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Abstract—In neuroimaging data analysis, classification algo-
rithms are frequently used to discriminate between two popula-
tions of interest, like patients and healthy controls, or between
stimuli presented to the subject, like face and house. Usually, the
ability of the classifier to discriminate populations is used within
a statistical test, in order to evaluate scientific hypotheses. In the
literature, different procedures are adopted to carry out such
tests, like using permutations, assuming the binomial model or
using confidence intervals. Moreover multiple choices are made
by practitioners when implementing those tests, like the actual
classification algorithm or the use of a resampling scheme. In this
work we analyze those procedures and some of those choices with
respect to their effect on the Type I (false discovery) and Type
II (sensitivity) errors. With a simulation study, we compare the
different procedures and show the impact in practice. The final
aim is to characterize the best practices and give more insight
for their use.

Index Terms—classification algorithms ; testing hypotheses ;
Type I and II error

I. INTRODUCTION

Over the last decade, a growing number of studies has
shown that classification algorithms can be used for pattern
discrimination on neuroimaging data. For example, in clinical
studies, classifiers are used to discriminate patients from
healthy subjects on the basis of structural magnetic-resonance
imaging (MRI) data [1]. When studying cognitive functions,
e.g. by presenting multiple visual stimuli to the subject,
classifiers are used to predict the category of the stimulus from
the concurrent brain activity [2]. Even when creating brain
maps, classifiers can be used to score each brain location, e.g.
voxel [3], to show their relevance to the brain function under
scrutiny.

The ability of the classifier to predict the correct category of
the stimulus (or of the subject/patient), is considered positive
evidence in support of the hypothesis that category-related in-
formation is present within the recorded brain data [4]. For this
reason, in order to make inference, the classifier is used within
a hypothesis testing framework, typically the frequentist one.
Practitioners usually implement tests such as the binomial test,
or the permutation test, or compute confidence intervals [4],
to answer the question whether the classifier performed better
than chance. The adopted test statistic is usually a measure
of how correct the predictions of the classifiers are, like
classification accuracy [4].

Conducting a statistical test with classifiers requires the
practitioner to make a number of choices. Among them, the
choice of the specific classification algorithm (linear, non-
linear, etc.), the scoring function (e.g. accuracy), the estimation

process of the score (e.g. k-fold cross-validation), the null
distribution (e.g. binomial or based on resampling). Moreover
the inferential process can be carried out with a significance
test or, alternatively, with confidence intervals [4].

The exact choices made during the inferential process may
have a substantial impact on the result and, more importantly,
on the frequency of Type I error, i.e. the incorrect rejection
of a true null hypothesis, and Type II error, i.e. the failure
to reject a false null hypothesis (see [5]). It is our opinion
that the literature on this topic is far from complete. Most of
the related work is either on describing the available choices
(see for example [4]) or on applying them. In a some cases,
more prescriptive indications are provided for specific steps of
the inferential process, like to improve the stability of cross-
validation through multiple repetitions [6], or to avoid the bias
of the binomial assumption for the null distribution through the
use of permutation testing [7], [8] and indications of scheme
to conduct it [9]. Nevertheless, a number of open questions
remain unanswered.

In this work, we study some of the choices in the inferential
process and their impact on Type I and Type II errors of the
tests through simulation. In the proposed simulation, we adopt
a simple generative model which shares some aspects of the
actual neuroimaging data collected during real experiments,
like the small sample size, the dimensionality and sparseness.
We do not try to accurately mimic neuroimaging data, for two
main reasons. First, we believe that the properties that we are
investigating are general, and not necessarily specific of certain
kinds of neuroimaging data, like those from MRI or from the
magneto/electro-encephalographer (M/EEG). Second, to the
best of our knowledge, accurate neurophysiological models of
the signal recorded by neuroimaging devices are generally not
available. When they are available, they are extremely complex
to use and unfit for a setting like ours.

With the help of simulations, in this work we show that, in
case of small sample size, the use of the binomial assumption
increases the Type I error (see [8]) but also decreases the Type
II error, i.e. has increased sensitivity. We observe this effect
both in the high-dimensional setting, typical of neuroimaging
data, and in the low dimensional setting, typical of certain
brain mapping procedures like the searchlight algorithm [3].
Moreover, we observe that increasing the number of folds
of cross-validation reduces the frequency of Type II error,
even though at the cost of some increase of Type I error.
Additionally, we observe that the additional flexibility of
classifiers with more hyperparameters can be detrimental in



case of low sample size.
In the remaining part of the paper we introduce and discuss

all the previous points. Specifically, in Section II, we introduce
the notation and the main theoretical ingredients used in
Section III, where we report the results of the simulations
designed to investigate our claims. To conclude, in Section IV,
we discuss the claims in the light of the experimental results.

II. METHODS

In this section we introduce the notation, hypothesis testing
and some basic concepts about the use of classifiers in
statistical tests.

A. Notation
Let Y ∈ Y be a binary random variable describing the

category of data recorded with a neuroimaging device. In the
case of a cognitive neuroscience investigation, Y can be the
category of the stimulus presented to the subject, e.g. face vs.
house, and in case of a clinical study Y can be the category
of the individual, e.g. healthy subject vs. patient.

Let X ∈ Rd be the random vector of pre-processed
neuroimaging data with category Y . The realization of X , i.e.
x, can be, for example, the values of a beta-map of functional
MRI (fMRI) data recorded during the presentation of one
visual stimulus, i.e. a trial. Typically, d is in the order of
102 − 103. We call the pair (x, y) as example.

As a result of the data collection phase of neuroimaging
experiment, a dataset D = {(x1, y1), . . . , (xN , yN )} of N
examples is collected. N may be in the order of a few tens,
equally distributed between the two categories.

B. Hypothesis Testing
In experimental science, hypotheses about the phenomenon

under observation are formulated and then tested in the light
of the data collected during experiments. The most common
paradigm to test hypotheses is the frequentist one [10], which
consists of the following steps:

1) Set up the null hypothesis H0 to disprove.
2) Define an appropriate test statistic T , which is a function

that, given the collected data, summarizes them into a
real number.

3) Compute p(T |H0), i.e. the distribution of T when H0 is
true. Decide the rejection regions R, i.e. the values for
the T such that H0 has to be rejected (see later).

4) Run the experiment, collect the data and compute T ∗ as
the value of the test statistic for the observed data.

5) Reject H0 if T ∗ ∈ R.
A test is characterized by the frequency of Type I error:

P (Type I) = P (rejecting H0|H0 is true) (1)

and by the frequency of Type II error:

P (Type II) = P (not rejecting H0|H0 is false) (2)

There is a trade-off between the two quantities and, commonly,
P (Type I) is set to a small value, e.g. 0.05 or 0.01, while
P (Type II) is obtained from the analysis of the test, called
power analysis, since power = 1−P (Type II). The rejection
regions R of the test are usually defined by setting a threshold
on T that depends on the null-distribution and the pre-defined
P (Type I), often called significance level.

C. Confidence Intervals

In the literature [4], it is reported that confidence intervals
(CIs) can be used to quantify evidence about a hypothesis.
The procedure is based on estimating the interval for the true
value of the test statistic T , through the observed T ∗ plus
model assumptions or resampling techniques. A confidence
interval with a p confidence level means that, when repeating
the experiment multiple times, in the long term, a fraction p of
the times the confidence interval will include the true value of
T . Typically, the confidence level is chosen as 0.95 or 0.99. It
is common practice to use CIs to decide about the hypothesis,
i.e. to see whether the CI excludes or not values of T expected
from H0.

D. Classification-Based Test

A classifier f ∈ F is a function f : X 7→ Y that returns
the predicted class label of x. Classifiers are usually trained
on a portion of the dataset D, called train set Dtrain. In
order to quantify the ability of f to correctly predict, its
performance is measured, the most common measure being
the generalization error ε = EX×Y [I(Y, f(X))], where I
is the indicator function. The standard unbiased estimator
of ε is the error rate ε̂ = 1

|Dtest|
∑

(x,y)∈Dtest
I(y, f(x)),

where Dtest = D \Dtrain. A complementary and equivalent
measure of performance is classification accuracy, acc = 1−ε,
and its estimate âcc = 1 − ε̂. In certain cases, it may be
convenient to resort to the discrete version ε̂, i.e. the number of
incorrect predictions e. Other measures may be more effective
in assessing performance in case of imbalanced data, like [11],
[12], but are less popular.

The values ε̂, e, or âcc may show high variability for small
N . Moreover, the split of D in Dtrain and Dtest is non-
deterministic, adding more variability to the estimate. In order
to reduce such variability, it is common to adopt a resampling
technique, like k-folds cross-validation (k-CV). With k-CV, k
estimates of the performance measure are produced and then
averaged to improve stability.

Beyond the parameters that are fit during the training phase,
classifiers usually have further parameters, called hyperparam-
eters, that need to be set before training. For example, the regu-
larization coefficient of regularized linear models, or the C and
γ parameters of radial basis function support vector machines
(RBF-SVMs). To this end, part of the data is used to estimate
those parameters in advance. The standard process to estimate
those parameters is based on a nested CV scheme [13]. It
is important to note that parameter estimation, training and
classifier evaluation compete in the use of the available data
because N is fixed and they need non-overlapping sets of
examples in order to avoid circularity.

Classifiers can be used within statistical tests to assess
whether there is category-related information within the data.
The measure of performance of the classifier is used as test
statistic T within a test procedure (see Section II-B). The
null-distribution of T under H0, i.e. P (T |H0), depends on
the actual choice of T . In case T = e, a typical choice
is that P (e|H0) = Bin(e|N, p = 1

2 ) [4], which assumes
examples to be independent and identically distributed (i.i.d.).
Another popular choice, that is applicable for every choice



of T , is based on the permutation test. In the permutation
test, the vector of class-labels [y1, . . . , yN ] is permuted in
order to artificially break the (possible) systematic difference
between the categories. Then, the test statistic is computed,
now following P (T |H0) by construction. The two steps are
repeated for all possible permutations (or a random subset, as
approximation) in order to estimate the null distribution of T .

Classifiers can be used also together with confidence inter-
vals (CIs). Typically, the confidence interval of the measure of
performance is derived and tested whether it excludes or not
the values associated with chance-level, i.e. H0. The interval is
usually defined through the binomial assumption, as described
in detail in [14]. Resampling techniques, like k-CV or the
bootstrap, can be adopted as well but are less common for the
context of CIs and more complex to be properly implemented.

III. EXPERIMENTS

We generated a large number of simulated datasets to study
how different choices in the data analysis procedure affected
the Type I error and Type II error. Each dataset consisted of
examples/vectors from two classes. The probability distribu-
tion of each class was a multivariate Gaussian. One class had
always the zero vector as mean (µA = 0) and the identity
matrix as covariance (ΣA = I). By modulating the mean (µB)
and covariance (ΣB) of the second class, we created different
scenarios:
• µA = µB , ΣA = ΣB . By keeping the same covariance

and mean, we generated cases where there is no system-
atic difference between the classes, i.e. the H0 is true by
design. By counting the incorrect rejections of H0 over
many repetitions of the tests, we could estimate the Type
I error.

• By gradually moving away µB from µA, we could
gradually reduce the overlap between the classes, i.e.
increase the effect size.

• With ΣA = ΣB we could test the case in which the
optimal Bayes classifier is linear, i.e. an hyperplane. By
changing the value of the elements of ΣB

1, we modulated
the non-linearity of the optimal Bayes classifier.

Another main parameter of the simulation was the number
of dimensions (d) of the feature space. Moreover, in order to
obtain a setting more similar to typical neuroimaging data,
we considered a further parameter, dinf ≤ d, representing
the number of informative dimensions, i.e. the number of
dimensions actually affected when shifting µB away from µA:
µB = µA + ∆, where ∆i = δ when i ≤ dinf , otherwise
∆i = 0. In this way, we introduced a sparsity parameter, i.e.
way to simulate sparsity in the feature space, which is typical
in neuroimaging data.

From the distributions described above, we drew 1000
datasets with the same number of examples per class and
counted the number of times each test of hypothesis failed, in-
curring in a Type I or a Type II error. We tested different sam-
ple sizes (N ∈ [10, 100]), different dimensions (d ∈ [5, 300],
dinf = [5,min(50, d)]), different effect sizes (δ ∈ [0, 1])

1We restricted the changes to the diagonal elements of ΣB , {σi
B}i, to limit

the the number of parameters to explore in experiments.
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Fig. 1. Comparison of P (TypeI) and P (TypeII) as a function of
the sample size for the binomial assumption (as null-distribution and for
confidence interval) vs. the permutation-based null distribution. Classifier:
linear SVM, d = 200, dinf = 10, δ = 0.5, λ = 0, k = 5.
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Fig. 2. Comparison of the three tests in terms of P (TypeI) and P (TypeII)
with fixed dinf = 10 but increasing dimension size (d). Classifier: linear
SVM, N = 40, δ = 0.5, λ = 0, k = 5.

and different degrees of non-linearity of the optimal boundary
between the classes (σi

B ∈ U [1− λ, 1 + λ], for λ ∈ [0, 2] and
i ≤ dinf ). We analyzed the datasets with multiple classifiers,
i.e. Logistic Regression, Linear SVM, RBF SVM and different
significance levels (0.05 and 0.01) and confidence levels (0.95,
0.99). When exploring the different configurations above, we
compared different choices with statistical tests. For lack of
space, here we show only part of the results.

Figure 1 shows the the binomial assumption vs. the permu-
tation test in terms of P (TypeI) and P (TypeII) as a function
of the sample size and Figure 2 as a function of d. Different
choices for the data generation parameters provided analogous
results.

We tested the effect of using classifiers with different num-
ber of hyperparameters, whose values were selected through
nested k-CV. Both in case of linear and non-linear optimal
Bayes classifier, we observed that less hyperparameters lead
to lower P (TypeII) and slightly increased P (TypeI). We
do not show quantitative results for lack of space. Anyway,
we obtained qualitative analogous results for a wide range of
values of the parameters of the simulation.

Figure 3 shows the P (TypeI) and P (TypeII) as a func-
tion of k, the number of folds of k-CV. We observed such
qualitative behavior for a wide range of choices of parameters
of the simulations.
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Fig. 3. Comparison of the three tests in terms of P (TypeI) and P (TypeII)
as a function of the number of folds k of CV. Classifier: linear SVM, N = 40,
d = 200, dinf = 10, δ = 0.5, λ = 0.

For full reproducibility of the results, all the code of this
simulation study is publicly available with an OpenSource li-
cense at https://github.com/emanuele/prni2016 classification
test.

IV. DISCUSSION AND CONCLUSION

Our results on simulated data illustrate that the choices made
during the inferential process have a clear influence on its
efficacy, in terms of P (TypeI) and P (TypeII). Even though
the simulation is not an accurate representation of neuroimag-
ing data, we believe that the results can be interpreted in a
qualitative way with respect to their impact on neuroimaging
data analysis.

From a qualitative point of view, the results summarized
in Figure 1, 2, 3 and in many other configurations of the
simulations, show that the use of the binomial assumption
lead to an increase to the P (TypeI) with respect to the level
defined at the beginning of the analysis, i.e. 0.05 for the
hypothesis test (0.95 for the confidence level). As reported
in [8], this is expected because the cross-validation scheme
interferes with such assumption. Nevertheless, we observe
a decrease of P (TypeII), which was not reported before.
This means that using the binomial assumption increases the
sensitivity of the test procedure at the cost of false discovery.
Moreover, using the binomial assumption within the approach
based on confidence intervals result in similar P (TypeI) and
reduced P (TypeII) with respect to the permutation-based
approach.

The results of the comparison of classifiers with differ-
ent number of hyperparameters match our expectations. A
classifier with more hyperparameters exhibits an increase in
P (TypeII), that we motivate with the increased variance in
the results due to need of fitting more hyperparameters with
the same amount of data.

The results of Figure 3 shows that P (TypeI) increases and
P (TypeII) decreases with the number k of folds of k-CV. A
higher k means a larger train set in each fold, which leads to
more stable classifiers, justifying the decrease of P (TypeII).

As mentioned in Section III, we observed the qualitative
findings above with many different settings of the parameters,
not reported for lack of space. In particular we observed them
with datasets of low dimension, typical of brain mapping pro-

cedures like searchlight [3]. So we are confident in extending
the claims also to the low-dimension setting.

In conclusion, we believe that the results presented here fill
some of the gaps in the literature of methods for neuroimag-
ing data analysis. Moreover, the simulation-based approach
proposed here can be used for further investigations on the
efficacy of other data analysis strategies as well.
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