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Abstract

One of the most impressive characteristics of human perception is its domain adaptation capability. Humans can recognize objects
and places simply by transferring knowledge from their past experience. Inspired by that, current research in robotics is addressing
a great challenge: building robots able to sense and interpret the surrounding world by reusing information previously collected,
gathered by other robots or obtained from the web. But, how can a robot automatically understand what is useful among a large
amount of information and perform knowledge transfer? In this paper we address the domain adaptation problem in the context of
visual place recognition. We consider the scenario where a robot equipped with a monocular camera explores a new environment.
In this situation traditional approaches based on supervised learning perform poorly, as no annotated data are provided in the new
environment and the models learned from data collected in other places are inappropriate due to the large variability of visual
information. To overcome these problems we introduce a novel transfer learning approach. With our algorithm the robot is given
only some training data (annotated images collected in different environments by other robots) and is able to decide whether, and
how much, this knowledge is useful in the current scenario. At the base of our approach there is a transfer risk measure which
quantifies the similarity between the given and the new visual data. To improve the performance, we also extend our framework
to take into account multiple visual cues. Our experiments on three publicly available datasets demonstrate the effectiveness of the
proposed approach.
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1. Introduction

In recent years robotics research has focused on the integra-
tion of visual information to improve autonomous systems per-
formance in many tasks, such as robot localization, mapping or
manipulation. Many vision and learning techniques have been
exploited to build robotic systems able to face challenging and
unknown scenarios. Furthermore, recent research activities in
the computer vision and robotics fields have also led to the cre-
ation and diffusion of a vast number of image and video collec-
tions publicly available on the web. A robot can now access a
lot of information and potentially can take advantage of these
data to improve its performances in many important tasks such
as navigation or manipulation. The challenge here is that vi-
sual information obtained from the web has typically been col-
lected in very different situations and scenarios with respect to
those the robot is operating in. Thus, it is clear that knowledge
transfer approaches are fundamental in this context. In general,
building autonomous systems that can easily adapt their internal
models when environmental conditions change and can exploit
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the information collected by other robots is very important. In
this work we deal with the knowledge transfer problem in the
specific context of semantic place recognition.

Many works have been proposed in the literature to solve
the place categorization problem [1, 2]. However, while these
works represent the state-of-the-art methods for place classifi-
cation, two fundamental problems arise. First, if the domain
changes, i.e. the robot is moved to another environment, learn-
ing must be performed again from scratch. Second, these ap-
proaches are not designed to take advantage of any other avail-
able source of information, e.g. visual data downloaded from
the web.

Transfer learning is the answer to these problems. With
transfer learning the robot can reuse the previously learned clas-
sification models by adapting them. In this way the human la-
beling effort is greatly reduced as no image annotation is re-
quired in the new scenario. In [3] and [4] a transfer learning
framework is introduced in a place classification context. How-
ever, these approaches make a strong assumption about the re-
lation between the old and the new scenario: they have to share
the same set of place categories. Unfortunately this assump-
tion does not hold for many real world applications where even
very similar environments may contain at least one or two place
specific classes. Moreover, no previous methods have proposed
a strategy to integrate multiple visual sources of information
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Figure 1: Illustration of the idea behind the proposed method:
the robot performs visual place categorization using images col-
lected in a new unknown environment (target data) and rea-
sons about transferring knowledge available from a different
scenario (source data).

while performing knowledge transfer.
In this work we present a novel transfer learning framework

for place recognition targeting the more general situation when
different categories are considered in the new and the old sce-
nario. Figure 1 illustrates the intuition behind our approach.

Consider the simple case of a robot that is asked to recog-
nize places in a unknown environment. No labels are provided
for visual images collected in this scenario. Can the robot take
advantage of other sources of information, i.e. images avail-
able from the web, or collected during its own past paths or
by other robots? Two main questions must be answered in this
context: Is knowledge transfer convenient? and How much in-
formation should be transferred? Intuitively, if the new sce-
nario shares many room categories with the old one, then op-
erating knowledge transfer is very helpful. If this condition is
not met, transferring information could be potentially harmful.
To answer the questions above in this paper we propose a risk
sensitive transfer learning framework. Initially we compute a
divergence measure between the visual data distributions asso-
ciated to the old and the new environments. Then we introduce
the concept of transfer risk, defined in terms of this divergence
measure. Specifically we compare two risk measures, based
respectively on the well known Kullback-Leibler (KL) diver-
gence and on the Earth Mover’s Distance (EMD) [5]. Place
categorization is performed by considering a spectral decom-
position problem that incorporates the notion of transfer risk.
Here, the risk measure aims to balance the influence of the past
experience with that of the visual data collected in the current
scenario. To further improve the place recognition performance
we also propose to use multiple complementary visual cues and

we extend the proposed optimization framework accordingly.
Our approach has been evaluated extensively on three publicly
available datasets. Our results demonstrate that (i) our risk sen-
sitive transfer learning framework outperforms the considered
baselines in most of the cases and that (ii) combining multiple
cues is greatly beneficial in this context.

To summarize, the main contributions of this work are:

• We cast the problem of place categorization in an un-
known scenario within a transfer learning framework.

• We propose a method to quantify the similarity between
the data from the old and the new scenario to understand
how much to transfer. We compare two divergence mea-
sures, i.e. the Kullback-Leibler (KL) divergence and the
Earth Mover’s Distance (EMD).

• We set up a spectral decomposition problem which effec-
tively integrates information about past knowledge defin-
ing a notion of transfer risk.

• We extend our transfer learning approach to fuse multiple
visual cues.

This paper extends our previous work in [6]. However,
with respect to the conference paper, a more detailed discus-
sion about related works is presented, the notion of transfer risk
computed with EMD is introduced and the results of a more
extensive experimental evaluation are shown.

The rest of the paper is organized as follows: Section 2 re-
views related work. Section 3 introduces the proposed transfer
learning framework, illustrating the details of the computation
of the transfer risk, our risk sensitive domain adaptation ap-
proach and its extension to the multi-cue setting. Results and
conclusions are presented respectively in Sections 4 and 5.

2. Related Works

2.1. Sharing Knowledge across Robotic Platforms

In recent decades we have witnessed to a rapid and impres-
sive growth of data publicly available all over the web. This
”big data revolution” has reshaped the traditional way in which
people learn: learning new concepts and tasks has become faster
and easier having access to this large amount of information.
Inspired by this phenomenon, in the last few years robotics re-
searchers have envisioned a similar process for developing the
new generation of autonomous systems. It would be very use-
ful if the robots could share their experiences and benefit from
publicly available data.

An important contribution in this direction has been given
by the RobotEarth platform [7] which has inspired our current
work. Its aim is to provide a unified framework to share infor-
mation and experiences among robots, in a World Wide Web
fashion. The goal of RoboEarth is to allow robotic platforms
to take advantage of the experience of their fellows, providing
a giant network and a database repository. Following [7] many
other works have recently been proposed. In [8] the authors
introduced an approach for processing web resources to help a
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robot perform everyday manipulation tasks. Instead of building
specific models for each platform, the robot can process infor-
mation gathered from some websites and acquire the knowl-
edge needed to perform specific actions and tasks, e.g. cleaning
a room or repairing machinery. Similarly in [9] Samadi et al.
proposed a method where the web is searched to learn a model
reflecting the probability of finding objects in specific rooms.
The importance of building a shared knowledge system is also
exploited in [10]: an approach to create a modular knowledge
representation shared among robot platforms is proposed. The
idea is that a robot can infer the optimal control decision taking
into account the shared information.

2.2. Transfer Learning
The majority of machine learning algorithms develop from

a common assumption: the training and test data are drawn
from the same probability distribution. While for many applica-
tions this assumption holds, there are many real world scenarios
where it does not. Since collecting labels in the new domain of-
ten requires a massive annotation effort, approaches of transfer
learning are the only possible solution. In the transfer learning
scenario, one has access to many labeled data from a source
domain, while few data are available in the target domain. The
idea is to learn a classification/regression model on target data
by leveraging useful information from the source.

In the last few years several transfer learning approaches
have been developed (see [11] for a survey). In [12] Shi et al.
addressed the domain adaptation problem across different fea-
ture spaces. This approach is based on three fundamental steps.
First spectral embedding is used to unify the feature spaces
of the source and the target sets. Then a sampling strategy is
adopted to select the source samples most related with the tar-
get data. Finally, a Bayes approach is used.

The problem of designing a method able to handle the sit-
uation where source and target data have different feature rep-
resentation is also addressed in [13]. The authors first intro-
duce a linear transformation that maps features from the target
to the source domain and then propose learning the transforma-
tion and the classifier parameters jointly. Another interesting
work is presented in [14] where the concept of dual transfer
learning is introduced. In [15] a metric learning approach for
domain adaptation is proposed.

Two interesting methods are described in [16] and [17]. In
[16] the authors introduce the Domain Adaptation Machine ap-
proach which takes advantages from a set of classifiers, learned
from different source domains, to improve the classification
performances on the target domain. Conversely, in [17] a geodesic
flow kernel strategy is proposed to model domain shift from
the source to the target domain. Moreover, they also intro-
duce a metric to measure how to automatically select the op-
timal source domain for adaptation and avoid the less desirable
ones. In fact, a key issue in transfer learning is the ability to
avoid negative transfer, i.e. the harmful situation where inte-
grating knowledge from source data actually degrades classifier
performance on the target domain. The large majority of pre-
vious approaches, e.g. [18, 19], have addressed this problem
in a supervised setting, i.e. when some labeled target samples

are available. Instead, in this work we deal with the negative
transfer problem in an unsupervised setting.

2.3. Semantic Place Classification
In the last few years many works have addressed the prob-

lem of semantic place categorization. In [2] a probabilistic
framework is built to combine heterogeneous sources of infor-
mation. To deal with uncertainties provided by data from dif-
ferent sensors and allow spatial reasoning, a conceptual map
representation in terms of a probabilistic chain graph model is
introduced. The work in [1] also describes a multi-modal place
classification system operating in an indoor environment. In
[20] a recognition algorithm measuring its own level of con-
fidence on classification results is proposed. An incremental
learning approach to place recognition is proposed in [21]. With
this method the same classification performance of the batch
algorithm is obtained while the algorithm runs online. Further-
more, the algorithm is able to keep the memory requirements
low while the system updates its internal representation. In [22]
a low-dimensional global image descriptor is proposed, to pro-
vide robust and strong contextual information about an image
to be used for scene categorization tasks.

However most of these previous works assume that the robot
operates in the same scenario where data used to learn its clas-
sification model are collected, i.e. training and test data are
supposed to be drawn from the same distribution.

In the context of place recognition, only a few knowledge
transfer approaches have been proposed. In [23] a transfer learn-
ing framework is introduced for place classification robust to
illumination and environment changes. The domain adaptation
problem is also addressed in [3, 4, 24]. In [3] a SVM-based
method for knowledge transfer across robots is presented. The
proposed algorithm can handle new information continuously
for incremental model adaptation. However, the robots are all
assumed to perform the same tasks. Another issues arises in the
model update step: old data are discarded without comparing
them with the new ones, while in the ideal case old data should
be eliminated only if they are significantly different from the
most recent ones. In other words, no measure to quantify the
transfer risk is implemented. In [4] a transfer learning algorithm
based on least square SVM is proposed. This approach embeds
a notion of transfer risk in the learning process, i.e. allows the
system to automatically understand how much to transfer. On
the other hand, like previous methods, it relies on supervised
learning. In many situations this may be too restrictive an as-
sumption. Robots are often moved into environments that can
significantly differ from the previous ones, e.g. with different
room categories. Moreover, labeling data in the new scenario
usually requires some human annotation effort, an annoying
procedure which it is desirable to avoid. In [24] transfer learn-
ing is adopted for object classification. Objects are described
through a combination of different visual cues (e.g. color, tex-
ture, shape), then the learned object models are shared among
multiple robot platforms.

In contrast to all these previous works, in this paper we con-
sider a more challenging scenario: we focus on domain adap-
tation when different visual categories are considered in the
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source and in the target data, and while we assume access to la-
beled source data, no labels are provided in the target domain.
Moreover, to our knowledge there are no works that address
the problem of multiple cues integration in a transfer learning
context.

3. Transfer Learning for Place Recognition

In this section we describe the proposed knowledge trans-
fer approach for place categorization. We consider the situation
where a robotic platform has to perform scene recognition in a
completely unknown scenario. Since it has no a priori informa-
tion about the new environment, it can rely only on knowledge
gathered through its past experiences or by other robots. More
specifically, in this work we assume that, while the robot does
not have at its disposal annotated data for the new scenario (the
target domain), it can access other sources of information, i.e.
image datasets or videos recorded in different places for which
labels are provided (the source data). Can the robot use these
visual data and decide autonomously these are useful for the
current place recognition task, i.e. how much the past video se-
quences are similar to those it observes in the new scenario?
More importantly, can it avoid negative transfer, i.e. discard the
source data which will degrade recognition accuracy in the new
environment?

Our approach is based on two main phases. In the first
phase, the similarity between the source and the target data dis-
tributions is assessed. This step aims to understand whether
the two locations have similar visual appearances and sets the
transfer risk accordingly. In the second step, if the transfer risk
is small, the information provided by the labeled source data is
used in the form of constraints to learn our place recognition
model. On the contrary, if the transfer risk is high, we rely only
on the images from the new location and learning is reduced to
cluster target data.

More formally, we are given a set (the source data) S =
{(xs

1, y
s
1), (xs

2, y
s
2), . . . , (xs

Ns
, ys

Ns
)} where xs

i ∈ IRD are visual fea-
tures extracted from video frames and ys

i ∈ {1, 2, . . . ,K
S
C } are

the corresponding labels indicating the room types (e.g. corri-
dor, office, etc), and a set T = {xt

1, x
t
2, . . . , x

t
Nt
} (the target data),

where xt
i ∈ IRD are visual features extracted in the new scenario

for which labels are not available. We are interested in learning
a model in order to classify the target data. Note that the cat-
egories of the target data are not the same as the KS

C classes in
S. As the target and the source data belong to different proba-
bility distributions, respectively PS and PT , we would also like
to measure the distance between them in order to quantify the
risk of knowledge transfer, i.e. of using the source data to build
a suitable model for the target data.

3.1. Clustering-based Transfer Risk
As the target and the source data correspond to video se-

quences recorded under different conditions, it is reasonable to
assume that they belong to different distributions. Therefore,
in order to build a robust learning model, a first step is to mea-
sure the distance between them in order to quantify the risk of
knowledge transfer.

Figure 2: KL divergence computation. |S| and |T | represent
the cardinality of the source and the target data set respectively,
while |Cc| indicates the size of cluster c. The term |S ∩ Cc|

(|T ∩Cc|) represents the cardinality of the intersection between
the source (or target) set and the cluster c.

A popular approach to computing the distance between dis-
tributions is the Kullback-Leibler (KL) divergence, defined as:

KL(S,T ) =
∑

x

PT (x) log
PT (x)
PS(x)

(1)

As calculating the KL divergence directly from the data can be
time consuming, in [25] a more practical solution is proposed,
where an approximation is computed based on the output of
a clustering algorithm operating on the combined data (source
and target data together). More specifically the following defi-
nition of Clustering-based KL divergence is proposed:

DKL
c (S,T ) =

2
|T |

|C|∑
c=1

(
|T ∩Cc|

|Cc|
log
|T ∩Cc|

|S ∩Cc|
) + log

|S|

|T |
(2)

where |S| and |T | represent the cardinality of the source and
the target data sets respectively, |C| is the number of clusters,
while |Cc| indicates the size of cluster c. The term |S ∩ Cc|

(|T ∩Cc|) represents the cardinality of the intersection between
the source (or target) set and the cluster c. The computation of
the clustering-based KL divergence is illustrated in Fig.2 (see
[25] for details on the derivation of (2)).

To measure the distance between the source and the target
distributions PS and PT we also propose a different approach
based on Earth Mover’s Distance [5]. Similarly to the KL diver-
gence computation, this approach is also based on using clus-
tering algorithms to calculate the distance between two distribu-
tions. More specifically, by running Normalized-Cut [26] sepa-

4



Figure 3: EMD distance computation. First clustering is per-
formed on both the source (blue ellipses) and the target sets (red
ellipses) to compute the centroids cs

i and cs
t . Then the weights

ws
i and wt

i are set counting the number of images in each clus-
ter. Finally the flows fi j are computed solving the transportation
problem (3)

rately on the source and the target data, we compute the signa-
tures S = {(cs

1,w
s
1), . . . (cs

M ,w
s
M)} and T = {(ct

1,w
t
1), . . . (ct

M ,w
t
M)},

where cs
i , ct

i are the cluster centroids, respectively computed on
the source and the target data and ws

i , wt
i denotes the weights

associated to each cluster. In this paper for thr sake of simplic-
ity we consider the same number of clusters M for the source
and the target data, and the cardinality of each cluster is used as
cluster weight.

Given two signatures S and T , the Earth Mover’s Distance
(EMD) between the associated data distribution PS and PT is
defined by the following transportation problem:

DEMD
c (S,T ) = min fi j≥0

∑M
i, j=1 di j fi j (3)

s.t.
∑M

i=1 fi j = ws
j
∑M

j=1 fi j = wt
i

where fi j are flow variables and di j is the ground distance di j =

‖cs
i − ct

j‖
2. In a nutshell, the EMD represents the minimum cost

needed to transform one distribution into another. A represen-
tation of its computation is depicted in Fig. 3. The motivation
of using EMD to measure the distance between distributions
lies mainly in its computational efficiency and on the possibil-
ity of handling partial matches between sets in a very natural
way and to reflect the notion of nearness between clusters prop-
erly, thanks to ground distance computation.

The risk of transferring source data information while learn-
ing from target data is defined as follows:

RS,T =
1

1 + e(γ−Dc(S,T ))
(4)

where Dc(S,T ) is the distance between the source and the tar-
get distributions computed with (2) or (3) and γ is a fixed pa-
rameter. This exponential form allows the risk to be normalized

Algorithm 1 Transfer risk computation with Kullback Leibler
divergence

Input: source data S, target data T , total number of cate-
gories KC

W = computeSimilarityMatrix(S, T )
Set D with Dii =

∑
j Wi j

Set L = D - W
U = eig(D− 1

2 LD− 1
2 , KC)

U = D− 1
2 U

Normalize U by row where Ui j = Ui j/
√∑KC

l=1 U2
il

C = kmeans(U, KC)
Compute KL(S,T ) with (2) and RS,T using (4)

Output: risk RS,T

between [0,1]. The algorithms to compute the transfer risk are
illustrated in Algorithm 1 and Algorithm 2.

3.2. Transfer Learning with Different Class Labels

The transfer learning approach we adopt in this paper is an
extension of the Normalized-Cut algorithm [26]. It amounts to
solving the following optimization problem:

min
U

UT LU
UT DU

+ β((1 − RS,T )‖MSU‖2 + RS,T ‖MTU‖2) (5)

where L = D −W is the Laplacian matrix, W is the similarity
matrix computed on the entire dataset S∪T , D = diag(We) and
e is a vector with all the coordinates set to 1. The matrix MS =

[m1m2 . . .mN s
c ]T where mi ∈ IRNs+Nt is a vector with 1 in the i-th

position and −1 in the j-th position if the source data points xi

and x j have the same labels. The matrix MT is similarly defined
on the target data. However, as for the target data labels are
not provided, a preprocessing phase where the target data are
clustered with Normalized-Cut [26] is performed. The matrix
MT is then defined using as labels the vectors indicating the
cluster membership.

The objective function in (5) is the sum of two terms. The
first term simply aims to cluster the entire dataset using Nor-
malized - Cut, while the second term force the learned cluster-
ing structure to satisfy some constraints. More specifically two
sets of constraints are imposed. One guarantees that the learned
projection matrix leads to clusters consistent with the labels of
the source data. The second set of constraints imposes some
consistency between the new clustering results and those that
are obtained grouping only the target data. The trade-off be-
tween transferring source data information and not using it is
regulated by the risk RS,T .

Fig. 4 illustrates the intuition behind the proposed approach.
Analyzing the anti-diagonal sub-blocks of the matrix W it is
possible to detect cross-domain similarities. High similarity
values are observed when source and target data correspond
to places having similar visual appearance, e.g. the same cat-
egories ’Corridor’ or ’Printer Area’. In these cases transfer-
ring the source information, i.e. considering source constraints,
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Algorithm 2 Transfer risk computation with EMD

Input: source data S, target data T , total number of cate-
gories M

Ws = computeSimilarityMatrix(S)
Set D with Dii =

∑
j Ws

i j
Set L = D - Ws

U = eig(D− 1
2 LD− 1

2 , M)
U = D− 1

2 U
Normalize U by row where Ui j = Ui j/

√∑M
l=1 U2

il
[cs

1,w
s
1, . . . , c

s
M ,w

s
M] = kmeans(U, M)

Wt = computeSimilarityMatrix(T )
Set D with Dii =

∑
j Wt

i j
Set L = D - Wt

U = eig(D− 1
2 LD− 1

2 , M)
U = D− 1

2 U
Normalize U by row where Ui j = Ui j/

√∑M
l=1 U2

il

[ct
1,w

t
1, . . . , c

t
M ,w

t
M] = kmeans(U, M)

Compute Dc(S,T ) with (3) and RS,T using (4)

Output: risk RS,T

leads to a great improvement in accuracy when performing place
recognition in the target scenario.

Defining:

A = L + β((1 − RS,T )MT
S

MS + RS,TMT
T

MT )

Y = D 1
2 U/‖D 1

2 U‖ (6)

the optimization problem (5) can be reformulated as follows:

minY YT D−
1
2 (D −W)D−

1
2

+β((1 − RS,T )‖MSD−
1
2 Y‖2 + RS,T ‖MTD−

1
2 Y‖2)

= minY YT D−
1
2 AD−

1
2 Y

= minU
UT D− 1

2 AD− 1
2 U

UT U
(7)

The resulting transfer learning method is presented in Al-
gorithm 3 and Fig. 5 depicts its fundamental steps.

3.3. Transfer Learning with Complementary Visual Cues
Integrating multiple complementary cues has been shown to

be beneficial for many different visual tasks [1, 27, 28]. In this
section we describe the extension of the transfer learning frame-
work introduced in the previous section in order to operate with
two complementary visual cues. In particular in the context of
indoor place recognition we adopt two different descriptors: the
spatial pyramid matching kernel (SPMK) originally proposed
in [29] and the Spatial Principal component Analysis of Census
Transform histograms (SPACT) descriptor [30].

The SPMK representation has been shown to be very ef-
fective and has been widely used for place recognition applica-
tions in the context of robotic systems. Specifically the pyramid

Figure 4: The similarity matrix W computed on source and tar-
get data. The anti-diagonal sub-blocks indicate cross-domain
similarities. Orange circles highlight the similarity between
source and target data corresponding to the class ’Corridor’,
while the purple one refers to the similarities among printer ar-
eas.

matching strategy works by dividing the image into a set of in-
creasingly coarser grids and computing a weighted sum of the
matches that occurs at each level. Two points are said to match
if they are in the same cell, given a certain resolution. Accord-
ing to this scheme the matching kernel is computed calculat-
ing the histogram intersection between the vectors formed by
concatenating the weighted histograms at all resolutions. More
specifically we use the SIFT descriptors [31] to extract interest
points from images.

The CENTRIST descriptor [32] was originally proposed
for scene classification tasks and has been shown to be very
effective as it captures the structural properties of the scenes.
The Census Transform is a nonparametric local transform in-
troduced to compare local patches. It compares the intensity of
a pixel with its eight neighbors and the binary values obtained
replaces the pixel itself. The CENTRIST descriptor has 256
bins where each bin counts the occurrences of a value in the
range [0 255] after the application of the Census Transform to
the entire image. Following [32], to obtain the final descrip-
tor, we also apply the spatial-pyramid [29] to capture the global
structure of the image at a large scale and Principal Component
Analysis (PCA) to reduce the dimensionality of histograms and
obtain a more compact representation. The final descriptor is
called SPACT (Spatial Principal component Analysis of Cen-
sus Transform histograms).

Given LS = D−
1
2

S WS D−
1
2

S and LC = D−
1
2

C WCD−
1
2

C , where WS

and WC are respectively the SPMK and the SPACT kernels and
DS = diag(WS e), DC = diag(WCe), the problem of transfer
learning can be formulated as follows:

max
US ,UC

∑
i∈{S ,C} tr(UT

i BiUi) + λA(US ,UC) (8)

s.t. UT
S US = I , UT

CUC = I
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Figure 5: Block diagram illustrating our transfer learning ap-
proach.

with:

BS = LS − βS (1 − RS
S,T )MT

S
MS + RS

S,TMT
TS

MTS (9)

BC = LC − βC(1 − RC
S,T )MT

S
MS + RC

S,TMT
TC

MTC (10)

where λ is an appropriate regularization parameter andA(US ,UC)
is the agreement term between the two views defined as follows:

A(US ,UC) = tr(US UT
S UCUT

C) (11)

In practice the proposed optimization problem (8) is a sum of
two main terms. The first aims to reason about transferring
knowledge from source data separately for each modality, the
second is meant to impose consistency between the two pro-
jected eigenspaces.

To solve this problem efficiently an alternating optimization
approach is adopted, solving separately for US and UC . In par-
ticular for a given UC we get:

max
US

tr
{
UT

S (BS + λUCUT
C)US

}
(12)

s.t. UT
S US = I

which can be easily solved using spectral decomposition meth-
ods. Similarly when US is fixed, an analogous problem must
be solved with respect to UC . The main steps of the proposed
multi-cue transfer learning method are shown in Algorithm 4.

4. Experimental Results

4.1. Datasets
To evaluate the effectiveness of the proposed approach we

ran several experiments selecting as source and target data im-

Algorithm 3 Transfer Learning algorithm

Input: source data S, target data T , number of target cate-
gories KT

C , total number of categories KC , β
W = computeSimilarityMatrix(S, T )
MS = computeSourceConstraints(ys)
RS,T = computeRisk with Algorithm 1 or 2
Set D with Dii =

∑
j Wi j

Set L = D - W
MT = computeTargetConstraints(W, KT

C )
A = L + β((1 − RS,T )MT

S
MS + RS,TMT

T
MT )

U = eig(D− 1
2 AD− 1

2 , KT
C ).

U = D− 1
2 U

Normalize U by row where Ui j = Ui j/

√∑KT
C

l=1 U2
il

C = kmeans(U, KT
C )

Output: Target set clusters C

ages gathered in different real world environments. We con-
sider sequences from three different datasets: the COLD [33],
the KTH-IDOL2 [21] and the VPC [34] datasets. Figure 6
shows some sample images for all the place categories of the
considered sequences.

The COLD dataset consists of several video sequences from
university laboratories in three different European cities: the
Visual Cognitive Systems Laboratory at the University of Ljubl-
jana, the Autonomous Intelligent System Laboratory at the Uni-
versity of Freiburg and the Language Technology Laboratory
at the German Research Center for Artificial Intelligence in
Saarbrücken. The video sequences have been collected using
three different robotic platforms (an ActivMedia People Bot,
an ActiveMedia Pioneer-3 and an iRobot ATRV-Mini) with two
Videre Design MDCS2 digital cameras to obtain perspective
and omnidirectional views. Each frame is registered with the
associated absolute position recovered using laser and odom-
etry data and annotated with a label representing the corre-
sponding place. The acquisition was performed under different
weather and illumination conditions and across different days.
Moreover each dataset has some sequences containing rooms
with similar functionalities also shared by the other two. For
each lab there are place categories in common with the other
datasets, e.g. Corridor (CR), Printer Area (PA) or Bathroom
(TL), but also dataset specific rooms, e.g. the Robotics Lab in
the Saarbrücken sequences or the Stairs Area in the Freiburg
data. Moreover rooms of different datasets associated with the
same labels may have very different appearance. An example
is the Corridor (CR) class: the separating walls between offices
in the Freiburg data are made of glass, while in the Saarbrücken
and Ljubljana sequences concrete walls are depicted. There-
fore, transfer learning is very challenging.

The IDOL2 dataset is similar to COLD: it contains several
image sequences recorded under various weather and illumina-
tion conditions. The acquisition was performed in an indoor en-
vironment that contains five types of rooms: One-Person Office
(OO), Two-person Office (TO), Corridor (CR), Kitchen (KT)
and Printer Area (PA). The robotic platforms used were a Mo-
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Algorithm 4 Multi-Cue Transfer Learning

Input: source data S, target data T , number of target cate-
gories KT

C , total number of categories KC , βS , βC , λ, number
of iteration T

WS = computeSPMKernel(S, T )
WC = computeCENTRISTKernel(S, T )
MS = computeSourceConstraints(ys)
RS
S,T
= computeRisk with Algorithm 1 or 2

RC
S,T
= computeRisk with Algorithm 1 or 2

MTS = computeTargetConstraints(WS , KT
C )

MTC = computeTargetConstraints(WC , KT
C )

Compute BS and BC using (9) and (10)
US = eig(BS , KT

C ).
for t = 1, . . . ,T do
UC = eig(BC + λUS UT

S , KT
C ).

US = eig(BS + λUCUT
C , KT

C ).
endfor
Normalize US and UC

C = kmeans([US UC], KT
C )

Output: Target set clusters C

bileRobots PeopleBot and a PowerBot equipped with a Canon
VC-C4 camera.

Finally the VPC dataset consists of several sequences col-
lected in six houses with different room categories. The dataset
was recorded using a camera (JVC GR-HD1) mounted on a mo-
bile tripod. We chose the VPC dataset to prove the effectiveness
of our method in scenarios where knowledge transfer may be
harmful.

4.2. Experimental Setup

To properly evaluate the performance of our method, we
chose sequences extracted from all the datasets and recorded
at different illumination conditions. In every experiment we
select sequences where the source and the target data have dif-
ferent place categories. We only require that they have at least
one specific room type (one class) in common. This is meant
to show the validity of our method which operates in the realis-
tic situation where transferring knowledge across different sce-
narios and determining automatically how much to transfer is
essential. The labels of the source data provided in the ground
truth files of each dataset are used to specify the source con-
straints and define MS.

We build the similarity matrices using the SPMK scheme
and the SPACT descriptors introduced in the previous section.
Specifically to compute the SPMK feature set we create a vo-
cabulary of 400 visual words following the standard bag-of-
words approach using 800 images as training set. Finally the
histograms for each image are constructed projecting the ex-
tracted SIFT in the vocabulary at each level of resolution and
for each cell. We choose L = 3 as the number of pyramid levels.
The similarity matrix WS is then obtained computing histogram
intersection. For the SPACT descriptors we set the number of

Figure 6: Sample images for all the place categories extracted
in the three datasets used. The red box contains room categories
shared only by a subset of datasets, the orange boxes highlight
specific rooms in each database and the green ones shows the
categories which are common to all the datasets.

pyramid levels to L = 3 and the number of principal compo-
nents equal to 40. After computing the SPACT histograms, we
use the RBF kernel to calculate the similarity matrix WC .

In our experiments we first tested the proposed transfer learn-
ing approach using a single visual cue. We perform experiments
both for the SPMK and the SPACT descriptors. We also com-
pare our approach against two baselines: a No-Transfer method
which applies a clustering algorithm (specifically Normalized
Cut [26]) without any information transferring and a Full Trans-
fer algorithm where the knowledge gathered from source is
completely transferred to the target i.e. without considering the
risk of transferring potentially harmful information. This situa-
tion is obtained setting R(S,T ) = 0.

A second series of experiments aim to test the proposed
multi-cue approach. As baselines we again consider the No-
Transfer and Full Transfer methods. In this case the two vi-
sual cues are simply combined taking the average of the two
computed kernels. In both single-cue and multi-cues tests the
parameters β in (5) and βS and βC in (8) are set to 1.

The output of our algorithm consists in a set of clusters rep-
resenting place categories, thus we measure the performance in

8



Figure 7: Single-cue place recognition experiments using the KL divergence measure.

Figure 8: Single-cue place recognition experiments using the KL divergence measure.
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terms of clustering accuracy [35]:

Accuracy =
∑NT

i=1 δ(yi,map(ci))
NT

(13)

where NT is the total number of images on target data, yi is the
true label for the i-th image, ci is the cluster label. δ(y, c) is
a function that is 1 if true label and cluster label are the same
and 0 otherwise and map(·) is a permutation function that maps
cluster labels to true labels. The optimal matching is found us-
ing the Hungarian algorithm [36]. Due to the variability intro-
duced by the k-means algorithm, we repeat the clustering step
after the spectral decomposition 10 times. The resulting aver-
age accuracy is considered. Since in our scenario we are inter-
ested in performing place categorization in the new scenario the
clustering accuracy is evaluated on the target set.

4.3. Quantitative Evaluation
4.3.1. Single-cue Experiments

In a first series of experiments we show some place recog-
nition results on target sequences using a single visual cue com-
paring the KL and the EMD divergence measure for risk com-
putation. Our aim here is to demonstrate the capability of the
proposed method to understand what to transfer, avoiding neg-
ative transfer and maximizing the use of information gathered
from the source data.

Figures 7-10 depict the results obtained for the SPMK and
SPACT experiments based on the KL risk measure. In Tables 1
and 2 the performances obtained using the EMD divergence are
also reported. In cases where transferring knowledge is helpful,
both the KL divergence and the EMD are high, i.e. the trans-
fer risk is correctly set to a value close to zero. For example
in the Freiburg cloudy - Freiburg cloudy experiments the No-
Transfer algorithm achieves an accuracy of 72.5% while the
Full-Transfer approach reaches 77.7% with the Spatial Pyra-
mid Matching Kernel features. Similar results are obtained the
in case of the SPACT features, respectively 57.2% and 59.39%.
In both cases, since the source and the target distributions are
similar, i.e. rooms have similar visual appearance, our strategy
correctly determines that the source knowledge helps cluster-
ing the target data: we get 78.1% (KL divergence) and 78.3%
(EMD distance) with the SPMK features and 62.04% (KL di-
vergence) and 62.13% (EMD distance) with SPACT. Similarly
in the Freiburg cloudy - Freiburg sunny experiment we demon-
strate that our approach is robust to changes in environmen-
tal conditions. The sequences considered in this experiment
have been gathered under different light conditions and share
most of the room categories. Even in this more challenging
situation our risk sensitive method correctly notices the simi-
larity between distributions: in particular we get 72.3% (KL)
and 74.55% (EMD) with SPMK and 68.02% (KL) and 69.56%
(EMD) with SPACT while No-Transfer reaches respectively
only 64.3% and 56.5%.

In the Freiburg-IDOL2, Freiburg-Saarbrücken cloudy 2 and
Freiburg-Saarbrücken night 1 experiments our approach still
outperforms both No-Transfer and Full Transfer (see Fig. 7.c,
Fig.7.f and Fig. 8). The results show how knowledge trans-
fer leads to a great improvement in place categorization per-
formance when source and target scenarios are similar, even

under different illumination conditions. Comparing the results
obtained with our approach using KL divergence with those we
get computing the risk based on EMD, similar performances
are observed. Both divergence measures correctly detect do-
main similarities, thus we can effectively take advantage of the
past knowledge.

The tests on the Ljubljana-Freiburg sequences consider an-
other scenario. Here the source and the target sequences share
some categories, while the others are rather different. The trans-
fer risk, computed with both KL and EMD measures, is about
0.5 − 0.6. In this case, both the No-Transfer and the Full-
Transfer methods do not represent optimal approaches for han-
dling this situation. As shown in Fig. 9.a and 9.c we get 79.2%
with SPMK and 59.3 % with SPACT using the KL divergence,
while both the baselines reach lower performances. Moreover
from Table 1 and Table 2 we can observe that with the EMD
measure we get similar results.

Tests on the Ljubljana-Saarbrücken and VPC-Freiburg se-
quences show how our distribution sensitive method avoids neg-
ative transfer. Here, the place categories in the source and the
target data are very different so transferring knowledge from
the source is potentially harmful. Hence the computed risk is
close to 1, both with the EMD distance and the KL divergence.
This is consistent with the fact that the No-transfer method out-
performs the Full-transfer approach, both with the SPMK and
the SPACT kernels. Our approach also outperforms the No-
Transfer baseline, meaning that a small amount of information
from the source data could be effectively used for improving
the performance on clustering target data. This is reflected by
the value of the risk which is slightly lower than 1.

Fig.10 shows an example where our method fails. The com-
putation of both the clustering-based KL divergence and the
EMD distance are not accurate and a risk close to 1 is ob-
tained despite the Saarbrücken and the Freiburg sequences shar-
ing some similar patterns. In this situation the Full-transfer
method outperforms both our approach and the No-transfer al-
gorithm. We believe that this is due to the fact that it is chal-
lenging to correctly compute the distance between distributions
when the number of categories is large, e.g. 10-12. How to fur-
ther improve our approach when several classes are considered
will be addressed in future works.

The choice of the parameters KC and M, i.e. the numbers
of cluster to compute the divergence between distribution, re-
quires a further discussion. In all the previous experiments we
set the aforementioned parameters equal to the total number of
different categories in the source and the target domains. Al-
though this choice gives in most of the cases good results, there
are some situations where it is not optimal. In Figure 11 we
report the classification performances varying the number of
clusters used to compute the KL divergence in three different
experiments. Analyzing the results it is possible to observe that
the optimal KC value is related to the distribution of points of
the source and the target sets. In the Ljubljana-Freiburg test
we can capture the divergence by setting KC equal to the to-
tal number of categories, i.e. 6, suggesting that the points are
distributed in well-defined and separated chunks in the repre-
sentation space. Conversely, we believe that in the Freiburg-
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Figure 9: Single-cue place recognition experiments using the KL divergence measure.

Figure 10: Single-cue place recognition experiments using the KL divergence measure.
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Figure 11: Classification accuracy comparison when varying
the number of clusters used to compute the KL distance.

Ljubljana experiments it is more difficult to group the points in
few large clusters, thus a higher value for KC is required. Fi-
nally, the Ljubljana-Saarbrücken test shows a case where the
number of clusters does not affect the performances. The au-
tomatic optimal selection of the parameters KC and M will be
considered in future works.

4.3.2. Multi-cue Experiments
In the second series of experiments we test our transfer

learning approach when multiple visual cues are combined. Since
both the SPMK and the SPACT features have different strengths
and weaknesses, we combine the resulting similarity matrices
in order to improve performances with respect to the single cue
case. Results are shown in Fig. 12 where we compare the multi-
ple cue approach with the single features one, considering both
KL and EMD divergence measures. The value of the parameter
λ in (8) is set to 0.5 in all our experiments. It is evident that the
multi-cue strategy is beneficial for place recognition accuracy.
For example in the Ljubljana-Freiburg experiment the single
cue tests reach 80.35% (SPMK) and 62.12% (SPACT) with the
EMD measure and 79.2% (SPMK) and 59.3% (SPACT) with
the KL one, while combining cues we get 88.5% and 85.65%
with EMD and KL respectively. Similarly in the Freiburg-IDOL2,
where SPACT achieves lower performance with respect to SPMK,
the multiple-cue approach outperforms both of them, i.e. we
obtain an accuracy of 76.25% (EMD) and 73.13% (KL).

4.4. Comparison with Transfer Learning Methods

In this section we compare our risk sensitive approach with
the Domain Adaptation Machine (DAM) method in [16], where
the authors proposed a multiple source domain adaptation strat-
egy that exploits a set of classifiers learned from multiple source
domains. Although the method can handle multiple source sets
and can benefit from labeled data in the target set, in our tests
we consider only one source domain and no labeled data on the
new domain to be consistent with the experiments in the previ-
ous sections. We use the code of the unsupervised version of

Table 3: Comparison with DAM: Classification Accuracy (%)

F→ L F→ S L→ F L→ S S→ F S→ L
Full Transfer 67.04 58.02 64.02 60.04 62.55 65.04
No Transfer 74.56 54.35 54.35 55.89 65.06 55.08
DAM [16] 77.23 62.02 56.75 60.03 54.09 65.45

Our Approach Risk - (KL) 76.45 61.55 64.03 61.51 68.86 66.07
Our Approach Risk - (EMD) 77.01 60.43 64.45 62.04 69.76 65.67

DAM publicly available 1.
In [16] the algorithm assumes that the source and target cat-

egories are the same. Thus, despite the flexibility of our ap-
proach, that addresses scenarios where source and target do-
mains can have different place categories, to achieve a fair com-
parison we restrict the experiments to sequence segments that
share the same semantic places. In particular we choose three
sequences, Freiburg(Std A) cloudy 1 (F), Ljubljana(Std A) sunny
1(L) and Saarbrücken(Std A) cloudy 2(S), selecting only the
images that belong to place common to all of them. For each
of the six possible source-target combinations we compute the
SPMK kernel. Results are shown in Table 3.

It is clear that we outperform the DAM baseline in L→F,
L→S, S→F and S→L, while the DAM reaches better perfor-
mances in F→L and F→S. However, it should be noticed that
while the DAM is specifically suited for application where the
domains share the same categories, our approach can handle
the more general and challenging scenario where the target set
contains different image classes with respect to the source.

4.5. Computational Complexity
In the last set of experiments we discuss the computational

complexity of the proposed approach. A single run of the over-
all pipeline requires the execution of Algorithms 1 or 2 to com-
pute the transfer risk and, afterwards, the computation of clus-
ter assignments following Algorithm 3 or Algorithm 4, respec-
tively in case of single-cue or multi-cues transfer learning.

It is straightforward to notice that the most expensive oper-
ation, in terms of computational complexity, is the eigenvalues
computation routine which requires O(N3) operations, where N
is the total number of images. Therefore, in our MATLAB im-
plementation, a single-cue transfer learning run needs to evalu-
ate the eig function twice, while a multi-cue test requires T + 1
evaluations. The computational times associated to different
dataset sizes are depicted in Figure 13. The tests are evaluated
using a 2.4 GHz Intel core i7 processor.

The results show that a single eigenvalues decomposition
takes 59.74 seconds when processing 3400 images and reaches
12160.23 seconds with 20000 elements in the dataset. When
the complete single-cue transfer learning algorithm is evalu-
ated, the required time is doubled, while in the multi-cues case
it is multiplied by the number of iteration of the alternate opti-
mization procedure.

However, in our experiments we observed that when the
number of categories is not large, a dataset consisting of 5000-
6000 images is a good trade-off between computational time

1http://vc.sce.ntu.edu.sg/transfer learning domain adaptation/domain adaptation home.html
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Table 1: Place recognition accuracy (%) obtained with SPMK features

Our approach
Source: Freiburg(Std A) cloudy 1 Target:
Freiburg(Ext A) sunny 1

Risk (KL) = 0.08 72.3 ± 0.15
Risk (EMD) = 0.01 74.55 ± 0.11

Source: Freiburg(Std A) cloudy 1 Target:
Freiburg(Ext A) cloudy 1

Risk (KL) = 0.02 78.1 ± 0.1
Risk (EMD) = 0.003 78.3 ± 0.05

Source: Freiburg(Std A) cloudy 1
Target: IDOL2 Minnie cloudy 2

Risk (KL) = 0.12 53.4 ± 0.2
Risk (EMD) = 0.38 56.1 ± 0.11

Source: Freiburg(Std A) cloudy 1 Target:
Saarbrücken(Std A) cloudy 2

Risk (KL) = 0.05 50.19 ± 0.2
Risk (EMD) = 0.001 51.03 ± 0.11

Source: Freiburg(Std A) cloudy 1 Target:
Saarbrücken(Ext A) night 1

Risk (KL) = 0.1 53.2 ± 0.1
Risk (EMD) = 0.07 52.13 ± 0.08

Source: Ljubljana(Std A) sunny 1 Target:
Freiburg(Std A) cloudy 1

Risk (KL) = 0.6 79.2 ± 0.19
Risk (EMD) = 0.57 80.35 ± 0.12

Source: Ljubljana(Std A) sunny 1 Target:
Saarbrücken(Ext A) night 1

Risk (KL) = 0.93 58.3 ± 0.16
Risk (EMD) = 0.95 58.63 ± 0.12

Source: VPC Home 1 Floor 2 Target:
Freiburg(Std A) cloudy 1

Risk (KL) = 0.89 61.3 ± 0.09
Risk (EMD) = 0.98 59.15 ± 0.08

Source: Saarbrücken(Ext A) sunny 2 Target:
Freiburg(Ext A) cloudy 1

Risk (KL) = 0.95 60.2 ± 0.09
Risk (EMD) = 1.0 58.2 ± 0.07

Table 2: Place recognition accuracy (%) obtained with SPACT features

Our approach
Source: Freiburg(Std A) cloudy 1 Target:
Freiburg(Ext A) sunny 1

Risk (KL) = 0.07 68.02 ± 0.16
Risk (EMD) = 0.012 69.56 ± 0.09

Source: Freiburg(Std A) cloudy 1 Target:
Freiburg(Ext A) cloudy 1

Risk (KL) = 0.03 62.04 ± 0.11
Risk (EMD) = 0.002 62.13 ± 0.09

Source: Freiburg(Std A) cloudy 1
Target: IDOL2 Minnie cloudy 2

Risk (KL) = 0.07 68.50 ± 0.25
Risk (EMD) = 0.32 73.12 ± 0.14

Source: Freiburg(Std A) cloudy 1 Target:
Saarbrücken(Std A) cloudy 2

Risk (KL) = 0.04 57.65 ± 0.1
Risk (EMD) = 0.006 59.01 ± 0.08

Source: Freiburg(Std A) cloudy 1 Target:
Saarbrücken(Ext A) night 1

Risk (KL) = 0.13 56.20 ± 0.12
Risk (EMD) = 0.04 54.35 ± 0.08

Source: Ljubljana(Std A) sunny 1 Target:
Freiburg(Std A) cloudy 1

Risk (KL) = 0.55 59.30 ± 0.14
Risk (EMD) = 0.49 62.12 ± 0.11

Source: Ljubljana(Std A) sunny 1 Target:
Saarbrücken(Ext A) night 1

Risk (KL) = 0.72 63.40 ± 0.13
Risk (EMD) = 0.57 66.12 ± 0.13

Source: VPC Home 1 Floor 2 Target:
Freiburg(Std A) cloudy 1

Risk (KL) = 0.85 64.50 ± 0.08
Risk (EMD) = 0.96 61.34 ± 0.06

Source: Saarbrücken(Ext A) sunny 2 Target:
Freiburg(Ext A) cloudy 1

Risk (KL) = 0.8 59,82 ± 0.05
Risk (EMD) = 0.98 55.4 ± 0.05
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Figure 12: Cues combination results. The performance obtained with both KL and EMD transfer risk measures are reported.
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Figure 13: Computational time when running the proposed
single-cue and multi-cue transfer learning approach.

and classification accuracy. Furthermore, as we do not require
to compute all the eigenvalues of the kernel matrix, iterative
methods can be applied to considerably reduce the computa-
tional time, making the problem feasible even for very large
image sets.

5. Conclusions and Future Works

We have presented a novel approach for place recognition
based on a risk sensitive transfer learning framework. We faced
the challenging problem of domain adaptation when source and
target data have different categories. This is meant to model
our scenario of interest where the robot is moved in a new un-
known location and it has only access to visual data collected
in other environments. In this situation it is reasonable to as-
sume that place categories in the current and in the past loca-
tions may differ significantly. In our approach a transfer risk
measure is introduced to automatically quantify how much to
transfer. It is based on the computation of the distance be-
tween the source and the target distributions. We compared the
Kullback-Leibler divergence and the Earth Mover’s Distance
reaching similar performances in most of the tests. While other
measures can be used to compute the distance among probabil-
ity distributions, the proposed clustering based solutions rep-
resent a very computationally effective approach. Finally, we
extended the proposed adaptation framework to merge multiple
visual modalities, i.e. SPACT and SPMK, to benefit from dif-
ferent sources of information and further improve recognition
accuracy.

Future works will include extending the proposed algorithm
to operate in an incremental fashion and the development of a
class-specific transfer risk measure to integrate into our learning
framework. Finally the multi-cue approach can be modified to
include more than two sets of features, e.g. adding depth sensor
information.
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