some of the limitations of the
proposed method. First, the computational problem of dealing
with a larger number of time series, that could be addressed
by limiting the number of causality scenarios to a subset of
interest for the specific application. A second limitation is the
current use of the MAR model. We are already working on
alternative generative models, which are known to provide a
more accurate representation of the neural recordings. A further
interesting future perspective is to extend the method beyond the
observational assumption, in order to deal with interventional
data, thus embracing other causality frameworks. In this way,
issues such as confounding variable could be attacked, leading to
a more accurate detection of causality among timeseries.
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