
Classification-based Causality Detection in Time
Series

Abstract. Brain effective connectivity aims to detect causal interac-
tions between distinct brain units and it can be studied through the
analysis of megneto/electroencephalography (M/EEG) signals. Methods
to evaluate effective connectivity belong to the large body of literature
related to detecting causal interactions between multivariate autoregres-
sive (MAR) data, a field of signal processing. Here, we reformulate the
problem of causality detection as a classification task and we propose
a classification-based approach for it. Our solution takes advantage of
the MAR model by generating a labeled data set that contains trials of
multivariate signals for each possible configuration of causal interactions.
Through the definition of a proper feature space, a classifier is trained
to identify the causality structure within each trial. As evidence of the
efficacy of the proposed method, we report both the cross-validated re-
sults and the details of our submission to a recent causality detection
competition, where the method reached the 2nd place.

1 Introduction

A central aspect of neuroscience concerns brain connectivity and aims to investi-
gate the pattern of interactions between distinct units within the brain [10]. The
concept of brain units is strongly related to the level of the adopted scale. Thus,
brain connectivity can be studied from the microscopic level of single synaptic
connections to the macroscopic one of brain regions. Depending on the type
of interactions that we focus on, the topic of brain connectivity is divided into
structural, functional and effective connectivity. In the first case the connectivity
patterns are referred to anatomical links i.e. neural pathways. In the second case
to the statistical dependences between brain activity in different units and in
the last one to the causal interactions between them [15].

In particular, effective connectivity, that is the one we are interested in, pro-
vides information about the direct influence that one unit exerts over another
and aims to establish causal interactions among them [7]. To achieve this goal
the usefulness of brain signals measured by magneto/electroencephalography
(M/EEG) has been largely shown [3]. In fact, they are high temporal resolution
signals that directly measure the brain activity. A large body of work was devel-
oped about methods to quantify the effective connectivity, mainly in the field of
signal processing where it is known as the problem of inferring causality among
time series. An overview of the literature is provided below.

A first distinction that can be made in the available causality detection meth-
ods, is between linear and nonlinear methods.

Linear approaches are largely used both in time and frequency domain. An
example of time domain technique is the Granger Causality index. Granger



Causality is one of the most widespread measure to estimate the direction of
causal influence in time series and its basic assumption, that a cause has to
precede its effect, has been adopted in many other methods [8]. More precisely,
if one or more time series x0(t), . . . , xk(t) are causing the time series y(t), then
a future value of y(t) is better predicted by considering also the past values of
x0(t), . . . , xk(t) than only those of y(t). Most of the other time domain meth-
ods have the property that their multivariate extension is based on the par-
tial auto- and cross-spectra estimation done by frequency-domain methods [16].
Thus, these latter have had a great spread in causality assessment [5]. Examples
are the direct transfer function (DTF) [12, 11], the direct coherence (DC) [2] and
the partial direct coherence [1].

In situations in which the nonlinear component of the causal interaction
is expected to be important, nonlinear multivariate methods are used [14]. A
first attempt to deal with nonlinearity was done by the local application of
linear multivariate methods in order to perform nonlinear prediction [6]. Further
approaches are based on information theory [9], phase synchronization [4] and
state space synchronization [13].

The intricate structure of interconnections, the enormous amount of depen-
dence that brain units can exert over each other and, last but not least, the
lack of a ground truth, make the assessment of the causal interactions a very
complex problem. Thus, generally, new approaches to estimate causal interac-
tions are assessed and validated on a limited set of signals and often by using
simulated multivariate autoregressive (MAR) data. This is a common prelimi-
nary stage that allows researchers to analyse the performance of their techniques
in the fully controlled environment of the MAR model. An example of the in-
terest that has been addressed to causality in multivariate time series is the
Biomag2014 Causality Challenge (Causal2014) 1. Its purpose was to estimate
the direct causal interactions in a data set of simulated trials. One trial is meant
as three multivariate time series, generated by a known MAR model that is
expected to simulate the behaviour of three neuronal populations.

In this paper we propose a new approach for the causality detection in time
series by tackling the problem from a different prospective. Instead of developing
a solution in the context of signal processing, as in the previous literature, we
faced the problem from the machine learning point of view. Since modelling
causal interactions with a MAR model is a common practice in the literature,
we used the competition MAR model to create a set of trials for each possible
causal configuration among the time series. Then a classifier was trained on
those data in order to discriminate between causal configuration. Finally, it was
applied to the competition data set providing a solution that reached the second
place of Causal2014.

1 https://dl.dropboxusercontent.com/u/94877880/causality%20challenge%20biomag%202014/BioMag2014-
Causality-Challenge.htm
http://www.biomag2014.org/competition.shtml , see competition 2.



2 Materials

The competition organizers provided the code of the MAR model together with
the data set of which to estimate the direct causal interactions. Here, we will
describe them both.

The final output of the MAR model is the multivariate time series X =
{X(t), t = 0, 1, . . . , N−1}, X(t) ∈ RM×1 that is defined as the linear combination
of two M -dimensional multivariate time series Xs and Xs

X = (1− γ)Xs + γXn (1)

Xs carries the causal information, Xn represents the noise corruption and
γ ∈ [0, 1] tunes the signal-to-noise ratio. Each time point of Xs and Xn is
computed by following the MAR model

Xs(t) =

min(P,t)∑
τ=1

A(τ)>
s Xs(t− τ) + εs(t)

Xn(t) =

min(P,t)∑
τ=1

A(τ)>
n Xn(t− τ) + εn(t)

(2)

where P is the order of the MAR model and represents the maximal time
lag. εs(t) and εn(t) are realizations from a M -dimensional standard normal dis-

tribution. And A
(τ)
s , A

(τ)
n ∈ RM×M , τ = 1, 2, . . . , P are the coefficient matrices

modelling the influence of the signal values at time t − τ on the current signal

values, i.e. at time t. The coefficient matrices {A(τ)
s }τ are involved in the process

of causal-informative data generation. They are computed by randomly corrupt-
ing the non-zero elements of the M ×M binary matrix A, called configuration
matrix. In essence, the configuration matrix A contains the causal structure that
leads the MAR model. Specifically Ai,j = 1 means signal i causes the signal j.

On the other hand, coefficient matrices A
(τ)
n lead the noisy part of the signals and

they are obtained by randomly generating P diagonal matrices. The diagonality
of these latter matrices is needed to avoid noise regressive dependencies across

signals. After that, if both sets of matrices A
(τ)
s and A

(τ)
n fulfil the stationarity

condition, each time point of Xs and Xn can be generated by Equation 2.
In essence, given P , γ and A, it is possible to generate X following Equation 1

and Equation 2. The goal of the competition is to reconstruct A given X.
The competition data set was built by generating 1000 trials with the fol-

lowing parameter assignments: the number of time series in each trial is M = 3,
the MAR model order is P = 10 and the time series length is N = 6000. The
trial-specific parameters γ and A were randomly sampled for each trial. For the
sake of simplicity, we will refer to the competition data set as C.

3 Methods

The solution that we propose to the causality detection problem is based on a
supervised approach. Indeed, this task can be formulated in term of a classifica-
tion problem. In a general setting, each trial is composed by M time series and



the final goal is to estimate its binary configuration matrix A. Thus, there are
M(M −1) free binary parameters and 2M(M−1) possible causal configurations 2.

Our supervised approach aims to train a classifier on a new simulated data
set generated by the MAR model described in Section 2. The new data set, L,
contains multiple trials for each of the possible 2M(M−1) causal configurations.
And the causal configuration represents the class label of the trial. After the
definition of a proper feature space, a classifier f is trained on L. In order to
evaluate it, its discriminative power is estimated through cross-validation and,
finally, f is applied to the competition data set C to predict the configuration
matrix of each trial.

The feature space, that we built, is strongly based on the concept of Granger
causality. Indeed, it is a collection of measures that quantifies the ability to
predict the value at a given time point of a certain time series (effect) from the
past values of each possible subset of the M time series in the trial (causes).
The pair, made by causes and effect, is called causality scenario and, for M time

series, there are
∑M
i=1

(
M
i

)
M scenarios. In the case of the competition, where

M = 3, the possible causality scenarios are 21 and they are summarized in
Table 1, when xi(t), i = 0, 1, 2, denotes each of the time series that defines a
trial.

Causes Effect
x0(t) xi(t)
x1(t) xi(t)
x2(t) xi(t)

x0(t), x1(t) xi(t)
x0(t), x2(t) xi(t)
x1(t), x2(t) xi(t)

x0(t), x1(t), x2(t) xi(t)

Table 1. The possible causality scenarios for three time series xi(t), i = 0, 1, 2.

For each causality scenario, a plain linear regression problem was built by se-
lecting as dependent variable a set of time points from the signal in the effect col-
umn. Each of these dependent variables has a P -dimensional vector of regressors
composed by the P previous time points selected from the signals in the causes
column. Table 2 shows how the regression problems are defined when M = 3,
by specifying from which time series and time points, regressors and dependent
variables are extracted. In the following, in order to simplify the notation, we
will use xti instead of xi(t), i = 0, 1, 2 and t ∈ T,T ⊆ {P, P + 1, . . . , N − 1}.

The regression problem of each causality scenario was cross-validated and
its performance was quantified through multiple regression metrics, e.g. mean
square error. The ensemble of the regression metrics of each causal scenario
defined the initial feature vector of the trial. We then applied standard feature
engineering techniques to enrich the feature space. See Section 4 for details.

2 The diagonal is not relevant since by definition the time series are autoregressive.



Regressors (causes) Dependent variable (effect)

[xt−1
0 , . . . , xt−10

0 ] xt
i

[xt−1
1 , . . . , xt−10

1 ] xt
i

[xt−1
2 , . . . , xt−10

2 ] xt
i

[xt−1
0 , . . . , xt−10

0 , xt−1
1 , . . . , xt−10

1 ] xt
i

[xt−1
0 , . . . , xt−10

0 , xt−1
2 , . . . , xt−10

2 ] xt
i

[xt−1
1 , . . . , xt−10

1 , xt−1
2 , . . . , xt−10

2 ] xt
i

[xt−1
0 , . . . , xt−10

0 , xt−1
1 , . . . , xt−10

1 , xt−1
2 , . . . , xt−10

2 ] xt
i

Table 2. Description of how the 21 linear regression problems are defined for each
trial. xt

i, i = 0, 1, 2 and t ∈ T,T ⊆ {10, 11, . . . , N − 1}, are the three time series of a
trial.

4 Experiments

In this section we present the technical details and results of the experiments
that were conducted to evaluate the method described in Section 3. In partic-
ular, we show two different types of results. The first one is an estimate of the
discriminative power of a classifier trained on the L data set and it provides a
quantification of how well the defined feature space is able to express the causal
structure behind a trial. The second result is the competition score obtained
by our submission and it gives us some insights into how our approach works
compared to the ones adopted by the other participants.

The new simulated labeled data set L was generated by keeping the same
parameter initialization of C, except for the number of trials that was increased
to 64000 in order to have 1000 trials for each class. Indeed, since M = 3 the
amount of causal configurations is 26 = 64. The regression metrics used to build
the feature space are the mean square error and the coefficient of determina-
tion r2. Both were included since we noticed a significant improvement in the
cross-validated results, although, intuitively, they could seem redundant. We also
added an estimate of the Granger causality coefficients 3 to the feature space.

As a final step we increased the number of features through standard feature
engineering techniques. This consisted in extracting the 2nd power, 3rd power
and square root of the previously defined features, together with the pairwise
product of all features. Adding extracted features was motivated both by the
need to overcome the limitation of the adopted linear classifier and because they
proved to be effective in increasing the cross-validated performance.

Both of the data sets L and C were mapped to the proposed feature space.
Then the performance of the logistic regression classifier 4, with `2 regularisation,
was evaluated on L by the 5-folds cross-validation. In this way we quantified the
discriminative capability of the proposed method.

We present the results both in terms of confusion matrices and competition
score. The competition score was defined in the following way. For each entry
âij , i 6= j, of each predicted Â, if âij was 1 and correct, then +1 point was given.
If âij was 1 but incorrect, then −3 points were given. If âij was 0, then 0 points
were given. In practice, false discoveries were punished three times more than
what true discoveries were rewarded.

3 http://nipy.org/nitime
4 http://scikit-learn.org



In order to take into account the strong false positive penalisation, we added
a cost model to our predictions, by combining the probability of each of the 64
causality scenario with the cost of predicting one scenario instead of another.
Given Sij the cost of predicting i when the true class/scenario was j, the optimal
way to assign the class l to a trial is

l = argmax
i=0,1,...,63

63∑
j=0

Si,jpj (3)

where pj is the probability of class j for the trial, as estimated by logistic re-
gression.

Table 3 and Table 4 show the classification results cross-validated in L by
means of confusion matrices. In particular, Table 3 is related to the percentage
of causal interactions predicted by assigning to each test trial the most probable
class, i.e. l = argmax pi and its accuracy is 81%. In Table 4 the assignments
are done by Equation 3 according to the cost matrix, i.e. by penalizing the false
positives, and the related accuracy is 77.5%. Through their comparison, the
effect of S is evident since in Table 4, false positives are strongly decreased, due
to the score penalization, but to the detriment of some true positives.

Predicted
1 0

True
1 79% 21%
0 17% 83%

Table 3. Confusion matrix computed by
assigning to each test trial the most prob-
able class.

Predicted
1 0

True
1 56% 44%
0 1% 99%

Table 4. Confusion matrix in which the
test trial class labels are computed by
Equation 3.

Finally logistic regression was trained on L and tested on C to predict the
configuration matrices of the competition. According to the number of trials in
C and the assumptions of the generative process, the expected range of the score
is [−9000, 3000]. The score of our submission was 1571, which reached the 2nd
place in the final ranking of the competition.

5 Discussion, Conclusion and Future Works

In this paper, we proposed a new approach to detect causal interactions in mul-
tivariate time series. Specifically, we developed a classification-based causality
detection method by defining a feature space based on the Granger causality
concept and by exploiting the MAR model as data generator.

The proposed method was assessed by cross-validating the generated labeled
data set providing promising results, as shown in Table 3 and Table 4 by means
of confusion matrices. Then, the submitted solution to the Causal2014 compe-
tition was computed by a classifier trained on the generated labeled data set
used the cross-validation. The achieved results, both in terms of cross-validation
and competition ranking, are evidence that classification-based techniques are a
feasible alternative to the signal processing methods for inferring causality be-
tween time series. And furthermore, that the defined feature space is able to well
capture the causal structures among signals.



As an improvement of our approach, we are working on a tractable extension
to the case of detecting causality in more than three time series.
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