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Abstract

This paper presents an extensive experimental evaluation of the layer 3 packet forwarding performance of

virtual software routers based on the Linux kernel and the KVM virtual machine. The impact of various

tuning and configuration options on forwarding performance is evaluated, focussing on the mechanism

used for moving data to and from virtual machines, the algorithm used for scheduling the virtual router

tasks, the number of used CPU cores, and the router tasks affinities. The presented results show how

to properly configure the virtual router components to improve forwarding performance and the benefits

of using appropriate CPU schedulers. Furthermore, some advanced architectures based on virtual router

aggregation are evaluated. The presented experiments show that architectures based on router aggregation

can better exploit the available CPU cores to reach performance not far from the ones obtained by non-

virtualised software routers.

1. Introduction

Software Routers (SRs), i.e, routers implemented by software running on commodity off-the-shelf hard-

ware, became in recent years an appealing solution compared to traditional routing devices based on custom

hardware. SRs’ main advantages include cost (the multi-vendor hardware used by SRs can be cheap, while

custom equipments are more expensive and imply higher training investment), openness (SRs can be based

on open-source software, and thus make use of a large number of existing applications) and flexibility. Since

the forwarding performance provided by SRs has historically been an obstacle to their deployment in pro-

duction networks, recent research works focused on increasing SRs performance by either using massively

parallel hardware such as a GPU to process packets [1], allowing the routing software to directly access

the networking hardware (thus eliminating the overhead introduced by the OS kernel) [2], or using other

similar techniques to improve the forwarding performance of monolithic routers. An orthogonal approach
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to improve SR performance can be based on the aggregation of multiple devices to form a more powerful

routing unit like the Multistage Software Router [3], Router Bricks [4], and DROP [5]. While by improving

the performance of a single routing device it is possible to reach the forwarding speed of multiple tens of

Gigabit per second [1], the aggregation of multiple routing units can allow the forwarding speed to scale

almost linearly with the number of used devices [3].

As recognised by several researchers [6, 7], virtualisation techniques could become an asset in networking

technologies, improving SRs flexibility and simplifying their management. As an interesting example, the live

migration capability provided by some Virtual Machines (VMs) could be adopted for consolidation purposes

and/or to save energy. Moreover, running a SR in a VM allows to dynamically adapt the forwarding

performance of the (virtual) device to the workload by renting virtual resources instead of buying new

hardware. This feature is especially useful when the network traffic has a high variance, thus a high

processing power might be necessary only for short periods. Virtualisation can also simplify the management

of a SR, and improve its reliability: for example, migration of VMs during maintenance periods can be

implemented and faster reaction to failures should be expected by booting new VMs on general purpose

servers. Finally, the same physical infrastructure can be sliced and shared among different users to improve

hardware efficiency.

Obviously, the usage of Virtual Software Routers (VSRs) might increase the complexity of the routing

software: for example, the communications between VMs and the physical nodes hosting them result in

complex interactions between hardware and VMs, which could easily compromise VSR’s performance. This

paper focuses on analysing such interactions to identify and remove various performance bottlenecks in the

implementation of a VSR. Since such an investigation is easier when the behaviour of and the interaction

mechanisms among all the software components (routing software, virtual machine software, operating

system kernel, etc...) are known, this work focuses on an open-source virtualisation environment (KVM,

the Kernel-based Virtual Machine [8]) which permits to easily analyse the VM and SR behaviour to identify

performance bottlenecks. Indeed, since KVM is tightly integrated into Linux from 2.6.20 on, it is possible

to exploit all the available Linux management tools.

VSR performance can be improved by carefully tuning various system parameters such as those related

to the mechanisms used to move data to and from VMs, threads priorities and CPU affinities. Some

preliminary results [9] show that a proper configuration and optimisation of the virtual routing architecture

and the aggregation of multiple VSRs (as suggested by the multistage software router architecture [3])

permit to forward about 1200kpps (with 64 bytes packets) in a commodity PC, close to the physical speed

of a Gigabit Ethernet link. This paper extends the preliminary results starting from a detailed analysis of

the packets forwarding path, which is used to develop a large number of new experiments to investigate the

bottlenecks that should be bypassed to reach the full line rate. Some of the new experiments investigate

the different technologies that can be used to interface the VMs with the physical hardware, comparing
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their performance and CPU usage. Then, the impact of the CPU scheduler on the VSR performance

are investigated, showing how a proper scheduling algorithm (with properly tuned scheduling parameters)

permits to control the performance of a VSR and to limit its CPU usage.

The reminder of this paper is organised as follows: Sec. 2 briefly summarises the virtualisation technolo-

gies used in this paper. Then, Sec. 3 introduces the so-called monolithic VSR, gives a basic evaluation of its

performance, and show that the scalability of a VSR is not affected by virtualisation. Based on these results,

Sec. 4 discusses many optimisation techniques to tune the performance of a monolithic VSR. Sec. 5 discusses

the problem of clustering multiple VSRs into a single logical routing unit to improve the performance or

the flexibility of a VSR. Some state of art related works are presented in Sec. 6. Finally, Sec. 7 concludes

this paper. A separated Appendix A is included at the end to show the detailed packet forwarding lifecycle

inside the VSR for interested readers.

2. Virtualisation Technologies

An SR operates both on the data plane (or forwarding plane), where each packet is handled individually

and forwarded towards the next hop IP router, and on the control plane, where routing tables are filled

based on routing protocol interactions. While some VSRs virtualise only the control plane and directly

configure a non-virtualised data plane, in this work we concentrate on VSRs that virtualise both planes.

VSR performance is mainly affected by the amount of computational resources (i.e, CPU power) available

on the physical node that hosts the VSR. Such computational resources are mainly used to provide data

plane operations by:

1. the forwarding/routing code in the SR (named as guest because it runs inside a VM).

2. the physical machine hosting the VM (named as host), to move packets among physical interfaces,

virtual switches, and guest virtual interfaces.

Control plane operations are less CPU intensive and have less stringent timing constraints. Therefore, we

concentrate on the evaluation of the above described data plane operations.

Several packet processing functions may be available in SRs. Thus, the amount of CPU time needed

to process packets inside the SR may vary significantly. We can identify SRs used in the access network,

close to end users, typically executing several functions, or SRs in the core network that focus on high

performance. In the access, many high layer (4-7) functionalities could be executed in the SR, including

NAT, VPN encryption/decryption, packet filtering based on different rule sets, etc. Things become even

more complex when QoS comes to the picture. These operations may require several CPU cycles, because

different SR subsystems need to access and modify the packets. As a result, the packet processing overhead

increases, decreasing the throughput. On the other hand, routers which only implement layer 3 forwarding
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are often used in core networks and in data centers. In this case, packets traverse only a simple and high-

performance forwarding subsystem (that can run in the Linux kernel, in the Click software, or in other

specific software modules). Obviously, high performance and fast forwarding speed is the key index to

measure the quality of such VSR. This paper focuses on the study of VSR layer 3 forwarding, showing that

if appropriate optimisation techniques are used a VSR can achieve almost line rate in forwarding.

Moving packets between the host and the VM can be executed in the OS kernel, in a hypervisor, or

in some user-space component (typically, the Virtual Machine Monitor - VMM), depending on the specific

virtualisation architecture. This operation, which is crucial for the VSR performance, can be performed

in various ways, using different software components. This paper considers 3 different approaches, namely

macvtap, bridge (plus tap), and netmap, analysing their performance in details.

If the VSR is implemented using a “closed” virtualisation architecture such as VMWare [10], it is not

easy to understand how much CPU time is consumed by the VMM, by the guest, or by the host OS kernel.

Hence, in this paper an open-source virtualisation architecture is used. The two obvious candidates are

Xen [11] and KVM [8]. Since the KVM architecture is more similar to the standard Linux architecture

(hence, it does not require to learn new profiling and performance evaluation tools), it has been selected

for running the experiments presented in this paper. KVM is based on a kernel module, which exploits

the virtualisation features provided by modern CPUs to directly execute guest code, and on a user-space

VMM, based on QEMU [12], which virtualises the hardware devices and implements some virtual networking

features.

The most relevant feature for VSRs provided by the user-space VMM is the emulation of network

interfaces, because CPU virtualisation is not an issue, as KVM allows guest machine instructions to run

at almost-native speed. When a packet is received, the VMM reads it from a device file (typically the

endpoint of a TAP device) and inserts it in the ring buffer of the emulated network card (the opposite

happens when sending packets). When emulating a standard network interface (such as an Intel e1000

card), the VMM moves packets to/from the guest by emulating all hardware details of a real network card.

This process is time consuming, easily causing poor forwarding performance, especially when considering

small packets, and/or high interrupt rates. This issue can be addressed by using virtio-net1, which does

not emulate real hardware but uses a special software interface to communicate with the guest (that needs

special virtio-net drivers). Thus, the overhead introduced by emulating networking hardware is reduced,

and forwarding performance is improved. The para-virtualised NIC is based on a ring of buffers shared

between the guest and the VMM, which can be used for sending/receiving packets. The guest and the

VMM notify (to each other) when buffers are empty/full, and the virtio-net mechanism is designed to

minimise the amount of host/guest interactions (by clustering the notifications, and enabling data transfer

1virtio-net is a para-virtualised I/O framework for high speed guest networking [13]
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Figure 1: The VSR packet path comparison between virtio-net (left) and vhost-net (right).

in batches).

When using virtio-net, the user-space VMM is still responsible for moving data between the (endpoint

of the) TAP interfaces and the virtio-net ring buffers. Hence, when a packet is received, as depicted in

the left hand side of Fig. 1:

1. the host kernel notifies the user-space VMM that a new packet is available on the TAP device file;

2. the VMM is scheduled, reads the available packets from the device file and copies them to the

virtio-net ring;

3. the VMM notifies the guest and the execution returns to the kernel;

4. the guest receives a virtio-net interrupt, and starts executing the packet processing task.

In summary, the large number of context switches between the host kernel, the VMM, and the guest,

can introduce overhead and decrease virtual router performance. This problem can be solved by using

vhost-net2, a helper mechanism provided by the host kernel, able to directly copy packets between the

TAP interface and the virtio-net ring buffers. Thus, the copy is not performed by the user-space VMM,

but by a dedicated kernel thread (referred as “the vhost-net kernel thread” from now) and some context

switches can be avoided. As a result, forwarding performance of the guest are largely improved.

When using vhost-net, the user-space VMM does not need to execute when the guest sends and receives

network packets, and the CPU time consumed by the host to move packets is not used by the user-space

VMM but by the vhost-net kernel thread (notice that there is one vhost-net kernel thread per virtual

interface), as shown in the right hand side of Fig. 1. The guest code executes in a different thread, named

vcpu thread (notice that there is one vcpu thread per virtual CPU).

More details on how packets are moved between physical and virtual interfaces are available in the

Appendix.

2http://www.linux-kvm.org/page/VhostNet
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3. The Monolithic Virtual Router

To understand how the various mechanisms described in the previous sections affect the performance of

a VSR, and how to correctly configure the host and the VMM to optimise the virtual routing performance,

a set of experiments have been performed on the simplest possible VSR implementation first. The VSR used

for these experiments is composed of a Linux-based OS running inside a KVM-based VM, and is referred to

as monolithic VSR in the remainder of the paper. Thanks to the fact that KVM is an open virtualisation

architecture, it is possible to identify the performance bottlenecks of a VSR and to understand how to exploit

existing resources to tune and improve the forwarding speed. Identifying these bottlenecks and understanding

how to improve the forwarding performance is a first important step for building high performance virtual

networking appliances like VPNs or firewalls, let as future research topics.

3.1. Experimental Setup

The experiments have been performed by using VRKit [14] to implement the monolithic virtual router

and to test its performance. VRKit provides a small Linux-based OS to be used in the host and in the guest,

scripts to configure and start the VMM (and set up virtual networking) and scripts to implement a router

tester. The VRKit OS allows to select the exact version and configuration of the used software components

(in particular, the Linux kernel and KVM) and to set up the experiments in a deterministic and reproducible

way. Although the experiments presented in this paper are based on the VRKit OS, results hold for and

can be reproduced on any generic Linux-based OS (at the cost of manually installing and configuring the

correct kernel and VMM versions), since the forwarding performance are mainly affected by the kernel and

by the VMM, thus the effect of other OS components can be considered negligible.

The tester scripts (which implement our open-source router tester) use the pktgen Linux module to send

out one or more flows of packets that are routed by the VSR under testing. A known number of packets

is generated at a well-specified rate (ranging from 100kpps to line rate), and the VSR performance are

measured by counting how many packets are returned back. The entire packet life cycle inside the VSR is

described in details in Appendix A. Note that this kind of experiments permit to measure the VSR layer-3

forwarding performance.

In all the experiments, the testing results will be visualised by representing the generated packet rate

(on the router tester output) on the x axis, and the received packet rate (rate of packets routed back by the

VSR) on the y axis. Any difference between these two rates is due to VSR forwarding speed limit.

The tester scripts permit to repeat multiple runs of each experiment to compute confidence intervals, to

control the VSR configuration, and to automatically setup complex experiments (varying different param-

eters in the VSR setup and configuration) in a deterministic way. The reliability of the scripts has been

verified by comparing the measurements with the ones obtained when using a professional router tester.
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After these checks were performed, we choose our open-source tester included in the VRKit because of some

useful features (easy interaction with the VSR, setup and deterministic reproduction of experiments, etc...).

To simplify the setup, the first experiments are based on a testbed composed of a traffic generator

and one VSR node (both generated with VRKit). The performance of a VSR is measured in the most

demanding situation, i.e., when forwarding small packets (64 bytes long). To verify that the results are

not strictly dependent on a specific hardware, the experiments have been repeated using different hardware

(different kinds of x86 CPUs, different RAM size, and different kinds of Gigabit Ethernet cards). The results

obtained in these repetitions are consistent: although some performance difference at the peak rate arise,

the qualitative behaviour is the same in all the different setups. Hence, for the sake of simplicity, the paper

reports the results obtained by using an Intel Xeon quad core E5-1620 running at 3.66GHz, equipped with

8GB of memory. The NICs used in the reported experiments are Gigabit Ethernet cards based on the Intel

82574L chipset (e1000e driver in Linux).

3.2. Exploiting CPU Cores

Fig. 2 shows the forwarding packet rate (as a function of the input packet rate) of a 3.4 Linux kernel

running inside qemu-kvm 1.1.0. Each experiment has been repeated 10 times, and the 99% confidence

intervals are also reported.

To test the impact of the available computing power on the performance of a monolithic VSR, the

experiment has been repeated using an increasing number of CPU cores. For example, the Xeon CPU

mentioned above has 4 cores, hence the performance has been measured using a single core (all interrupts

are processed on the first CPU core, where the KVM vcpu thread and the vhost-net kernel thread also run),

using 2 cores (interrupt processing and threads execution on the first 2 CPU cores), and using all 4 CPU

cores (notice that in theory only 3 CPU cores are sufficient: one for interrupt processing, one for the KVM

vcpu thread, and one for the vhost-net kernel thread). The VSR has been forced to use a limited number

of cores by disabling (putting “offline”, using the appropriate Linux kernel functionality) the unnecessary

CPU cores. This is a feature provided by the VRKit OS and by its VSR setup scripts.

The common intuition is that allowing a VSR to use more CPU cores (providing it with more computing

power) improves its forwarding performance. Fig. 2 confirms this intuition, but also shows some effects that

might appear surprising at a first glance. For example, increasing the number of used CPU cores from 2 to 4

results in no significant performance improvement if the two threads are left free to execute on any CPU core

(“4 cores, no bind” line). Some investigation performed using the “perf” and “ftrace” tools revealed that

this strange effect is due to a deficiency in the load balancer used by the Linux CPU scheduler, which seems

to ignore the CPU load caused by interrupt processing when migrating tasks between the usable CPU cores.

Once the source of this issue has been identified, it has been clear that the issue can be addressed by setting

the affinity of the vcpu thread and the vhost-net kernel thread to cores 1, 2, and 3, so that they are not
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Figure 2: Forwarding performance of a monolithic VSR while increasing the number of CPU cores.

executed on core 0, which is busy with interrupt processing. The results achieved by using this assignment

are shown in the “4 cores, loose-bind” line. Notice that although this CPU binding allows to increase the

maximum forwarding throughput, when the maximum is reached the “4 cores, loose-bind” line exhibits a

high variance (see the confidence interval bars). This happens because in overload scenario the 2 threads

tend to continuously bounce between the cores 1, 2 and 3, introducing an unpredictable overhead. Setting

more strict CPU affinities for the two threads (allowing the vcpu thread to execute only on core 1, and the

vhost-net kernel thread to execute only on core 2) eliminates the unpredictable migration overhead, and

hence the variance (and the confidence interval), but does not have any particular impact on the average

performance (see the “4 cores, tight-bind” line).

Notice that even when 4 CPU cores are made available (and top shows a high amount of idle CPU

time in the system), the virtual router is not able to forward more than 900kpps. By analysing the system

in overload (for input rates larger than 900kpps), it becomes clear that the bottleneck is the vhost-net

kernel thread, which consumes all the CPU time on a core (see Sec. 4.1). Since the issue is that a single

thread (the vhost-net thread) needs more than 100% of the CPU time of a single core, playing with CPU

bindings cannot help anymore, because a single thread cannot simultaneously execute on 2 different CPU

cores. Thus, it is not possible to exploit the huge amount of idle time on other cores.

Summing up, the previous experiments showed that when the VSR is near to overload, the CPU load

balancing mechanism implemented by the Linux kernel can be confused by the interrupt load, and good

(and stable) performance can be obtained only by binding threads to the CPU cores. In particular, forcing

the scheduler to schedule the threads on CPU cores that are not used for interrupt processing improves

the VSR forwarding performance. If the number of threads used by the VM is smaller than the number of
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Figure 3: Forwarding performance of a monolithic VSR with different priorities for the vcpu and vhost-net threads (vcN means

vcpu with priority N, vhN means vhost-net with priority N).

available CPU cores than the best possible configuration is obtained by binding each thread to a different

CPU core (so that the overhead due to thread migrations from core to core can be avoided). Respect to more

“loose” bindings, this configuration allows to reduce the variance (making the experimental results almost

deterministic) in the forwarding throughput achieved when the VSR is in overload. The next experiments

will investigate how to schedule the threads when the number of cores is less than the number of threads.

3.3. Setting the Thread Priorities

The first set of experiments on the monolithic VSR showed that exploiting more CPU cores allows

to improve the VSR performance only if the vcpu thread and the vhost-net kernel thread are properly

scheduled. Hence, when some of the threads from the monolithic VSR must execute on the same CPU core

(because, for example, there are not enough usable CPU cores to schedule each thread on a different core),

their scheduling priorities can have a huge impact on virtual routing performance.

Fig. 3 shows the results achieved with a monolithic VSR when the 2 important threads implementing

the VSR (the KVM vcpu thread and the vhost-net kernel thread) are bound to the same CPU core. The

two threads are scheduled through fixed priorities by using the SCHED FIFO scheduling class, while changing

the priority order of the two threads between experiments. Notice that interrupt handlers are executed on

a different CPU core, and this is a key difference in overload with respects to the “1 core” line of Fig. 2.

As a reference, the performance curve obtained scheduling vcpu, vhost-net, and interrupt handlers on 3

separate cores (with performance equivalent to the “4 cores, bind” curve in Fig. 2) is also shown.

The worst forwarding performance is achieved when the vhost-net kernel thread has a higher priority

than the vcpu thread (“vc98,vh99” line). Indeed, the vhost-net is responsible for both moving the received
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packets from the physical NIC to the VM and moving back the routed packets from the VM to the physical

NIC. If this thread has a higher priority than the vcpu thread, most of the core’s time is spent on moving

into the VM that the vcpu thread is not able to route back (because it is starved by vhost-net). On the

contrary, a higher priority for the vcpu thread can guarantee that each packet moved from the physical

NIC to the VM by vhost-net can be correctly routed back, hence the peak throughput increases (see the

“vc99,vh98” line). However, when the system is overloaded, the vcpu thread risks to starve the vhost-net

kernel thread, so an increasing number of the routed packets cannot be moved back to the physical NIC.

Thus, performance decreases in overload. As a result, the best forwarding throughput is obtained when

assigning the same priority to the two threads (“vc99,vh99” line).

Summing up, these experiments confirm that in order to achieve stable throughput in overload, a VSR

should drop packets as early as possible (as noted, it is useless to spend CPU time to process a packet

that will be dropped later). This seems to indicate that threads “coming later” in the forwarding chain

should have higher priorities. Unfortunately, a similar setup cannot be implemented in a monolithic VSR

using only one vcpu thread and one vhost-net kernel thread, because vhost-net is responsible for moving

packets in both directions (from physical NIC to VM, and from VM to physical NIC). This means that

vhost-net processes a packet both before (for moving the packet to the VM) and after (for moving the

routed packet back from the VM to the physical NIC) vcpu. As a result, in this case the most effective

priority assignment consists in assigning the same priority to the two threads. This result also indicates

that better performance can be obtained by splitting the vhost-net kernel thread in two separate threads

(one for moving the packets from host to guest, and the other one for moving back the packets from guest

to host). This intuition will be confirmed in Section 4.1.

3.4. Controlling VSR Performance

The results reported until now show that there is a clear relationship between the amount of CPU

time consumed by a VSR (in particular, by the vcpu thread and by the vhost-net kernel thread) and

VSR performance (in terms of forwarding packet rate). As a consequence, if the CPU scheduler is able to

control the amount of CPU time consumed by a thread, then this mechanism can be used to control VSR

performance instead of using the kernel’s Traffic Control or network scheduling modules, that can introduce

unneeded overhead.

This has been verified by using the SCHED DEADLINE scheduler for Linux [15], which implements the

Constant Bandwidth Server (CBS) scheduling algorithm [16]. This scheduling algorithm permits to reserve

an amount of time equal to Qs every period T s for a specific task, thread, or process. As a result of such

a reservation, the task is guaranteed to be able to execute for Qs time units every T s, but cannot consume

more than this amount of time. Thus, Qs/T s represents the fraction of CPU’s processing time that the task

can use.
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Figure 4: Performance of a monolithic VSR as a function of the amount of time reserved to the vhost-net kernel thread, when

vcpu and vhost-net execute on 2 different cores.

The effectiveness of SCHED DEADLINE in controlling the VSR performance has been studied through a

large number of experiments, binding the vcpu thread and the vhost-net kernel thread to various CPU

cores, and scheduling them through the CBS algorithm.

Fig. 4 plots the throughput achieved for different input rates when the vhost-net kernel thread and the

vcpu thread are scheduled on different CPU cores, and the vhost-net kernel thread is scheduled by a CBS

with T s = 200ms and Qs ranging from 70ms (35% of the core’s time) to 190ms (95% of the core’s time).

Throughput increases almost linearly with the amount of time reserved for the vhost-net kernel (until it

reaches the peak forwarding rate).

Fig. 5 plots the results of a similar experiment in which the vcpu thread (instead of the vhost-net kernel

thread) is scheduled using the CBS. Virtual routing performance increases almost linearly with the amount

of reserved time, until the peak forwarding rate is reached. By comparing Fig. 4 and Fig. 5, it is apparent

that the vhost-net kernel thread consumes more CPU time than the vcpu thread (the VSR reaches the

maximum performance for larger values of the reserved CPU time).

Finally, Fig. 6 shows performance when the vhost-net kernel thread and the vcpu thread are scheduled

on the same CPU core, and the vcpu thread is scheduled by a CBS with T s = 200ms and Qs ranging from

70ms (35% of the core’s time) to 190ms (95% of the core’s time). Once again the throughput increases

almost linearly with the amount of time reserved to the vcpu thread. However, in this case the peak

throughput is lower, due to the fact that the two threads are sharing the same CPU core.

Summing up, these experiments show that the forwarding performance of a VSR is proportional to the

fractions of CPU time used by the vcpu thread and by the vhost-net kernel thread. Hence, a CPU scheduler
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like SCHED DEADLINE, that can control the maximum amount of CPU time used by a task, can be used to

control the forwarding performance of a VSR and/or to find trade-offs between such a performance and the

amount of used CPU time.

3.5. Scalability

The experiments so far have been performed by generating a single packet flow, i.e. traffic from one

source to one destination. We did not fill the VSR’s routing table with many entries either, i.e, a single

generic routing entry was used. In this section, we investigate how the number of flows and the size of the

routing table (i.e. the number of entries in the routing table) influence the VSR performance. We also verify

whether the observed behaviours are specific to VSRs, or if they also manifest in a native SR.

Fig. 7 summarises the effect of multiple flows — with the same IP source but different IP destination

addresses — on forwarding performance. For up to 16K flows, performance is not degraded. When the num-

ber of flows to be routed is increased to 1 million, the monolithic VSR experiences a significant performance

drop. This huge performance difference is due to the interaction of the Linux kernel and the routing cache

used to route packets. More specifically, when the number of network flows handled by VSR is larger than

the routing cache size (1 million flow scenario), the Linux kernel triggers a garbage collection mechanism

for the routing cache to remove old entries while filling up new ones consistently, which leads to a huge

performance degradation. However, notice that a similar, but not identical drop can be observed even on

a non-virtualised SR (obviously, performance on real hardware are better), meaning this drop is not intro-

duced by virtualisation overhead but rather by the Linux kernel itself. Finally we verified that increasing

the routing cache size can increase the number of flows supported without performance degradation, at the

cost of higher memory utilisation. The graph is omitted due to lack of space.
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Figure 8: Forwarding performance of a monolithic VSR compared with a non-virtualised SR, while changing the size of the

routing table and the number of flows to be routed.

Fig. 8 shows the relationship between the VSR forwarding performance and the size of the routing table

in the guest kernel. A monolithic VSR can achieve almost the same performance regardless of the number

of flows (1 or 1 million) for different routing tables size (with 1 or 1 million entries). Almost no drops can

be observed when routing 1 flow both with a large and a small routing table, while in the 1 million flows

case, slightly higher but still relatively small drops can be noticed. Similar effects can be observed for the

native SR running in hardware: negligible forwarding performance drops can be seen when routing flow(s)

for a large routing table with respect to a small one. Overall, the scalability in routing table size is handled

well by the kernel both in the native and in the virtualised cases.

Summing up, the size of the routing table has minimal effect on VSR performance. Scaling the number

of flows, instead, could lead to considerable performance loss, but this is not virtualisation specific: similar

losses can be observed in a non–virtualised SR as well.

4. Optimising a Virtual Router

Sec. 3 showed that the performance of the VSR are affected by the forwarding mechanism in the Linux

kernel (on which the virtualisation mechanisms can have a big impact) and by the number of CPU cores

used by the VSR. This section will show how to properly configure the software implementing a monolithic

VSR to achieve the best performance, before moving to more modular approaches.

4.1. Multiple vhost and vcpu Threads Performance

By looking at how the various threads implementing a VSR use the CPU cores, it is possible to understand

what happens when the peak forwarding rate is reached, and how to improve the virtual routing performance.
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Figure 9: CPU utilisation detailed per core and per type of load, as a function of input packet rate [pps], for a monolithic VSR

with 1 vhost-net kernel thread (bound to core 2) and 1 vcpu thread (bound to core 1).

Fig. 9 shows the CPU utilisation caused by a monolithic VSR when the network interrupts are handled

on core 0, the vcpu thread executes on core 1, and the vhost-net kernel thread executes on core 2 (line “4

cores, bind” in Fig. 2). Results are detailed per CPU core, showing how utilisation changes as a function of

input packet rate (shown on the horizontal axis in pps). sys represents the percentage of time consumed by

threads executing in kernel space (for example, the vhost-net kernel thread, or a user thread executing a

system call), irq represents the percentage of time consumed by interrupt handlers (in this case, the handlers

of the network interrupts), and guest represents the percentage of time consumed by KVM executing guest

code, i.e. the vcpu thread. The peak rate is reached when the vhost-net kernel thread consumes almost

all of the execution time on core 2. Hence, the performance limit is due to a vhost-net overload. As

a consequence, it can be conjectured that the performance can be increased by using 2 vhost-net kernel

threads and executing them on 2 cores (core 2 and core 3). This has been verified by running some additional

tests with different numbers of threads bound to various CPU cores.

Fig. 10 shows the monolithic VSR performance when using a different number of threads (and, as a

consequence, a different number of CPU cores), and Figs. 11 and 12 show the CPU utilisations in these

experiments. Notice that the “1 vhost 1 vcpu” line is the same as the “4 cores, bind” line of Fig. 2.

These figures show that splitting the vhost-net kernel thread into two threads (one for packets reception,

the other one for transmission) permits to exploit additional CPU cores, increasing the peak throughput

to more than 900kpps. By looking at Fig. 11, it becomes clear that when two vhost-net kernel threads

are used, the virtual routing performance is limited by the vcpu thread. Interrupt handling is also near the

limits, almost saturating Core 0.
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Figure 10: Forwarding performance for a monolithic VSR with different vhost and vcpu thread(s).

 0

 20

 40

 60

 80

 100

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

1
2

0
0

0
0

0
1

3
0

0
0

0
0

1
4

0
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

1
2

0
0

0
0

0
1

3
0

0
0

0
0

1
4

0
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

1
2

0
0

0
0

0
1

3
0

0
0

0
0

1
4

0
0

0
0

0

1
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

0
0

4
0

0
0

0
0

5
0

0
0

0
0

6
0

0
0

0
0

7
0

0
0

0
0

8
0

0
0

0
0

9
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

1
2

0
0

0
0

0
1

3
0

0
0

0
0

1
4

0
0

0
0

0

C
p
u
 L

o
ad

 (
%

)

sys irq guest

Core 3Core 2Core 1Core 0

Figure 11: CPU statistics for the standard VSR, with 2 vhost and 1 vcpu threads
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Figure 12: CPU statistics for the standard VSR, with 1 vhost and 2 vcpu threads

While splitting vhost-net in two kernel threads allows to improve the performance, increasing the

number of vcpu threads without creating additional vhost-net kernel threads does not improve the virtual

routing performance, because the performance bottleneck remains in the single vhost-net kernel thread, as

shown in Fig. 12. The additional vcpu thread even decreases the performance in overload, probably because

of the overhead (due to a more complex VSR architecture and more context switches) introduced by the

additional thread.

Summing up, when the number of usable CPU cores is larger than the number of threads used by

the VMM, the VSR is not able to exploit all the available processing power. Splitting the “overloaded

threads” (that is, the threads which consume 100% of the execution time on one CPU core) allows the

kernel to balance the CPU load better and results in better performance. Splitting threads which are

not the bottleneck, instead, can even result in reduced performance. The experiments showed that for a

monolithic VSR, the overloaded thread is always the vhost-net kernel thread.

4.2. Interconnection Mechanisms

As shown in the previous experiments, the limitations to the maximum packet forwarding rate of a VSR

are often due to an overload of the vhost-net kernel thread, which is responsible for moving packets between

the physical interface and the virtual one (and vice versa). Hence, it might be interesting to understand how

the different mechanisms that can be used to connect the physical and virtual interfaces affect virtual routing

performance.3 This investigation has been performed by running a new set of experiments, comparing a

3In the previous experiments, the macvtap mechanism provided by the Linux kernel has been used.

17



 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0  200000  400000  600000  800000  1e+06  1.2e+06  1.4e+06

O
u
tp

u
t 

p
ac

k
et

 r
at

e 
[p

p
s]

Input packet rate [pps]

macvtap
bridge

openvswitch
netmap

Ideal

Figure 13: Forwarding performance comparison in KVM using different interconnection mechanisms.

Linux software bridge (br device) plus TAP interface, openvswitch (plus a TAP interface), the Linux macvtap

interface and netmap [2], a novel mechanism providing high performance in user-space networking.

The results of this comparison are shown in Fig. 13, and show that macvtap performs better than

the other mechanisms, followed by openvswitch, netmap and the software bridge. The better performance

provided by macvtap are due to its simpler logic (macvtap forwards packets based on pre-configured static

rules, and does not implement any backward learning algorithm) and to the fact that it combines into

a single operation some of the data movements performed in the bridge and openvswitch configurations.

Indeed, when using one bridge (either the “standard” software bridge or openvswitch) and one TAP device

separately, packets are moved from the physical NIC to the bridge device and then from such a device to the

TAP interface. Openvswitch performs better than the standard software bridge because it has been optimised

to reduce the overhead introduced by the Linux bridge device (see also [17]).

As usual, there is a trade-off between performance and flexibility: macvtap is less flexible than the other

solutions but performs better and should be preferred when building a high performance monolithic VSR.

While the performance difference between macvtap and the bridge-based solutions (standard bridge and

openvswitch) were expected, the netmap results seem to contradict the original netmap papers (which show

that netmap can achieve better performance than the standard mechanisms implemented in Linux). Hence

a more accurate investigation has been performed to understand the reasons for this unexpected behaviour.

Notice that netmap has a maximum throughput around 650kpps, the virtual routing performance do not

degrade when the input packet rate increases further, and confidence interval is quite small even in overload.

On the other hand, macvtap has a peak forwarding rate of about 900kpps, performance slightly decrease as

the input packet rate further increases, and the confidence interval in overload is larger. Finally, openvswitch
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Figure 14: Forwarding performance comparison of a monolithic VSR using vhost-net and netmap configuration.

seems to provide performance which are in between netmap and macvtap. Analysing the CPU utilisation

with Linux top utility, the source of the performance differences between netmap and macvtap/openvswitch

becomes clear. The key point is that the macvtap configuration used vhost-net for moving packets from

the macvtap interface to the virtio-net device inside the VM. Since vhost-net creates an additional

kernel thread, the macvtap configuration is able to use 3 CPU cores (see Fig. 9), while netmap never uses

more than 2 CPU cores. Indeed, vhost-net can distribute at least 3 activities (interrupt handling, the

vhost-net kernel thread, and the vcpu thread) on the CPU cores, while netmap only uses 2 active entities:

the main qemu thread, which implements interrupt handling and moves the network packets in the virtio

ring, and the vcpu thread (which works as in the vhost-net setup). Hence, netmap cannot take advantage

of additional CPU cores. To verify these findings, the experiment was repeated comparing netmap with

a macvtap configuration in which only 2 CPU cores are used. The results are reported in Fig. 14, which

compares the performance of macvtap (using vhost-net) with 2 and 4 CPU cores with the performance

achieved when using netmap (which cannot use more than 2 CPU cores)4. Notice that the “vhost-net, 4

cores” line in Fig. 14 is equivalent to the “4 cores, bind” line of Fig. 2, and the “vhost-net 2 cores” in Fig. 14

is equivalent to the “2 cores” curve from Fig. 2.

If netmap is compared with macvtap plus vhost-net using only 2 CPU cores (“vhost-net 2 cores” in

Fig. 14), it shows similar routing performance with a better behaviour in overload.

Summing up, if only few CPU cores are usable by the VSR, then netmap has to be selected as a packet

forwarding mechanism. If, instead, more CPU cores are available, then vhost-net based mechanisms should

4Notice that macvtap provides the low level (i.e, NIC to TAP) connection and vhost-net provides the high level (i.e, TAP to

guest) connection, while netmap can pass packets directly to user space guest.
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Figure 15: Performance of a monolithic VSR as a function of the macvtap queue size, when vcpu and vhost-net execute on

the same core and are scheduled with real-time priorities.

be used, because vhost-net allows to better exploit all of the available CPU power. When vhost-net is

used, macvtap should be preferred to TAP based mechanisms, because it provides better performance.

4.3. Effects of the macvtap Queue Size

As noticed in Sec. 3.3, early packet dropping allows to improve the stability of the forwarding performance

when the VSR is overloaded or almost overloaded. Unfortunately, this result cannot be easily achieved by

adjusting the threads’ priorities (because the vhost-net kernel thread comes both before and after the vcpu

thread in the packets processing path). However, since the packets received on the physical interface are

queued in a macvtap (or TAP) device before being moved into the virtio ring by the vhost-net kernel

thread (see Sec. 2 and the Appendix), the size of the used queues can be adjusted to achieve early packet

dropping.

Some experiments on a monolithic VSR confirmed that when the VSR is overloaded, the size of this

device’s queue can heavily affect the forwarding performance. This happens because a longer queue allows

the vhost-net kernel thread to move more packets to the virtio ring, increasing the vcpu thread load and the

number of packets sent back by the guest. Hence, the vhost-net kernel thread spends more time to move

packets back to the tx ring of the physical interface. Fig. 15, shows the impact of the macvtap queue size

on the performance of a monolithic VSR with the vcpu thread and vhost-net kernel thread scheduled on

the same core. As it can be noticed, a queue size of 110 packets permits to reach a slightly higher peak rate,

but provides a worse behaviour in overload. Smaller queue sizes (such as 50 packets or 35 packets) represent

a good trade-off allowing to reach a slightly worse peak rate but showing no degradation in overload (thanks

to the early packets dropping). Extreme values, such as 500 or 5 tend to provide worse performance. In
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Figure 16: Performance of a monolithic VSR as a function of the macvtap queue size, when vcpu and vhost-net execute on

the same core and the vcpu thread is reserved 170ms every 200ms.
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Figure 17: Performance of a monolithic VSR as a function of the macvtap queue size, when vcpu and vhost-net execute on

the same core and the vcpu thread is reserved 90ms every 200ms.
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particular, large queues behave well until the VSR is overloaded but are then subject to a huge performance

degradation. Very short queues, on the other hand, perform badly at low loads.

Similar experiments were repeated when scheduling the vcpu thread with the CBS scheduling, and

reserving a variable amount of time for it. When the vcpu thread is reserved a large amount of time, the

results are similar to the ones shown in Fig. 15. In particular, Fig. 16 shows the virtual routing performance

obtained when the vcpu thread is scheduled by using a (170ms, 200ms) CBS. Performance obtained for queue

sizes of 35 and 50 packets are very similar to the previous ones, while the performance obtained for large

queue sizes (500 packets) are slightly better in overload. This is due to the temporal protection mechanism

provided by the CBS. Finally, Fig. 17 shows what happens in conditions of huge overload. The vcpu thread

is controlled by a (90ms, 200ms) CBS, hence it has not enough CPU time to route the packets.

Summing up, these experiments showed that the macvtap queue size allows to control how packets are

dropped in the VSR, and that early packet dropping can avoid congestions in the vcpu thread and in the

TX path. Hence, when the system is overloaded, the macvtap queue should be shorter to drop packets as

early as possible and to avoid spending CPU cycles in processing packets that will be dropped later.

5. Aggregation of Multiple Virtual Routers

Previous sections showed how to tune a monolithic VSR (that is, a VSR based on a single VM running a

SR) to exploit the available hardware resources in the best way. However, there are situations in which the

monolithic approach is not flexible enough, or cannot utilize the full host power to provide the best possible

performance.

For example, the use of multiple virtualised software components could enable load balancing and/or

power saving through the migration of the VMs between different physical hosts. However, a monolithic

VSR is based on one single VM, so it is not possible to move only some of the functionalities from one

physical node to a different one. Similarly, it is not possible to dynamically activate and deactivate VMs

to adapt the VSR processing power to the current workload. This issue could be addressed by “splitting”

the monolithic VSR in multiple software components that live in different VMs to form a single router This

implementation allows to migrate and control only some of the VMs when necessary, providing a better

granularity for features like load balancing, energy saving, etc.

In some situations, it can be desirable to completely isolate the traffic flows (i.e, security concern) from

the others routed by a VSR. Thus, exploiting multiple VMs to distribute and serve flows could provide

strong isolation. Note that this feature also requires to “split” a VSR in multiple components which runs

in different VMs.

As another example, Fig. 2 shows that even when the host scheduler is correctly configured, a monolithic

VSR is not able to forward more than 900kpps for small packet size. Since the bottleneck lies in the
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Figure 18: Example of the multi-stage router composed of two load balancers and three back-end routers.

vhost-net kernel thread, which consumes 100% of the CPU time of the core where it is bound, virtualising

a multiprocessor machine does not improve performance (see Sec. 4.1). A solution to this issue could be

to increase the number of vhost-net threads, by modifying the host and VMM setup and the mechanism

used to move packets between physical and virtual interfaces. An alternative approach could be to modify

the VSR structure, moving from a monolithic VSR to a routing architecture based on the aggregation of

multiple software modules running inside multiple VMs.

Multiple virtualised software components can be aggregated in a single VSR by using several different

virtual routing architectures, exhibiting different characteristics in terms of performance, scalability and

flexibility. In the following two different architectures are discussed.

The first example of such an aggregation is the Multistage Software Router (MSR) [3], shown in Fig. 18.

A Multistage Software Router is composed of 3 stages:

• the first stage is composed of layer-2 Load Balancers (LBs) that distribute the input traffic load to

some Back-end Routers (BRs);

• the second stage is the interconnection network. This is a mesh-based switched network between the

first stage LBs and the third stage BRs. Multiple paths between the LBs and BRs could exist to

support fault recovery;

• the third stage is composed of the BRs, i.e, forwarding engines that route packets to the proper LB.

A virtual Control Processor (Virtual CP) is used to coordinate the architecture as well as to unify the

BRs’ routing table. The MSR hides its internal architecture and presents itself to external devices as a

single router. As shown in previous work, the MSR architecture, when implemented on a cluster of physical

machines, provides several interesting features, such as extending the number of interfaces that a PC can

host (limited by the number of PCIe slots), dynamically shutting down unnecessary BRs at low traffic load

while turning on BRs at high load, and seamlessly increasing the overall routing performance when necessary.

Furthermore, it has been shown that if LBs are implemented using FPGA hardware the MSR’s forwarding

speed can scale almost linearly with the number of BRs. On the other hand, a software LB implementation
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Figure 19: The implementation of the multistage software router inside a KVM server: 1 load balancer and 1 back-end router,

with different interconnection networks.

based on Click modular router [18] permits to easily virtualise a MSR architecture using VMs for BRs and

LBs.

The interconnection network is implemented inside the host as shown in Fig. 19, using openvswitch

or a standard Linux software bridge and some pairs of TAP interfaces. Since Figure 13 shows that open-

vswitch easily outperforms the standard bridge, it has been used in the experiments presented in this paper.

Connection with the physical interface can be implemented using the Linux macvtap feature to improve

performance when less CPU cores are available, as shown before.

Using Click to implement the first MSR stage (LBs) provides high flexibility, allowing to dynamically

change the number of components and their interconnection, and to dynamically adapt the load balanc-

ing strategy. As a result, it becomes possible to build MSRs with a variable numbers of LBs and BRs,

characterised by a wide range of interconnection networks allowing for BRs distributions on different hosts,

redundancy/fault tolerance, etc. However, these features come at the cost of consuming a huge amount of

CPU time in the vcpu threads of the LBs, and in their vhost-net kernel threads. This means that the

number of CPU cores needed to provide high performance becomes extremely high due to the software LB

implementation.

If the focus is on forwarding performance (and some features/flexibility can be traded for higher per-

formance), then a different VSR aggregation strategy can be used. The Linux macvtap interface provides

a multi-queue functionality that can be used for load balancing: a single macvtap interface can split the

traffic on multiple queues (currently based on network flows, but can be modified to distribute packets in a

round-robin fashion). Such packet queues can be used by a single VM (using a multi-queue virtual network

interface), or by multiple VMs. In this paper, this feature is used for running multiple identical copies of

the same VSR, each one using a different macvtap queue. All VSRs run in identical VMs (having the same

number of Ethernet interfaces, with the same IP and MAC addresses) and are seen from outside as a single
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Figure 20: Performance of a PVR on 4 CPU cores, increasing the number of aggregated routers.

VSR. Hence, the multi-queue macvtap aggregates all VSRs in a single VSR with the same configuration.

This architecture, referred as Parallel Virtual Routers (PVR) architecture in this paper, is less flexible than

MSR, but it removes the LB performance bottleneck (as shown in the next set of experiments).

Fig. 20 displays how the performance of a PVR using the multi-queue macvtap mechanism for load

balancing is affected by the number of aggregated routers. 4 CPU cores are used, and the setup is the same

as the one used in Fig. 2 (same CPU, same number of runs per experiment, and the 99% confidence interval

is displayed). This modular VSR is able to outperform a monolithic VSR (the best curve from Fig. 2 is

repeated in Fig. 20 as “1 router, bind”) and reaches a forwarding rate of more than 1100kpps. Furthermore,

when aggregating 2 routers, CPU bindings have marginal impact on forwarding performance. On the other

hand, when aggregating 3 routers, using proper bindings permits to better exploit the CPU time. Bindings

become less relevant when increasing the number of routers, but performance do not improve, indicating

that 4 CPU cores are not able to forward more than 1200kpps in a virtual architecture.

Fig. 21 displays the performance of an MSR, showing how they are affected by the number of available

CPU cores and the usage of correct CPU bindings. For the sake of simplicity and to easily understand the

results, this experiment has been performed using a simple MSR configuration with only 1 LB and 1 BR,

but similar experiments with more complex setups were also performed providing results consistent with the

ones presented here. This MSR configuration (1 LB and 1 BR) creates 5 CPU-consuming threads: 1 vcpu

thread and 2 vhost-net threads for the LB (since the LB has 2 virtual Ethernet interfaces), plus 1 vcpu

thread and 1 vhost-net thread for the BR. As a result, the performance when executing on a single CPU

core are unsatisfactory (the 5 threads easily overload a single core) and are not reported.

Using 2 CPU cores, performance appears to be quite sensitive to the CPU bindings: when no bindings
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Figure 21: Effects of CPU bindings on the MSR performance.

are used, the MSR can route a little bit more than 100kpps. In overload, the 5 threads tend to continuously

bounce between the 2 available cores, introducing an unpredictable overhead. As a result, the variance in

the forwarded throughput is higher (see the confidence interval bars). Remember that one of the findings

in Sec. 3.2 was that statically binding threads to CPU cores allows to eliminate the migration overhead and

to achieve better throughput. However, since in this configuration the number of threads is larger than the

number of available CPU cores (4), the set of bindings that allows to achieve better performance cannot be

found easily. Hence, all the possible bindings have been tested to measure their impact on the forwarding

performance. The two most significant cases are reported here. Binding the vcpu threads of the LB and of

the BR to the first core, and binding all the vhost-net kernel threads to the second core (“bind case A” in

the figure) permits to achieve a higher maximum throughput (about 250kpps). However, when the router is

overloaded, throughput decreases (arriving to about 120kpps for an input rate of 1400kpps). This happens

because the three vhost-net threads overload the second core, when there is still some idle time on the

first one. However, distributing the threads between cores in a different way (e.g.,“bind case B”, where the

vhost-net kernel threads of the LB execute on the first core, together with the vcpu thread of the BR,

all other threads are on the second core), does not help and leads to a lower maximum throughput (about

200kpps) and a worse behaviour in overload.

When increasing the number of cores to 4, the MSR performance further improves (because more CPU

time is available for the 5 threads). Again, statically binding threads to CPUs allows to improve performance

and reduces the variance in overload. This has been verified by testing all the possible bindings (the two

combinations that perform better are reported in the figure as “bind case A” and “bind case B”). Note that

the confidence intervals of the “4 cores, no bind” case are too large (reaching a size of more than 500kpps)
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and are removed from the plot for the sake of readability.

By looking at the statistics of the scheduler and CPU usage inside the host, it can be observed that

the MSR performance is limited by the front-end LBs. More specifically, the vcpu thread of the LBs

(running Click) consumes 100% of the CPU time on a core. Comparing the MSR architecture with the

PVR one, it becomes clear that the main difference between them is in the LB implementation: MSR

exploits VMs running Click as a guest, while PVR modifies the macvtap mechanism to directly forward

the packets to BRs. Both approaches balance the traffic towards the back-end routers, but the MSR

introduces some virtualisation overhead and requires to modify each packet’s MAC header for achieving the

inter VM communication. The PVR architecture, on the other hand, does not introduce any virtualisation

overhead for load balancing and relies on the host’s macvtap mechanism to deliver the packets to the

BRs without altering their headers. This explains why the PVR architecture is able to better exploit the

host’s computational power to efficiently forward packets. On the other hand, the overhead caused by the

additional VM and by Click in the MSR architecture can be justified by the improved VSR flexibility and

by the additional functionalities, i.e, moving the VMs around, slicing the hardware resource more easily,

redistributing dynamically the load among back-end PCs, managing ARP request/replies, etc.

Similar considerations apply to other modular VSR architectures, not only to MSR and PVR: modular

VSRs can provide great flexibility when relying on standalone VMs as building blocks (as in the MSR archi-

tecture), but forwarding performance may be penalized. On the other hand, performance can be improved

by pushing the load balancing code in the host (more precisely, in the hosts’ subsystem which delivers

packets to the VMs). However, this requires to use simpler / less configurable load balancing algorithms

and does not allow to move or dynamically activate / deactivate the virtualised software components used

to build the VSR. Hence, the VSR flexibility is penalised.

Note that in many cases, slicing the hardware resource to match multi tenant’s requirement is the top

concern. In this context the MSR architecture is the only realistic solution.

6. Related Work

The virtualisation of network resources is considered as a major opportunity to foster the innovation

in the Internet and to solve the Internet ossification [19, 20] problem. Thus, many research projects are

working on virtualisation technologies today. For instance, GENI [21] is a NSF research project (U.S.A.) on

future Internet architectures where virtualisation technologies are used to create slices of network. On the

European side, the FP7 FEDERICA project [22, 6] uses a similar approach based on virtualisation to create

network slices to support research activities. Furthermore, network device manufacturers like Cisco [23] and

Juniper are supporting network virtualisation in their products as well. More recently, many companies like

Amazon, Google and Microsoft are building services related to network virtualisation and cloud computing.
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Researchers focused the attention on how to virtualise the key network component, i.e, routers or

switches, and on performance improvements. Software routers based on XEN have been studied exten-

sively [11, 24, 25]. The main conclusion is that the DomU, i.e, the guest domain, is not suitable for routing

purpose due to the high overhead and low performance. More recent works on XEN [26, 27] show that it

is possible to optimise the router internal architecture (i.e, maintain the packet in the same CPU cache

with the help from multi-queue network interface support) to highly improve the SR’s performance. A

different approach to virtualisation can be taken by using a container-based approach such as OpenVZ or

LXC, which can reduce the VM overhead. The implementation of VSRs based on such an approach has

also been considered in the literature [28]. Comparing those results with the ones presented in this paper, it

is possible to notice that a proper configuration allows KVM to reach performance comparable with those

of a container-based approach. Some scenarios highlight even better performance, although the comparison

may be biased because the experiments are based on different hardware.

Since the traditional Linux networking stack is designed for general purpose usage, some research works

focused on optimising it for routing, or proposed alternative networking architectures to improve SR’s

performance. Netmap [2] and PF RING [29] modify the NIC’s drivers to directly map the NIC’s ring buffers

in user-space, bypassing the host networking stack to improve performance. This approach is evaluated

in Sec. 4.2, showing how it permits to achieve good performance with a small CPU usage, without being

able to fully exploit all the available CPU cores. Packetshader [1] redirects received packets to the GPU

for processing and forwarding. Experimental results show that Packetshader can significantly improve the

throughput of CPU intensive workloads like those required for encryption. Routebricks [4] exploits server

clusters and load balancing to build a flat router architecture, similarly to the MSR [10] solution. Embrane,

Inc. proposed a similar clustering solution, called heleos distributed architecture, which consists of front-

end data plane dispatcher, back-end forwarding nodes and central brain node called date plane manager in

virtual space as well [30]. Experimental results suggest that the whole cluster performance scales linearly

with the number of involved nodes.

Recently, multi-core architectures became very affordable. Thus, parallel processing and using all avail-

able resources to speed up SR performance became an appealing research topic. Several new technologies

were introduced to improve networking performance, including Receive Side Scaling (RSS), Virtual Machine

Device Queues (VMDq) and Extended Message-Signalled Interrupts (MSI-X), aiming at efficiently exploit-

ing the multi-core server architecture [31]. The main idea is to spread the traffic load and network interrupt

management on multiple cores, while minimising cache misses at the same time. On the recent research

side, the performance impact of these mechanisms has been evaluated in various papers, for example by

running software routers on a machine with multi-core CPUs and multi-queue NICs [32], or by studying

the RSS and interrupt throttling mechanisms in XEN to improve the VSR performance [33]. Finally, other

works focused on evaluating the SR performance in multi-core systems by exploiting the standard Linux
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forwarding path [34].

7. Conclusions

This paper investigated the effects of several implementation and configuration decisions (scheduling

affinity and priority, mechanisms used to move packets between VMs and physical interfaces, software

router structures, etc.) on the forwarding performance of a virtual software router running in KVM. In

particular, the paper showed both qualitatively and quantitatively:

• how to exploit the computing power provided by multiple CPU cores, by properly setting the CPU

affinity of the various virtualisation activities, i.e. by eliminating thread migration overhead and by

forcing activities on CPU cores that are not used for interrupt processing;

• how to avoid performance degradation when a limited number of CPU cores are available by properly

setting thread priorities;

• how to further improve the virtual forwarding performance by splitting the virtualisation activities

into multiple threads;

• how a reservation-based scheduler permits to control the amount of CPU time consumed by a virtual

router, and hence the VSR performance;

• how the mechanisms used to move packets between VMs affect VSR performance.

Furthermore, it has been shown that a modular router architecture can help in better exploiting the

computational power of the host. Two different architectures based on virtual routers aggregation have

been analysed, optimising one of them for flexibility and the other one for performance. Experimental

results show that the latter outperforms the monolithic architecture.
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Appendix A. Moving Packets between Physical and Virtual Interfaces

A VSR is based on one or more VMs running in a host. The host has several physical Network Interface

Cards (NICs) which receive/transmit packets to be delivered to/from the VMs. Hence, the host must

provide some mechanisms to move packets between physical and virtual NICs. Consider the most important

operations performed for packet forwarding in a VSR:
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Figure A.22: The detailed scheme of packet path in virtualised software router architecture.

• the physical NIC receives packets and stores them in a receive side data structure which is called

rx ring. The host is notified about packets arrival through some interrupts generated by the NIC;

• the network drivers (which are part of the host OS kernel) insert received packets in a software structure

(skbuff), and the vhost-net kernel thread moves the skbuffs into a virtio ring (vhost virtqueue

in Fig. A.22) which is shared between host and guest. The guest is then notified (by triggering an

interrupt in the guest) to do further processing;

• The frontend virtio driver inside the guest fetches the packets from the virtio ring and forwards

them from the input virtual NIC to the destination one by running some forwarding code (for example,

the Linux OS kernel in the guest);

• The guest OS notifies the host (activating the vhost-net kernel thread) that some packets are ready

to be sent, and the vhost-net kernel thread delivers them to the correct physical NIC (by using the

device driver, which puts the packets in a transmission side data structure called tx ring);

• The transmission interface sends packets out and cleans/recycles the resource.

The details of the packet life cycle in the VSR are described in Fig. A.22. The NICs are connected

to PCIe slots. During the boot of the host OS, multiple memory regions, corresponding to the so called
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tx rings and rx rings, are allocated to NICs. These data structures are located in the main memory (i.e,

RAM) and can be accessed by both the CPUs and the NICs. Modern NICs use bus mastering to move

data between the rings and the physical interface. As soon as a packet is received by a NIC, it is stored in

the rx ring by the NIC (using bus mastering), and a hardware interrupt is eventually generated to notify

the kernel for processing. The kernel handles such an interrupt by running an Interrupt Service Routine

(ISR), or hardIRQ handler, which sends a fast acknowledgement to the NIC. The packet, however, is not

processed in hardIRQ context, but packet processing is deferred to a later handler (the so called softIRQ

handler), which can perform more time consuming operations. When the packet arrival rate is very high,

the excessive number of generated interrupts (or the resulting interrupt storms) could introduce too much

overhead and decreases the system throughput significantly. This issue is addressed by some interrupt

mitigation mechanisms implemented in the hardware, and by the NAPI [35] mechanism implemented in

the Linux kernel, which can reduce the activation rate of hardIRQ handlers by adaptively using a polling

technique. Notice that modern network cards/drivers enable NAPI by default, and we exploit this feature

in both host and guest.

Indeed, when a hardware interrupt is received the NAPI driver just acknowledges the NIC and triggers

a softIRQ. Such a softIRQ executes the net rx action() function, which calls the driver to receive the

packets from the rx ring, and can start polling the NIC (disabling the generation of hardware interrupts)

if the packet arrival rate is too high and risks cause a high interrupt load. Polling will stop (and hardware

interrupts will be re-enabled) as soon as a lower packet arrival rate is detected.

Many solutions exist for moving packets into the guest, by queueing them in some device, and using

some mechanism to move packets from such a device to the guest. For instance, a software bridge could

be created by running the Linux brctl utility. Thus, a layer 2 network between the host and the guest is

built. In this solution, a TAP interface is used to make the packets accessible to the VMM. Alternatively, a

different and more efficient device - the macvtap device - can be used. In this case, the macvtap interface is

directly bound to the physical NIC (performing a MAC-based filtering) and can be directly accessed by the

VMM to improve performance. More recently, the netmap solution, which is based on directly mapping the

NIC rings in user space to make them directly accessible by the VMM, has been proposed for connecting

the guest with host or directly with a NIC. Sec. 4.2 presents a detailed comparison of these 3 approaches.

Here, for the sake of simplicity we focus on the description of macvtap only.

As shown in Fig. A.22, the driver (invoked by net rx action()) receives the packets and passes them

to netif receive skb(), which in turn passes them to the macvtap device (without passing through the

host’s network protocol stack). Then, packets are enqueued in the macvtap interface from which packets are

moved to the virtio ring by the vhost-net kernel thread. This action is performed by the macvtap receive

function, which is invoked by macvlan handle frame() when a packet is received, and inserts such a packet

in queue contained in the macvtap interface. Then, the vhost-net kernel thread polls packets from the
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macvtap queue by calling the handle rx() function and after processing, it eventually inserts the packets

into a shared memory region (called vhost virtqueue). The vhost-net kernel thread notifies the user

space guest of the arrived packet events by registering them into the KVM kernel module, which has the

feature to trigger the corresponding guest rx interrupts for further processing.

Then, the guest is notified of the received packet, and processes it according to the traditional Linux for-

warding schema, as described in [36]. Roughly speaking, the guest kernel fetches packets from vhost virtqueue

to the rx ring inside the guest, with the help of the virtio frontend driver. Packets are then passed to

the IP forwarding sub-system of a standard Linux kernel and, after processing, i.e, header checksum, TTL

decrease, destination matching operations etc, they are sent out to the correct virtual interface and placed

into the corresponding vhost virtqueue. The guest then kicks the vhost-net kernel thread by means of a

registered I/O event file descriptor, which the vhost-net thread monitors.

Packets are then moved back to a physical NIC by the host kernel:

• packets are moved from the vhost virtqueue into the qdisc by calling the handle tx() and macvtap sendmsg();

• packets transmission is scheduled based on the QoS rules defined to the queueing discipline (qdisc)

configured in the host, by calling sch direct xmit();

• the NIC driver (i.e, the e1000 xmit frame() function as shown in Fig. A.22) sends them to the wire;

• the memory is cleared and recycled for future use.

The specific function calls depend on the specific drivers used by the host and on the mechanism used to

move packets between host and guest, but the path followed by packets in VSR is similar in all solutions.

34


