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Abstract

This paper describes the system by FBK HLT-
MT for cross-lingual semantic textual similar-
ity measurement. Our approach is based on
supervised regression with an ensemble deci-
sion tree. In order to assign a semantic similar-
ity score to an input sentence pair, the model
combines features collected by state-of-the-art
methods in machine translation quality esti-
mation and distance metrics between cross-
lingual embeddings of the two sentences. In
our analysis, we compare different techniques
for composing sentence vectors, several dis-
tance features and ways to produce training
data. The proposed system achieves a mean
Pearson’s correlation of 0.39533, ranking 7th

among all participants in the cross-lingual
STS task organized within the SemEval 2016
evaluation campaign.

1 Introduction

Semantic textual similarity (STS) measures the de-
gree of equivalence between the meanings of two
text sequences (Agirre et al., 2015). The similarity
of the text pair can be represented as a continuous or
discrete-time value ranging from irrelevance to exact
semantic equivalence (Agirre et al., 2015).

STS has been one of the official shared tasks
in SemEval since 2013 and has attracted the par-
ticipation of many researchers from the scientific
community; enabling the evaluation of several dif-
ferent approaches in natural language processing
with a common benchmark and the production of
novel annotated data sets that can be used in future

research. State-of-the-art monolingual STS meth-
ods make use of several approaches including word
alignments and distributional semantics, which are
typically employed in a machine learning scenario
(Sultan et al., 2015; Hänig et al., 2015).

This is the first year in which SemEval has or-
ganized a cross-lingual STS (CL-STS) sub-task, for
which a baseline system applicable to the problem
has not been defined yet. Similar to the monolin-
gual STS task, the cross-lingual task requires the in-
terpretation of the semantic similarity of two cross-
lingual sentences, one in English and another one
in Spanish, with a score ranging from 0 to 5. CL-
STS measurement could be extremely useful for
achieving textual entailment, paraphrase identifica-
tion, word-sense disambiguation or sentiment anal-
ysis at the cross-lingual level as well as providing
new means for an adequacy-oriented evaluation of
machine translation outputs.

A related task in natural language processing is
quality estimation. Quality estimation (QE) is used
for automatically predicting the quality of machine
translation outputs with respect to the source sen-
tences in the original language (Mehdad et al., 2012;
Turchi et al., 2014; C. de Souza et al., 2014a; C. de
Souza et al., 2014b; C. de Souza et al., 2015). One
shortcoming of QE approaches is that the QE sys-
tem may not capture all aspects of the semantic rep-
resentations of sentences. For instance, from a QE
perspective, under which the number of edit opera-
tions required to fix a translation is used as a proxy
of quality, a fluent translation containing an unnec-
essary negation would likely be labelled as a “good”
translation. Therefore, a better solution would be
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geared to also capture the adequacy aspects of cross-
lingual comparison of the sentences. In order to
improve the quality of the comparison, the features
used in a QE system can be improved using distri-
butional semantics. Neural language models, such
as CBOW or Skipgram (Mikolov et al., 2013a) have
proved to be useful in the monolingual STS task be-
fore (Agirre et al., 2015). Recent studies have ex-
tended these models to create bilingual word em-
beddings such that the embeddings are mapped to
a common cross-lingual vector space by using a par-
allel training corpus or a dictionary (Klementiev et
al., 2012; Mikolov et al., 2013b; Luong et al., 2015).

In light of these considerations, our submission
to the first SemEval CL-STS task combines features
derived from QE with distance features obtained by
applying cross-lingual word embeddings. These fea-
tures are used to feed an Extremely Randomized
Trees (ET) regressor (Geurts et al., 2006) trained to
predict the similarity score of the two sentences.

The rest of this paper is organized as follows. Sec-
tion 2 describes the components of our CL-STS sys-
tem. The details of the experimental analysis carried
out on different composition approaches, the char-
acteristics of the system under the influence of each
vector space feature and varying data distributions
are presented in Section 3. The final ranking of our
system can be found in Section 4 along with the con-
clusions of our study in Section 5.

2 System Description

This section describes the proposed CL-STS sys-
tem. The data to be semantically compared is first
pre-processed as described in Section 2.1. The em-
bedding corresponding to each word is retrieved and
composed to form a sentence embedding using one
of the methods described in Section 2.2. The fea-
tures to be used in the regression are extracted from
the sentence embeddings using 8 different distance
measures listed in Section 2.2. These features are
combined with 79 more features obtained by QE
(Section 2.3) to produce a final set of 87 features,
which is used to predict the similarity score of the
two sentences. The overall system is illustrated in
Figure 1.

2.1 Pre-processing

The data used in training and testing the system are
processed before feature extraction in the following
way. First of all, a language identification package
developed by Lui et al. (2012) is used to detect the
order of English and Spanish sentences in each line
of the data set. This step is meant as a first sanity
check since some of the next processing steps are
language-dependent and hence sensitive to the order
in which the two sentences are presented. The data
is then tokenized and lowercased before the extrac-
tion of features using the text processing system of
Moses (Koehn et al., 2007).

2.2 Bilingual Embedding Features

To obtain word embeddings, we use the bilingual
Skipgram model by Luong et al. (2015). The em-
beddings are trained using the default parameters de-
scribed by the authors and with a dimension of 200.
We constructed an English-Spanish parallel corpus
from Europarl (Koehn, 2005), UN (Rafalovitch et
al., 2009), data sets of the quality estimation shared
task in WMT 2012 (Callison-Burch et al., 2012), as
well as the training data of the monolingual STS task
from previous years (See Subsection 3.1) and used
this data to train our bilingual embeddings.

Sentence embeddings are then generated by aver-
aging the word embeddings in each sentence. Aver-
aging is a simple and powerful composition method
for monolingual word embeddings which has not
been outperformed yet by much more sophisticated
schemes, such as the recurrent neural networks
and long short-term memories (Blacoe and Lapata,
2012; Wieting et al., 2015). Moreover, the lat-
ter often requires language-specific syntactic parsers
which are not available in all languages, thus are not
generally suitable for cross-lingual applications.

In our system, we implement three different av-
eraging strategies to see the influence of stop words
or term frequencies in the final sentence embedding.
Our approaches consist of:

1. Averaging with all the tokens in the sentence
including punctuation;

2. Averaging after removing stop words and punc-
tuation in the sentence;
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Figure 1: The schematic of the overall system for CL-STS

3. Averaging by weighting each word in the sen-
tence by their inverse term frequencies.

During processing of the two sentences in English
and Spanish, the words and punctuation in each
corresponding sentence are averaged according to
one of the methods above to generate one final em-
bedding representing each sentence in the two lan-
guages.

In order to apply semantic comparison between
the sentence embeddings, we select 8 distance mea-
sures that are defined in vector space. Given the
two sentence vectors, the selected distance metrics
include:

1. Cosine distance

2. Euclidean distance

3. Manhattan distance

4. Chebyshev distance

5. Canberra distance

6. Pearson’s correlation

7. Ratio of number of words

8. Ratio of means

We further analyze the usefulness of these features
through a set of experiments before using in the CL-
STS task (Section 3).

2.3 Quality Estimation Features

The QE features used in our system are obtained by
QuEst tool (Specia et al., 2013). The QuEst tool uses
language models, POS-taggers or word aligners to
extract many features that can represent complexity
(e.g. language model probabilities or n-gram counts
in the source segment) fluency (e.g. language model
probabilities or number of tokens in the target seg-
ment), adequacy (e.g. word alignment features such
as ratio of nouns/verbs/etc. in each sentence) or con-
fidence (e.g. global scores or n-best lists) of a trans-
lation pair. For a more detailed description of each
feature, we refer the reader to Specia et al. (2013).
The language models used to extract the features are
trained with the NY Times portion of English Gi-
gaword (v.5) (Parker et al., 2011) and Spanish Gi-
gaword (v.2) (Mendonca et al., 2009) and the same
parallel data as described in the training of bilingual
word embeddings (See Section 2.2)
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Features # Features Pearson’s correlation
QE 79 0.5899

Embeddings 8 0.4690
QE + sentence embedding features

Composition method
Average Average w/o stop words ITF-weighted Average

+ Cosine 80 0.6106 0.6399 0.6017
+ Manhattan 81 0.6127 0.6429 0.5897
+ Euclidean 82 0.6152 0.6445run1 0.5906
+ Canberra 83 0.6149 0.6435 0.5962

+ Pearson’s correlation 84 0.6145 0.6361 0.6039
+ Chebyshev 85 0.6136 0.6364 0.5907

+ Ratio of NumWords 86 0.6138 0.6366 0.5915
+ Ratio of Means 87 0.6154 0.6375run2 0.5996

Table 1: Pearson’s correlation of system predictions using cross-validation. The first and second entries in the table indicate
performance of the system using the two approaches separately. The second part indicates the system performance when the two
approaches are combined, revealing the effect of each distance-based feature on the performance. Each column represents a different
sentence composition method; including averaging, averaging after removing stop words and weighted averaging. Numbers in bold
are the two runs, [run1] wth 82 and [run2] wth 87 features respectively, submitted to the SemEval 2016 - CL-STS shared task.

2.4 Ensemble Regression

An ET regressor is used as the learning method in
the system. The ET regressor applies bagging to
generate a number of random subsets of the training
data and fits individual decision trees using different
subsets of features and hyper parameters. The final
prediction is produced by an ensemble average over
all of the decision trees.

3 Experiments

3.1 Corpus

For this first round of the CL-STS task, training data
was not released by the organizers. Therefore, the
data for training the regressor was generated using
those from the monolingual STS tasks organized in
2012, 2013, 2014 and 2015 (Agirre et al., 2012;
Agirre et al., 2013; Agirre et al., 2014; Agirre et
al., 2015). The data was translated to Spanish using
the MateCat tool (Federico et al., 2014) to create a
cross-lingual data set where one of the sentences is
in English and the other is in Spanish. In order to
compensate for the different characteristics of data
which occur after translation, we generate three dif-
ferent sets as follows:

1. The first sentence in the data set is selected
as the English sentence, the second sentence

is translated to Spanish, denoted as: s1(en) -
s2(es).

2. The second sentence in the data set is selected
as the English sentence, the first sentence is
translated to Spanish, denoted as: s2(en) -
s1(es).

3. The first two data sets are concatenated, de-
noted as the merged set.

The size of each set is given in Table 2. The three
data sets are evaluated during our experiments in
terms of the capability to represent the true data dis-
tribution and used in the test phase with the selected
settings (Section 3.3).

Data set # sent # src # tgt
s1(en) - s2(es) 18,105 233,141 250,359
s2(en) - s1(es) 18,091 230,300 253,115

merged 36196 463441 503474
Table 2: Sizes of the training sets: number of sentence pairs
and number of words in source and target languages

3.2 Cross-validation on the merged set

The performance of our ET regressor is evaluated
using 10-fold cross-validation on the merged set.
The results are presented in Table 1.
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We run a detailed analysis to evaluate each indi-
vidual distance metric according to their effect on
the performance. For evaluating the performance
of the system we use Pearson’s correlation. The
experiments show that QE features and embedding
features perform poorly when used as two different
groups, but the performance can be improved when
they are integrated together. The best correlation is
achieved when cosine, manhattan and euclidean dis-
tances are combined with the QE features. All dis-
tance metrics show a consistent improvement over
the system trained only on QE features, except for
the Pearson’s correlation (Table 1).

The experiments also reveal that averaging after
removing the stop words and punctuation is the best
sentence composition method among the three av-
eraging strategies. Compared to this method, in-
verse term-frequency weighted averaging aims to
decrease the effect of stop words in a less greedy
way. However, we see that this approach results in
even poorer performance than straightforward aver-
aging; suggesting that we may lose important in-
formation from word semantics necessary in com-
posing the sentence meaning when we weight each
word with their inverse term frequencies. Thus, we
select averaging without stop words as the composi-
tion method to use in our system to participate in the
SemEval 2016 CL-STS shared task.

3.3 Performance of different training data sets
on the evaluation data

In the second phase, we compare the performance of
our ET regressor in terms of three different training
sets, as explained in Section 3.1. 30% of the training
set is used for validation and the remaining 70% is
used for training purposes. The regressor then per-
forms predictions for the same validation set using
the different sets. Finally, we implement an ensem-
ble model which is an average of the predictions of
the three subsystems. The results of these experi-
ments can be seen in Table 3.

In light of these experiments, we choose the fea-
ture sets composing of 82 and 87 features and the
merged set for training purposes (See Table 1).
These two systems are submitted as our [run1] and
[run2] to the CL-STS shared task. We contribute
with the ensemble average system as shown in Ta-

Data set Pearson’s correlation
s1(en) - s2(es) 0.5499
s2(en) - s1(es) 0.5815

merged 0.6227
Average 0.6131run3

Table 3: Pearson’s correlation of system (run2) predictions us-
ing 30-70 split in the (merged) data set. Performance is shown
according to three different training data distributions. Average
indicates the performance of ensemble of the three approaches,
and is the system chosen to be submitted as [run3] to the Se-
mEval 2016 - CL-STS shared task.

ble 3 for [run3].

System News Multi-source Mean
run3 0.25507 0.53892 0.39533
run1 0.24318 0.53465 0.3872
run2 0.24372 0.5142 0.37737

Table 4: Official results of SemEval 2016 - CL-STS shared task

4 Results

The performance of our system in the SemEval 2016
- CL-STS task is given in Table 4. The test set of
the CL-STS task contains two parts with different
characteristics. The first set contains 301 sentence
pairs in the news domain and the second set con-
sists of 2973 sentence pairs drawn from different do-
mains. By using these data sets to test our system,
we achieve a Pearson’s correlation of 0.539 on the
multi-source test set and 0.255 on the news set be-
tween our predictions and the true labels (Table 4).

We observe that using [run3], which combines
the three systems trained on three data sets with dif-
ferent distributions, is the most successful approach.
The decreased values of Pearson’s correlation are
consistent with the fact that test data of the task and
our training set are sampled from different distribu-
tions. Moreover, our system performs better in the
general domain and worse in the specific domain of
news. However, this performance can be improved
by extending the training corpus to a similar con-
tent with the test corpus. Other aspects to improve
are the quality of bilingual word embeddings, which
should also be trained with more data and parame-
ters that are more suitable for the specific task, and
addition of feature selection quality to the system.
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The results also show that performance of the
system using only QE features and the three dis-
tance metrics consisting of cosine, manhattan and
euclidean distances provide better results than the
system using all features. Therefore, one can see
that these three features can provide significant in-
formation when comparing two sentence embed-
dings and could be reliably used in future applica-
tions.

5 Conclusion

We have presented the CL-STS measurement sys-
tem with which we participated in the SemEval 2016
CL-STS shared task. Our system used QE and
distance features based on bilingual word embed-
dings to train an ET regressor that predicts the cross-
lingual semantic similarity between a pair of sen-
tences. We used an ensemble method to generate
and use training data for the task and saw that this
approach improved the performance of our system.
Our best performance achieves a Pearson’s correla-
tion of 0.53892 while placing FBK HLT-MT as the
7th out of 10 teams in the task.
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