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Abstract—Recently, head pose estimation (HPE) from low-resolution surveillance data has gained in importance. However, 

monocular and multi-view HPE approaches still work poorly under target motion, as facial appearance distorts owing to camera 

perspective and scale changes when a person moves around. To this end, we propose FEGA-MTL, a novel framework based 

on Multi-Task Learning (MTL) for classifying the head pose of a person who moves freely in an environment monitored by 

multiple, large field-of-view surveillance cameras. Upon partitioning the monitored scene into a dense uniform spatial grid, FEGA- 

MTL simultaneously clusters grid partitions into regions with similar facial appearance, while learning region-specific head pose 

classifiers. In the learning phase, guided by two graphs which a-priori model the similarity among (1) grid partitions based on 

camera geometry and (2) head pose classes, FEGA-MTL derives the optimal scene partitioning and associated pose classifiers. 

Upon determining the target’s position using a person tracker at test time, the corresponding region-specific classifier is invoked 

for HPE. The FEGA-MTL framework naturally extends to a weakly supervised setting where the target’s walking direction is  

employed as a proxy in lieu of head orientation. Experiments confirm that FEGA-MTL significantly outperforms competing single- 

task and multi-task learning methods in multi-view settings. 

 
Index Terms—Multi-task learning, graph guided, head pose classification, video surveillance, multi-camera systems. 
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1 INTRODUCTION 

Motivated by several applications such as video surveil- 

lance, human-computer interaction and human behavior 

analysis, extensive research has been devoted to head pose 

estimation (HPE) recently [1]. Several approaches precisely 

compute head pose when the target is close to the camera, 

as high resolution images enable accurate facial feature 

extraction and depth information can be also integrated 

[2], [3]. Nevertheless, despite recent advancements [4]–[7], 

HPE from surveillance videos is challenging as faces are 

captured at very low resolution and appear blurred. 

HPE accuracy on surveillance data can be improved by 

fusing information from multiple cameras as monocular 

systems are often insufficient for analyzing human behavior 

in large environments. Surprisingly, only a few HPE meth- 

ods consider a multi-view setting [7]–[10] and typically 

compute head pose as a person (target) rotates in-place [8], 

[9]. However, the ability to estimate head pose of moving 

targets is key as head orientation is primarily employed 

as a surrogate for gaze direction to infer social interac- 

tions [11]. HPE of moving targets is a challenging problem 
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as illustrated in Fig. 1: facial appearance of a person 

exhibiting identical 3D head pose at three different scene 

locations varies considerably due to perspective and scale. 

As the target moves, the face may appear larger/smaller and 

some facial regions can become occluded/visible. These 

appearance changes severely impede HPE performance 

using traditional approaches [7]. 

In this paper, we explicitly tackle the problem of multi- 

view head pose classification under target motion. To our 

knowledge, only [12] (monocular) and [7] (multi-view) 

have explicitly studied appearance variation under target 

motion, while [10] is another multi-view approach that can 

accomplish the same. To tackle motion-induced appearance 

variations within a scene, [12] employs unsupervised spec- 

tral clustering to segment the scene into multiple regions 

and trains region-wise pose estimators. In [10], multi-view 

HPE under motion is performed by determining the face 

location on the unwrapped spherical head texture map. 

However, the texture synthesis is expensive and uses visual 

information from nine camera views. Transfer learning for 

multi-view HPE is proposed in [7], but this approach does 

not explicitly learn the relationship between head pose, 

scene location and facial appearance. 

Differently, in this paper we present FlExible GrAph- 

guided Multi-Task Learning or FEGA-MTL for multi-view 

head pose classification under target motion. Given a set of 

related tasks, Multi-task Learning (MTL) [13] exploits their 

similarity to jointly learn a set of classifiers. The intuition 

behind FEGA-MTL is simple: upon dividing the scene 

ground plane into a uniform grid, one can expect some 

similarities as well as differences in facial appearance for 

• 

• 

• 

• 
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Fig. 1.   HPE under target motion: Face crops corresponding to three different positions of a target exhibiting the same 
3D head pose are shown in the bottom inset. Yellow and red arrows respectively denote head pose and motion direction. 
Significant changes in facial appearance can be observed as the target moves closer to the camera. These appearance 
differences severely impede performance of traditional head pose estimation (or classification) methods. Figure is best viewed 
in color and under zoom. 

a given head pose across grid partitions. For learning the 

pose-appearance relationship within each grid segment as 

a task, we invoke MTL for learning a set of region-specific 

head pose classifiers (related tasks). Using MTL over tra- 

ditional approaches for HPE under motion is advantageous 

as: (1) Employing a single classifier for the entire scene is 

inefficient as perspective and scale-based face appearance 

variations would impede performance, and (2) Learning an 

independent classifier for each grid segment is expensive 

and will require a large number of training samples. Instead, 

only few examples from each grid segment are required 

by FEGA-MTL, which simultaneously learns the pose- 

appearance relationship across all partitions of a dense 

uniform 2D spatial grid. 

Also, assuming that facial appearances among all parti- 

tions are related may negatively impact head pose classi- 

fication performance. Therefore, FEGA-MTL flexibly dis- 

covers appearance-wise related grid clusters learning from 

both a-priori knowledge and facial features extracted from 

training examples. Two graphs which respectively define 

appearance similarity among (i) grid partitions for a given 

head pose based on camera geometry, and (ii) head pose 

classes, model prior knowledge and guide the algorithm 

to output the optimal spatial partitioning and an associated 

set of classifiers. For head pose classification, upon deter- 

mining the target position using a person tracker, the corre- 

sponding region-specific classifier is invoked. Thanks to the 

use of a sparse regularizer, heterogeneous descriptors with 

varying discriminative power can be effectively utilized for 

learning. We also extend the FEGA-MTL framework to 

employ walking direction as a weak label and eliminate 

the need for annotated data in line with prior works [12], 

[14]. Since motion direction is a noisy cue, we propose 

a novel strategy to discard spurious annotations and only 

retain those samples with consistent head and body motion 

for model training. 

While both FEGA-MTL and the method in [12] train 

multiple region-specific classifiers, the two can be con- 

trasted as follows: unsupervised spectral clustering is em- 

ployed on monocular video in [12] to segment the scene 

into appearance-wise similar regions for HPE, and the con- 

sequent limitation is that sufficient examples are required 

from each of the scene regions to achieve good accuracy. 

For example, high HPE errors are observed when more 

than five region-specific classifiers are trained with 1000- 

8000 examples in [12]. Instead, our FEGA-MTL framework 

exploits multi-camera geometry to a-priori estimate appear- 

ance distortion as the target moves from one grid segment 

to another, and learns with few examples. A multi-camera 

setup also enables precise target tracking and face cropping 

therefrom. Finally, the use of camera geometry allows for 

fine-grained scene segmentation (Fig. 3) and learning of 

relationships among the region-specific classifiers, which 

is  advantageous  vis-à-vis  learning  a  set  of  independent 

classifiers as discussed in Section 5. 

We present extensive evaluation to demonstrate the supe- 

riority of FEGA-MTL over competing multi-view HPE and 

MTL approaches. Overall, this paper makes the following 

contributions: (1) It is one of the few works addressing 

multi-view head pose classification under target motion and, 

to our knowledge, the first work to use MTL to this end; (2) 

A novel graph-guided MTL is proposed for simultaneously 

learning a set of region-specific classifiers and the optimal 

scene partitioning. Our approach seamlessly connects cam- 

era geometry (traditional computer vision) with machine 

learning for HPE; (3) FEGA-MTL can also operate in an 

unsupervised setting, where head pose labels derived from 

motion trajectories are used for learning. 

The paper is organized as follows. Section 2 reviews 

related work. Section 3 introduces our approach, describes 

pre-processing steps, the training data collection process, 

and the region and pose graphs that are employed to guide 

the learning algorithm. Section 4 describes the FEGA- 

MTL algorithm. Experimental evaluation is presented in 

Section 5, and conclusions are stated in Section 6. 

 
2 RELATED WORK 

We now review related work on a) HPE from low-resolution 

surveillance data and b) multi-task learning. 

 
2.1 HPE from low resolution data 

While HPE from high-resolution images and videos has 

been studied extensively [1], determining the coarse head 

orientation (i.e., head pose classification) from surveillance 

data has been attempted only recently. Pose classification 

using a Kullback-Leibler distance-based facial descriptor is 

(n+20)-th frame (n+10)-th frame n-th frame 
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tracking information 

Final pose estimation output 

Fig. 2. FEGA-MTL HPE framework overview assuming three camera views. Blue and red blocks correspond to the training 
and test phases respectively. FEGA-MTL can be trained using annotated (’Training’ box on top-row center) or unlabeled 
images, where motion direction serves as a weak label for head pose (top-row right), enabling its use in both supervised and 
unsupervised settings. Figure is best viewed in color and under zoom. 

proposed in [5]. The array-of-covariances (ARCO) descrip- 

tor [6] enables reliable HPE in the presence of occlusions, 

scale and illumination changes. Methods presented in [4], 

[14] use proxy information (e.g., body pose, motion di- 

rection) to estimate head pose with minimal training data. 

However, these algorithms work on monocular video, which 

is insufficient for studying human behavior in large spaces. 

HPE from multi-view video has been studied in [7]– 

[10], [15]. A particle filter is combined with two neural 

networks for independently estimating head pan and tilt 

in [9]. View-specific probability distributions for pose clas- 

sification are computed using SVMs in [8], and are fused 

to obtain a more precise pose estimate. Both these works 

attempt HPE as a person rotates in-place, and motion- 

induced appearance variations are not considered. Multi- 

view HPE under motion is addressed in [10] by determining 

the face location in the unfolded spherical texture map 

synthesized using nine camera views. A transfer learning 

approach to compute head pose under motion in a four- 

view setting is presented in [7]. Weights denoting saliency 

of face patches for pose classification are first learned from 

source examples corresponding to stationary targets, and 

adapted using an online learning algorithm to the target 

scenario with moving targets. However, [7] does not seek to 

explicitly learn the relationship between head pose, target 

position and facial appearance unlike this work. 

Two recent works that have expressly addressed HPE 

under target motion are [15] and [12]. Scene-adaptive 

HPE is proposed in [12]. The scene is segmented into 

multiple regions employing spectral clustering to tackle 

facial appearance variation with motion, and region-wise 

head pose classifiers are independently learned. Limitations 

of this approach are that (i) sufficient examples are required 

to identify scene segments, and (ii) only a coarse-grained 

scene segmentation is achievable. In contrast, the FEGA- 

MTL framework relies on camera geometry and few train- 

ing examples for scene segmentation, and appearance-wise 

similar scene regions are modeled via MTL parameters. 

This paper builds on [15], where explicit learning of facial 

appearance variations over grid segments for multi-view 

pose classification under target motion is proposed using 

FEGA-MTL. This paper extends [15], as a more efficient 

solver with respect to the one presented in [15] is proposed 

for the underlying optimization problem of FEGA-MTL 

and an unsupervised setting is also considered in order 

to obviate the need for annotated training data (head pose 

labels are inferred via motion direction and a warping-based 

filtering technique is employed to extract sequences with 

consistent head and body motion). 

2.2 Multi-task Learning 

Multi-task learning (MTL) has recently been employed in 

image classification [16], visual tracking [17] and multi- 

view action recognition [18]. Given a set of related tasks, 

MTL [13] seeks to simultaneously learn a set of task- 

specific classification or regression models. The intuition 

behind MTL is that a joint learning procedure accounting 

for task relationships is more efficient than learning each 

task separately. Traditional MTL methods [19], [20] assume 

that all the tasks are related and their dependencies can be 

modeled by a set of latent variables. However, in many real 

world applications such as HPE under target motion, not all 

tasks are related, and enforcing erroneous (or non-existent) 

dependencies may lead to negative knowledge transfer. 

Recently, sophisticated methods have been introduced 

to counter this problem. These methods assume a-priori 

knowledge (e.g., a graph) defining task dependencies [21], 

or learn task relationships in conjunction with task-specific 

parameters [22]–[26]. Among these, our work is most 

similar to [21] and our algorithm adopts two graphs (one 

defining appearance similarity among grid segments, and 

the other relating head pose classes) to specify task de- 

pendencies. FEGA-MTL further improves over [21] by 

automatically discovering task relationships to iteratively 

refine the initial graph structure. For multi-view HPE under 

motion, the graph structure is very useful as it defines 
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inter-region facial appearance similarity based on camera 

geometry. The FEGA-MTL framework is described below. 

 

3 MULTI-VIEW HEAD POSE ESTIMATION 

3.1 System Overview 

The proposed approach outlined in Fig. 2 comprises two 

main steps: a training phase where multiple region-specific 

classifiers are learned with FEGA-MTL and a test phase, 

where head pose classification is performed on novel 

instances. Our approach relies on a multi-view particle 

filter tracker [27] for target position estimation and head 

localization. The output of the tracker is used both in the 

 

are concatenated to generate the multi-view face crops as 

shown in Fig. 2 and similar to previous works [4], [14] 

we employ HOG descriptors to effectively describe the 

face appearance for head pose classification. The multi- 

view face appearance image is divided into non-overlapping 

4 4 patches, and a 9-bin histogram is used as the HOG 

descriptor for each image patch. 

 
3.3 Region and Pose Graph Modeling 

To apply FEGA-MTL, we initially divide the scene ground 

plane into a uniform 5 5 grid2 as shown in Fig. 3. We seek 

to learn the pose-appearance relationship in each partition. 

The algorithm learns from a training set Tt = {(xt, yt) : 

In the pre-processing step, multi-view face crops are 

 

i = 1, 2, . . . , Nt}  for each region t = 1, 2, . . . , R, where 

xt ∈ IRD denote D-dimensional feature vectors and yt ∈ 

dient (HOG) descriptors [28] are computed from the multi- 

view face images. These HOG features are provided to 

FEGA-MTL for learning region-specific classifiers across 

grid partitions on the scene ground plane. The learning 

process is guided by two graphs: a region graph which 

quantifies the facial appearance distortion based on camera 

geometry as the target moves from one grid partition to 

another, and the pose graph modeling the appearance 

similarity among neighboring head pose classes. In this 

work, we are mainly interested in determining the head pan 

for detecting face-to-face interactions and seek to assign the 

target’s head pan to one of eight classes, each denoting a 

quantized 45◦ range. To eliminate the need for training data, 
FEGA-MTL is also designed to operate in an unsupervised 

manner, i.e., by employing the motion direction of targets as 

weak labels to signify their head orientation. Post training, 

FEGA-MTL outputs (1) pose classifiers for each grid 

partition, and (2) the optimal scene partitioning, where grid 

regions with similar facial appearance for a given head 

pose constituting a cluster. During classification, the tracker 

1, 2, . . . , C    are the head pose labels (C = 8 classes in 
our setting). One of the graphs guiding the learning process 

specifies the similarity in appearance for a given head pose 

across the grid regions based on camera geometry. If grid 

partitions form the graph nodes, we determine the edge set 

1 and the associated edge weights γmn quantifying the 

appearance distortion between m and n due to positional 

change from region m to region n (these edge weights 

indicate whether knowledge sharing between regions m and 

n is beneficial or not). 

As mentioned earlier, we model the target’s head as a 

sphere. Let Zk denote the sphere placed at the target’s 3D 

head position pk, and whose multi-view camera projection 

yields training image Ik in m. Using camera calibration 

parameters, one can compute the correspondence between 

surface points in Zk and pixels in Ik. Then, we move 

Zk to position pl corresponding to image Il in n, and 

determine how many surface points in Zk are still visible 

in Il. The appearance distortion over U camera views due 

to translation from pk to pl is defined as δ(Zk, pk → pl) = 

provides target position based on which the appropriate 
U 
u=1 ǁvuǁ + ξn0, where vu is the flow induced by this 

region-based pose classifier is invoked to output the head 

pan class. We now describe each of these modules. 

 
3.2 Tracking, Head Localization and Feature Ex- 

traction 

A multi-view, color-based particle filter [27] is used to com- 

pute the 3D body centroid of moving targets. A 30 30 20 

cm-sized dense 3D grid (with 1 cm resolution) of hypo- 

thetic head locations is then placed around the estimated 1 

translation in view u, and n0 is the number of surface points 

in Zk that are occluded after translation. ξ is a constant that 

penalizes such occlusion. Fig. 3 (left) shows an outline of 

the method and a comparison of the predicted distortion 

between 3-camera and 4-camera setups (discussed below). 

The appearance similarity between regions m and n is 

then computed based on a Gaussian model by considering 

distortion between all image-pairs associated to Tm, Tn as: 

  Ω  

γmn = e   NmNnσ
2 (1) 

3D head-position provided by the particle filter . Assuming 

a spherical model of the head, a contour likelihood is 
where Ω = 

∀Ik∈Tm,Il∈Tn 
[δ(Zk, pk → pl) + δ(Zl, pl → pk)], 

computed for each grid point by projecting a 3D sphere 

onto each view using camera calibration information. The 

grid point with the highest likelihood sum is determined 

as the head location. The tracking and head localization 

procedures are illustrated in Fig. 2. 

The head is then cropped and resized to 20       20 

pixels in each view. Head crops from the different views 

1. The grid size accounts for tracker’s variance and horizontal/vertical 
offsets of the head from the body centroid due to pan, tilt and roll. 

Nm and Nn are number of images in   m and   n. σ = 1 
and  1 is the set of edges for which γmn   0.1. 

Fig. 3 depicts the appearance similarity maps for two 

different camera configurations when the head-sphere at 

pk is moved around in space (the projection of pk on 

the ground is denoted by the red ‘x’). When pk is close 

to the camera-less room corner in the 3-camera setup, 
 

2. Upon experimenting with various grid sizes, we note that FEGA- 

MTL works best with a 5 × 5 grid as shown in Table 4. 

extracted using the tracker, and Histogram of Oriented Gra- 

training and test phases. 
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Fig. 3. (From left to right) Method to predict appearance distortion induced due to translation of the head sphere Zk from pk 
to p (exemplified with respect to camera C3), appearance similarity map computed around pk with U = 3 and U = 4 camera 
views, and learned grid clusters for the 3-camera setup (figure best viewed in color). 

a number of regions around pk share a high appearance 

similarity, implying that pose-appearance relationship can 

be learnt jointly in these regions. However, the similarity 

measure decreases sharply as the target moves from p k 

towards any of the three cameras, and tends to zero for the 

upper diagonal half of the room. Also, when a camera is 

introduced in the fourth room corner, appearance similarity 

holds only for a smaller portion of space around pk as 

compared to the 3-camera case. 

A second graph guiding the learning process models the 

fact that facial appearances should be more similar for 

neighboring head pose classes. For example, as shown in 

Fig. 2 (top-row), the facial appearance of exemplars from 

class 1 should be most similar to exemplars from classes 
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2 and 8. Exploiting this information, a pose graph   2 is 

defined with associated edge weights βij = 1 if i and j 
correspond to neighboring pose classes ci, cj , and βij  = 0 

otherwise. 

 
3.4 Motion Direction as Weak Label 

In this section, we describe the process of automatically 

compiling weakly labeled (instead of annotated) head crops, 

so that FEGA-MTL can be applied to unsupervised HPE. 

Specifically, as obtaining a large repository of annotated 

data for HPE under target motion is costly, we exploit the 

fact that people usually tend to look in the direction of their 

 

Fig. 4. Exemplar target trajectory from DPOSE [7]: blue dots 
correspond to samples retained after the filtering process, 
while red ones are discarded. The two sets of head crops cor- 
respond to filtering windows associated with two samples. In 
the dotted blue rectangle, high similarity among the warped 
crops imply consistent head and body movements, and thus 
this sample is used for training. In the red rectangle, warps 
based on trajectory-based analysis differ considerably, and 
this sample is rejected (best viewed under zoom). 

and particle-spread. Given the tracker estimates for each 

target, we first employ a smoothing spline approximation 

to interpolate the trajectory. From the position estimates 

{pk, pk}M     , we interpolate the two dimensions x and 

exemplars without any human intervention. We use walking 

direction, which can be conveniently extracted from the 

ground locations output by the tracker, as a proxy for 

head pose. Most importantly, a novel filtering technique is 

applied to detect short segments where head appearance 

is consistent with the observed motion employing this 

procedure. The filtering process aims to reject samples cor- 

responding to static positions, tracking failures and sudden 

changes in direction, where the face may appear blurred 

and the walking direction may not correspond to the head 

orientation. The result of the filtering process is a set of 

short image sequences that can be used to learn head pose 

classifiers customized to a specific multi-view environment 

and lighting condition. 

3.4.1 Extracting pose labels using trajectory analysis 

To compile weakly annotated training data, we exploit the 

tracker output both in terms of estimated target position 

y independently. To compute the interpolating function 
fI ( ), we adopt Reinsch’s algorithm [29]. To filter out 

noisy samples, we compute the Euclidean distance between 

tracker estimates and their smoothed counterparts fI ( ), 
and retain those samples with distance below threshold 

θD. Furthermore, as tracking failures can also contribute 

to noisy labeling, we monitor the entropy of the target 

position distribution propagated by the particle filter which, 

up to a certain extent, indicates the accuracy of the target 

position estimate. We reject position estimates that result 

from large localization uncertainty, i.e., where the volume 

of the typical set approximated from the particle set via 

kernel density estimation [30] is above a threshold θP . 

Evidently, using motion direction as a proxy for head 

pose has some caveats. Even when people walk along 

a certain path, their attention is often captured by the 

environment in the form of objects, artifacts, events, or 

other people in the scene. In such cases, it is unlikely that 

motion (see Fig. 1) to collect a large set of weakly-labeled 
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≤ 

head orientation can reliably be predicted using walking 

direction as a proxy. However, attention targets are either 

static, or likely to move independently of the observer, and 

so, visual attention direction exhibits different dynamics as 

Xt = [xt , ..., xt ]′. We also define the matrix X ∈ IRN×D, 

X =  [X′ , . . . , X′ ]′, where N  = Nt denotes the 
total number of training samples. For each training sample, 
we construct a binary label indicator vector yt ∈ IRRC as compared to the target’s (or observer’s) walking direction3. t 
yi = [0, 0, ..., 0, 0, 1, ..., 0, ..., 0, 0, ..., 0], i.e., the position of 

An effective filtering technique to detect inconsistencies 

between observed and expected head pose, as given by 

the walking direction, involves measuring the deviation 

between the two. 

Our filtering technique involves application of the warp- 

ing detailed in Sec.3.3 to recover instances (frames) where 

head and body motion are consistent. If walking direction 

is assumed to be an accurate proxy for head pose at the 

beginning of an analysis window, the warping will produce 

similar face images over the window only if (i) head and 

body orientation are consistent and, (ii) head cropping 

 
      

T ask 1 T ask 2 T ask R 

non-zero element indi        the task 

ship of the corresponding training sample. A label matrix 

Y    IRN×RC is then obtained concatenating the yt’s for 
all training samples. 

 
4.2 FEGA-MTL 

For each region t  and  pose  class  c,  we  consider 
the  weight  vectors  st,c, θt,c, wt,c IRD and define 

the    associated    matrices    S, Θ, W  IRD×RC, 
S        =         [s1,1, ..., s1,C, ..., sR,1, ..., sR,C],     Θ        = (Sec.3.2) is achieved successfully. Thus, we compute a                 

score over each time window denoting the similarity among 
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of frames in the window around i, and xw is the HOG 
descriptor extracted at frame w. In practice, the scores 

will be penalized by head occlusion, inconsistent motion- 

induced pose variations and inaccurate head crops, and thus 

the filtered frames can be used to produce reliable weakly- 

labeled data for learning with FEGA-MTL. Samples with 

similarity score above θS are assigned a head pose label 

yi 1, 2, . . . , C based on walking direction. 

Fig. 4 shows an exemplar tracked trajectory of a target, 

and demonstrates the appearance consistency-based filter- 

ing procedure. This strategy has some advantages over the 
outlier rejection scheme proposed in [12]. Since our tracker 

set of region-specific weight vectors for pose classification 

wt,c         IRD,  wt,c   =   st,c  + θt,c.  Each  weight  vector 

is obtained by summing up two components, st,c which 

models the appearance relationships among regions and θt,c 
accounting for region-specific appearance variations. Using 

a matrix notation for the sake of clarity, we propose to solve 

the following optimization problem: 

 
min f (S, Θ) + r(S, Θ) (2) 
S,Θ 

where: 
 

 
 

operates on the ground plane instead of the image plane, 
¨   1 ¨

 
we do not need to introduce perspective-based scale factors r(S, Θ) = λθǁΘǁ

2 
+ λsǁSǁ

2 
+ λsλ1  

Σ
 γij ǁst  ,c − st  ,cǁ1 

while computing target velocity. Moreover, the warping 

procedure accounts for perspective and scale-based facial 

appearance changes under target motion. Finally, as the 

tracking is based on a multi-target particle filter, tracking 

F 
 
 

+ λsλ2 

(i,j)∈E2 

F 
 
 

βij ǁst,ci 

i j 

(i,j)∈E1 

— st,cj ǁ1 

failures can be monitored to a certain extent by analyzing 

the variance in the particle distribution. 

 
4 FLEXIBLE GRAPH-GUIDED MTL 

In this section, we describe the proposed Flexible Graph- 

guided Multi-task Learning framework in details. 

 
4.1 Notation and Definitions 

In this paper we denote with   F and    1 the Frobenius 

and the l1 norms, respectively. The notation ( )′ indicates 
the transpose operator, while . denotes a set cardinality. 
The notation ID and 0D indicate the identity and the null 
matrix of size D D, respectively. 

Modeling spatial regions as separate tasks, for each task 

t  we  define  a  training  set  Tt  and  a  matrix  Xt  ∈  IRNt×D , 

3. An exception is an interacting group of people. However, this situ- 
ation can be easily detected with multi-target tracking, and by analyzing 
closeness and similarity of motion trajectories. 

In  the  loss  function  f ( ),  the  matrix  U        IRN×N , 
U = N(YY′)−1 is obtained multiplying two terms. The 

normalization factor (YY′)−1 compensates for different 
number of samples per task, while the matrix N = diag(νt) 
aims to weight differently samples labeled by a human 

annotator and those automatically obtained by exploiting 

the information about the walking direction. Specifically 

we assign a weight νt = 1 for samples with a true label 

(i.e. human annotation), while νt is set to a value ρ 1 
for weakly labeled data. 

The regularization function r( ) is made by several 

components. The first term penalizes large region-specific 

appearance variations, the second regulates model com- 

plexity, and the l1 norm terms impose the weights st,c 
of appearance-wise related regions and neighboring classes 

to  be  close  together.  Specifically,  γij’s  and  βij ’s  are  the 

appearance similarity-based weights of region graph edges 

1 and pose graph edges   2 respectively as described 

in Sec. 3.3. Similar parameters st,c for neighboring head 

orientations are obtained as λ2 increases. Region clusters 

2 

warped head crops. The similarity at sample i is computed 

i 
w=i−W 
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→ ∞ 
T ∀ 

|E | |E |1 

 2 

√    Ln 

2 

α 

⟨ ⟩E 

⟨ ⟩ 

2 

λs 

− 

 

min ¨U 2 (Y − XV)¨ 

solution to Eqn.(9). Specifically, the optimal solution Q 

is 

1 

2 

¨ 

2 ′ 

  1  

d 

hµ(V) = max⟨EV′Γ, Q⟩ −   µǁQǁ2 . 

q 

are formed as λ1 . Importantly, this effect is feature- 

specific: cluster structure varies from feature to feature. 

Less important features are used similarly by all tasks, 

while discriminative features are used differently by differ- 

ent tasks. This is one of the main reasons why our method 

 
 

Algorithm 1 FEGA-MTL  

Input: t, t = 1, . . . , R, λs, λθ, λ1, λ2, E,  the  desired 
accuracy G. 

Initialize V0 = B0 = [S0; Θ0], α0 = 0. 
Set µ = c . 

is termed flexible. 

The optimization problem in Eqn.(2) is convex. To solve 

it we propose an algorithm based on smoothing proximal 

for 
+ 

n = 1, 2, . . . , until convergence do 
Compute the gradient ∇H(Vn) using Eqn.(12). 

Bn+1 = Vn − ∇H(Vn) 
 

gradient method [21]. The optimization algorithm is out- 

lined in Algorithm 1 and is described in details in the 
following subsection. 

αn  = 1 (1 + 

γn = 1−αn 

n+1 

1 + 4α2 ) 
n−1 

After the training phase, the computed weights wt,c are 
Vn+1 = γnBn + (1 − γn)Bn+1 

used for classification. While testing, upon determining 

the region t¯ associated to a test sample xtest using the 

person tracker, the corresponding weights vectors are used 

to compute the head pose label, i.e.: 

Output: The optimal V = [S;  Θ]. 
 

 

 

in two steps. First, ΩE (V) is reformulated into a lin- 

y = arg max w′  x (3) ear transformation of V via the dual norm. Specifically, 
test t̄,c test for   each   vector   ṽd,   where   ṽd   is   the   d-th   column   of 

c=1,...,C 
V′Γ,  d   =   1, . . . , 2D,  we  can  reformulate  ¨Eṽd¨ = 

4.3 Optimization 

In our previous work [15], as the optimization problem 

in Eqn.(2) belongs to the category of convex smooth/non- 

smooth problems, we proposed to solve it adopting an ap- 

maxǁqdǁ∞≤1 (qd)′Eṽ  ,  where  qd  is  a  vector  of  auxiliary 
variables. By defining the matrix Q = [q1, . . . , q2D], Q ∈ 

Q = {Q : ǁqdǁ∞ ≤ 1, qd  ∈ IR|E1 |+|E2 |, ∀d = 1, . . . , 2D}, 

the non-smooth term ΩE (V) can be equivalently reformu- 

proach based on the Fast Iterative Shrinkage-Thresholding 

Algorithm (FISTA) [31]. In particular, to handle the non- 

lated as: 
Ω  (V) = max EV′Γ, Q (8) 

Q∈Q 

smooth part, we developed a method based on the Al- 

ternating Direction Method of Multipliers (ADMM) [32]. 

However, the ADMM involves solving a linear system at 

each iteration and may not scale well for high dimensional 

problems. In this paper, to solve Eqn.(2) a more efficient 

approach based on smoothing proximal approximation [21] 

can be employed. The proposed approach is described 

below and the overall procedure is outlined in Algorithm 1. 

Defining V = [S;  Θ] and X̃  = [X X], the proposed op- 
timization problem in Eqn.(2) can be rewritten as follows: 

where A, B = Tr(A′B) is the inner product of two 
matrices. Even after the reformulation, Eqn.(8) is still a 

non-smooth function of V and this makes the optimiza- 

tion challenging. To tackle this problem, following [21] a 

smoothing approximation function hµ(·) is introduced, i.e.: 

1 
(9) 

Q∈Q 
F

 

The optimization problem which must be solved is then: 

¨ 1 ˜ ¨ 2 

 

  

 
 

 
¨ 1 ˜ ¨ min H(V) = ¨U 2 (Y − XV)¨ 

+ λs ǁΛVǁF + λ1hµ(V) 
(10) 

where the matrices Γ, Λ ∈ IR2D×2D are defined as 
Γ = blkdiag(ID, 0D) and Λ = blkdiag(ID, λθ ID). The Since Eqn. (10) is convex and smooth, it can be efficiently 

solved with standard gradient methods. In [21], it has 
been shown that for any µ, the gradient of hµ(V) can be 

matrix:   
E1

 

 

  
 

computed as hµ (V) = Γ(Q∗)′E, where Q∗ is the optimal ∗ 
 

 

 

2 λ1 composed of qd∗ 

= S( Eṽd 

),  ∀d,  where  S  is  a  projection 

is defined in terms of the edge-vertex incident matrices 
E1 ∈ IR|E1 |×RC , E2 ∈ IR|E2 |×RC , 

operator such that for any vector x,  S(x) is  defined by applying on each entry of x: 
 

E1 e=(i,j),h = 
γij i = h 

−γij j = h 
 

(5) 
S(x) =  x if 1 < x < 1, 

1 if x > 1, 
 

(11) 

 
and: 

 
0 otherwise −1   if x < −1. 

Then, the gradient of H(V) can be easily computed as: 
 

βij ,  i = h 
 

 

 
˜ ′  ˜ 

 
′ ∗ ′ 

E2 e=(i,j),h = 
β  , j = h  

0, otherwise. 

(6) ∇H(V) = X U(XV−Y)+λsΛ ΛV+λ1Γ(Q  ) E  (12) 
As standard gradient schemes have a slow convergence rate, 

To solve Eqn.(4), following [21], [33] we first consider a 
smooth approximation of the non-smooth term in Eqn.(4): 

ΩE (V) = ǁEV′Γǁ1 (7) 

in this paper we follow the method in [21], [31]. The detail 
of the optimization are described in Algorithm 1. 

Computational Complexity. In the update of V, the 

computational cost at each iteration is dominated by the 

— ij 

µ 

E2 λ E = 

F V + λs ǁΛVǁF + λ1 ǁEV Γǁ1  (4) 
2 

V 

F 
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t 

± 

∀ 

{ } ∼ N 
{ } { } 

t 

∼ N 
N 

∼ N 

t N ∼ N 
t t 

d ∈ 

TABLE 1 

Synthetic data generation for classification. 
 

 µ for the three different classes σ 
Task 1 10, 12, 14 7 
Task 2 10.1, 12.1, 14.1 7 
Task 3 20, 22, 24 20 
Task 4 20.1, 22.1, 24.1 20 
Task 5 2, 4, 6 10 

Task 6 2.1, 4.1, 6.1 10 
Task 7 2.2, 4.2, 6,2 10 

Task 8 2.3, 4.3, 6.3 10 

 
gradient computation. As the product of some matrices 

can be precomputed and typically D << N , the time 

complexity at each iteration is  (D2RC +   1 +   2 ). 
With respect to the approach proposed in [15], this method 

is faster since at each iteration ADMM requires to solve 

a linear system (O((RC)2)). This step can be avoided 

with the novel solver. As demonstrated in [21√],  the rate of 

We compare FEGA-MTL with state-of-the-art MTL ap- 

proaches. For competing methods, the publicly available 

implementations in the MALSAR (Multi-tAsk Learning 

via StructurAl Regularization) [34] library are adopted. 

In particular, we consider the regularized MTL with a 

single global model (l21 MTL) [19], the Flexible Task 

Clusters (FTCMTL) method [23], the dirty model MTL 

method (DMTL) [24], the Cluster MTL (CMTL) [25], the 

Robust MTL method (RMTL) [26]. The validation sets 

are used to tune the regularization parameters of all the 

methods. All the regularization parameters vary in the range 

[0.01, 0.1, 1, 10, 100]. The results are shown in Fig. 5. 

Fig. 5 (left) shows the classification accuracy while Fig. 

5 (middle) depicts the mean square error (MSE) (lower 

numbers indicate better performance). It is evident from the 

plots that in this situation, an MTL method assuming all 

convergence of the proposed algorithm is O( 

 
5 EXPERIMENTAL    RESULTS 

(|E1 |+|E2 |) ). tasks are related does not suffice, since tasks are clustered 

in groups. Therefore, l21 MTL approach has the highest 

regression MSE and lowest classification accuracy. More- 

over, considering methods which assume grouping among 

In this section, we first conduct experiments with synthetic 

data to demonstrate the effectiveness and the flexibility 

of our MTL algorithm. Then we perform real-world data 

experiments to show that FEGA-MTL outperforms the 

state-of-the-art for multi-view head pose classification. 

 
5.1 Synthetic data experiments 

To demonstrate the generality of FEGA-MTL, we simulate 

two toy experiments, one for a classification task and the 

other for regression. 

In case of classification, we consider a multi-class prob- 

lem with 3 classes and R = 8 tasks. The input data 

tasks, our method performs best. This is probably due to 

the fact that features are considered independently, thus 

discarding the contribution of non-discriminative features. 

Fig. 5 (right) shows the learned S matrix in the regression 

task. Here, we can clearly see a common cluster for the 

first D/2 dimensions and three different clusters for the 

last D/2 dimensions. 

 
5.2 Multi-view Head Pose Classification 

We now present head pose classification results and demon- 

strate the superiority of our method with respect to other 

multi-view head pose estimation and multi-task learning 

algorithms. xti ∈ IRD, D = 10 are generated from multivariate normal 
distributions as follows: for each task, the first D/2 feature 
vector components are obtained from xd ∼ N(0, 1), while 5.2.1 Datasets 

for the 
ti 

d = D/2+1, . . . , D components, we group the tasks To assess quantitatively the performance of our method, we 

into three different clusters, namely t = 1, 2 , t = 3, 4 
and t =   5, 6, 7, 8   and generate xd  (µ, σ) according 

to µ, σ values listed in Table 1. This toy data problem is 

meant to simulate a realistic scenario, where one expects 

some discriminative features and some non-discriminative 

ones. The associated graph describing task dependencies is 

defined, appropriately setting γij = 1 if two tasks are 

related, and γij = 0 otherwise. The pose graph is not used 

in these experiments, i.e., βij = 0 i, j. We generate 100 
samples for training, 50 for validation and 100 for test. 

In case of regression, we consider R = 9 tasks. The 

input data xti R , D = 20 are generated from a 

multivariate normal distribution (0, I), while the outputs 

are obtained with yti wtxti + (0, 100). The weight 

vectors wt for each task are obtained by generating the first 

D/2 components from a common cluster wd (0, 1), 
while grouping the tasks into three different clusters for 

the last D/2 features, i.e., wd ∼ N(0, 1), t = 1, 2, 3, wd ∼ 

conduct our experiments on the publicly available DPOSE 

dataset [7]. DPOSE comprises over 50000 4-view syn- 

chronized images recorded by distant, large field-of-view 

cameras for 16 moving targets, with associated positional 

and head pose measurements (target positions are computed 

using the person tracker [27]). To our knowledge, there 

are no other databases for benchmarking multi-view head 

pose classification performance under target motion. We 

also manually annotated a video sequence of 30 minutes 

duration capturing six persons involved in an informal 

social gathering. Denoted as the PARTY sequence (Fig. 8), 

this dataset is very challenging, as it involves several targets 

freely moving around in a room and affected by persistent 

and substantial occlusions. 

 

5.2.2 Experimental Setup 

As we consider faces at very low resolution (i.e., 20 

× 20 pixels) and estimating the head pose orientation 

10 + (0, 4), t = 4, 5, 6, wd 20 + (0, 9), t = 7, 8, 9. 

We generate 100 samples for training, 50 for validation and 

100 for test. 

is very challenging in these conditions, we only focus 
on classifying the head-pan into one of 8 classes, each 

denoting a 45◦ pan range. For each dataset, we consider an 

є 
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Fig. 5. Synthetic data experiments: (left) Comparison with several MTL methods: classification accuracy. Higher numbers 
indicate better performance. (middle) Comparison with several MTL methods for the regression problem. Lower numbers 
indicate better performance. (right) S matrix for regression task comprising task clusters. 
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Fig. 6. DPOSE dataset: Comparison with state-of-the-art head pose classification methods. 

 
 

initial, uniformly spaced grid with R = 25 regions (Fig. 3) 

and define mutually exclusive training/validation/test sets. 

For all considered classification methods, the regularization 

parameters are tuned using the validation set. In particular, 

we set λs = 2, λθ = 22, λ1 = 22, λ2 = 1, ρ = 0.25 for FEGA- 

MTL in our experiments. To extract short sequences with 

consistent head and body motion when annotated training 

data are unavailable, thresholds are set to θP = 0.5m2 

using gaussian kernel with variance 0.15m for entropy 

estimation of tracking particle set, θD = 0.1 and θS = 0.001. 

5.2.3 Evaluating HPE performance 

Fig. 6 presents the results obtained comparing FEGA-MTL 

with competing head pose classification methods. The mean 

classification accuracies obtained from five independent 

trials are reported, where a randomly chosen training set 

is employed in each trial. In this series of experiments, 

we consider annotated training data. We gradually increase 

the training set size from 5 to 30 samples/class/region, 

while the test set comprises images from all regions. To 

underline the usablity of FEGA-MTL with arbitrary camera 

configuration, we show the results obtained with both four 

(Fig. 6 left) and two camera views (Fig. 6 right). As 

expected, all the considered methods perform better when 

information from four cameras is used. 

As baselines, we consider recent multi-view approaches, 

namely, the warping algorithm in [7] combined with RBF- 

SVMs for classification (no transfer learning is required in 

this case), the approach in [8] which probabilistically fuses 

the output of multiple SVMs, and the monocular ARCO [6] 

(image features from multiple views are used to extend 

ARCO to multi-view) and SVM+Spectral Clustering [12] 

 

methods. As shown in Fig. 6, both ARCO and the method 

in [8] perform poorly with respect to FEGA-MTL as they 

are not designed to account for facial distortions due to 

scale/perspective changes. 

Considering baselines that have explicitly accounted for 

motion-based facial appearance variations while predicting 

head pose, the warping method in [7] achieves lower 

accuracy with respect to FEGA-MTL, despite considerably 

outperforming Single SVM. Here, it is also important to 

point out two differences between our approach and [7]. 

The scene is a priori divided into four quadrants in [7], 

which is not necessarily optimal for describing the pose- 

appearance relationship under arbitrary camera geometry. 

Secondly, task dependencies are ignored in [7], and an 

independent classifier is used for each quadrant. In contrast, 

FEGA-MTL discovers the optimal configuration of grid 

clusters that best describes the pose-appearance relation- 

ship given camera geometry. Considering task relationships 

enables FEGA-MTL to achieve higher classification accu- 

racy than a single global classifier (Single SVM), Single 

SVM+Warping and separate region-specific classifiers that 

do not consider inter-region appearance relationships (Mul- 

tiple Region-specific SVMs). 

We have also compared our approach against 

SVM+Spectral Clustering adopted as a proxy for [12] (a 

rigorous comparison is not possible as the approach in [12] 

is monocular). In our implementation of SVM+Spectral 

Clustering, we use the training images and the spectral 

clustering algorithm described in [12] to learn a set of 

spatial regions according to facial appearance similarity. 

The number of clusters is set to five. Then, five independent 
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TABLE 2 

DPOSE dataset: Comparing head pose classification accuracy with competing MTL methods. 
 

 5 traini ng samples/class/r egion 10 train ing samples/class/r egion 
 2-views 3-views 4-views 2-views 3-views 4-views 

Single SVM 
l21 MTL [19] 

Flexible Task Clusters MTL [23] 
Dirty model MTL [24] 

Clustered MTL [25] 
Robust MTL [26] 

0.441 ± 0.011 
0.525 ± 0.010 
0.555 ± 0.008 

0.546 ± 0.006 

0.540 ± 0.007 
0.550 ± 0.012 

0.494 ± 0.024 
0.567 ± 0.009 
0.598 ± 0.009 

0.585 ± 0.008 

0.590 ± 0.007 
0.580 ± 0.011 

0.523 ± 0.016 
0.589 ± 0.012 
0.621 ± 0.007 

0.603 ± 0.011 

0.619 ± 0.009 
0.581 ± 0.009 

0.486 ± 0.012 
0.642 ± 0.012 
0.65 ± 0.005 

0.655 ± 0.011 

0.639 ± 0.014 
0.655 ± 0.005 

0.549 ± 0.008 
0.675 ± 0.015 
0.681 ± 0.008 

0.686 ± 0.009 

0.682 ± 0.011 
0.689 ± 0.004 

0.564 ± 0.013 
0.696 ± 0.014 
0.715 ± 0.006 

0.696 ± 0.008 

0.711 ± 0.010 
0.705 ± 0.008 

FEGA-MTL (region graph only, λ2 = 0) 

FEGA-MTL (pose graph only, λ1 = 0) 
FEGA-MTL (region graph + pose graph) 

0.581 ± 0.002 
0.564 ± 0.006 
0.602 ± 0.002 

0.623 ± 0.004 
0.605 ± 0.006 
0.643 ± 0.003 

0.643 ± 0.006 
0.637 ± 0.007 
0.660 ± 0.004 

0.677 ± 0.006 
0.661 ± 0.009 
0.711 ± 0.003 

0.718 ± 0.003 
0.699 ± 0.011 
0.748 ± 0.004 

0.733 ± 0.007 
0.728 ± 0.005 
0.759 ± 0.005 

 
TABLE 3 

PARTY dataset: head pose classification accuracy. Comparison with state-of-the-art approaches. 
 

 20 train ing samples/class/r egion 30 train ing samples/class/r egion 
 2-view 3-view 4-view 2-view 3-view 4-view 

Single SVM 
ARCO [6] 

0.422 ± 0.021 
0.501 ± 0.009 

0.463 ± 0.016 
0.513 ± 0.013 

0.498 ± 0.014 
0.561 ± 0.012 

0.508 ± 0.015 
0.529 ± 0.017 

0.529 ± 0.018 
0.554 ± 0.014 

0.541 ± 0.013 
0.606 ± 0.015 

l21 MTL [19] 
Flexible Task Clusters MTL [23] 
Robust MTL [26] 
FEGA-MTL (region graph only, λ2 = 0) 

FEGA-MTL (pose graph only, λ1 = 0) 
FEGA-MTL (region graph + pose graph) 

0.491 ± 0.013 
0.526 ± 0.021 

0.521 ± 0.005 

0.543 ± 0.006 
0.534 ± 0.007 
0.575 ± 0.006 

0.525 ± 0.011 
0.538 ± 0.004 

0.532 ± 0.007 

0.569 ± 0.004 
0.553 ± 0.003 
0.592 ± 0.001 

0.552 ± 0.009 
0.541 ± 0.014 

0.551 ± 0.008 

0.571 ± 0.002 
0.572 ± 0.004 
0.606 ± 0.004 

0.557 ± 0.008 
0.578 ± 0.014 

0.575 ± 0.014 

0.601 ± 0.004 
0.611 ± 0.005 
0.631 ± 0.005 

0.573 ± 0.004 
0.611 ± 0.009 

0.599 ± 0.012 

0.637 ± 0.003 
0.629 ± 0.006 
0.663 ± 0.002 

0.596 ± 0.011 
0.625 ± 0.006 

0.61 ± 0.011 

0.652 ± 0.008 
0.643 ± 0.006 
0.681 ± 0.004 

 

SVM classifiers are trained (one for each learned region). 

As shown in Fig. 6, by learning the optimal region 

partitioning and the classifiers simultaneously, we achieve 

higher accuracy than SVM+Spectral Clustering. 

5.2.4 Comparison with MTL approaches 

Table 2 compares HPE performance of various MTL 

methods. Here again, we consider annotated training data. 

The advantage of employing MTL for head pose clas- 

sification under target motion is obvious since all MTL 

approaches greatly outperform a single SVM. However, 

assuming that all tasks share a common component, i.e., 

using the l21 MTL approach [19] is sub-optimal, and 

having a flexible learning algorithm which is able to infer 

appearance relationships among regions improves classifi- 

cation accuracy. This is confirmed by the fact that in all 

situations (varying training set sizes and number of camera 

views), FTC MTL [23], Clustered MTL [25] and FEGA- 

MTL achieve superior performance. FEGA-MTL, which 

independently considers features and employs graphs to 

explicitly model region and head pose-based appearance re- 

lationships, achieves the best performance. The usefulness 

of modeling both region and pose-based task dependencies 

through FEGA-MTL is evident when observing the results 

in Table 2. Using the region graph alone is beneficial 

as such, while employing the region and pose graphs in 

conjunction produces the best classification performance. 

When multiple targets move freely in the environment 

such as a party scenario shown in Fig. 8 (bottom), many 

occlusions usually exist making head pose estimation even 

harder. Table 3 compares FEGA-MTL with other MTL 

methods on the PARTY sequence. Even if inferior clas- 

sification is achieved with respect to the DPOSE dataset 

given the more challenging nature of the scene, and more 

training examples per class typically needed to achieve 

satisfactory performance, the advantages of FEGA-MTL 

over competing methods can be clearly observed. 

To further demonstrate the advantages of FEGA-MTL, 

we compare it with the other graph-guided MTL meth- 

ods [21], [34]. Fig. 7 shows that higher accuracy is obtained 

with our approach for different training set sizes. A main 

difference between FEGA-MTL and the methods described 

in [21], [34] is that they do not decompose W as S+Θ, and 

due to the non-consideration of task-specific components 

Θ, they have less flexibility. Moreover, in [34] (due to 

the use of the l2 norm) and [21] (due to smoothing) task- 

clustering is encouraged but not enforced, i.e., the weights 

corresponding to a cluster are similar but not identical. As 

discussed above, FEGA-MTL can also be used with an ar- 

bitrary number of cameras and even in a monocular setting. 

However, the use of several views is typically advantageous 

and improves performance. The performance gain achieved 

using FEGA-MTL over a single SVM classifier trained for 

the entire scene is evident, irrespective of the number of 

camera-views used. 

 
5.2.5 Qualitative results 

Figure 8 shows some qualitative results obtained with 

FEGA-MTL on the DPOSE and PARTY sequences. For 

illustration, identical colors are used to denote the pose 

direction frustum and face crop rectangle for each target. 

As discussed above, the party scene is quite challenging as 

six targets are interacting naturally (resulting in prolonged 

and substantial occlusions) and freely moving around in the 

scene. However, as demonstrated by the results in Table 3, 

FEGA-MTL generally estimates head orientation correctly 

despite the presence of occlusions and low scene resolution. 

Fig. 8 also shows the optimal spatial partitioning 

learned for a three-camera system with 5 training im- 

ages/class/region. The learned grid clusters are also shown 

in Fig. 3 together with the initial spatial grid. Clustered re- 

gions correspond to identical columns of the task similarity 

matrix S, i.e., two regions ti  and tj  merge if sti,c  = stj ,c 

c. Constrained by the appearance similarity graph weights, 
spatially adjacent regions tend to cluster together. While 

regions closer to the camera-less room corner tend to 

form large clusters, smaller clusters are observed as one 
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Fig. 7. (Left to right) Classification accuracies with graph-guided MTL methods using 4, 3, 2 and single-view information. 

TABLE 4 

DPOSE dataset: HPE accuracy with varying grid sizes. 
 

Size 3 × 3 5 × 5 8 × 8 15 × 15 

Acc 0.745 ± 0.007 0.759 ± 0.005 0.736 ± 0.006 0.717 ± 0.004 

 
moves closer to the cameras owing to larger facial appear- 

ance distortions caused by perspective and scale changes. 

Apart from the region and pose-based appearance similarity 

graph weights, facial appearance features also influence the 

clustering of related regions, and therefore, the computed 

optimal partitioning. 
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5.2.6 FEGA-MTL analysis 

We now examine the impact of (i) grid size, (ii) considered 

visual features, (iii) prediction strategy and (iv) the head 

localization accuracy on FEGA-MTL performance. Finally, 

we also show the results of the parameter sensitivity study 

and computational cost analysis. 

Table 4 shows the classification accuracy of FEGA-MTL 

when different grid sizes are considered for partitioning the 

scene ground plane. For this experiment, we consider 4- 

views and use a fixed set of 250 training samples/class that 

are uniformly distributed over the scene. From the table, 

it is evident that the best performance corresponds to a 

5 5 grid. Too coarse (higher within-region appearance 

distortion) or too fine scene partitioning (fewer training 

samples/class/region) typically hampers HPE performance. 

We also evaluate FEGA-MTL performance with different 

visual features and their combinations. In addition to HOG 

features [28], we consider three other descriptors: Kullback- 

Leibler (KL) divergence features [5], Local Binary Pattern 

(LBP) [35] and skin color features [12]. KL features are 

computed as described in [5] by indexing each pixel with 

respect to the mean appearance template of different head 

pose classes. For LBP, we use 256-dimensional histogram 

features (16 cells 16 bins). For computing skin color 

features we first detect skin pixels using a Gaussian Mixture 

Model. Then, we divide the face image into 4 4 cells and 

count the number of skin pixels in each cell, obtaining a 

16-dimensional feature vector. 

Figure 9 shows the head pose classification accuracy 

obtained with different methods employing various fea- 

tures. Among the different features, HOG and skin color 

histograms are respectively the most and least effective 

features. This justifies our choice of HOG in this work. 

Furthermore, Fig. 9 demonstrates that the performance 

of FEGA-MTL (and other methods) can be improved by 

 

Fig. 9. DPOSE dataset: Head pose classification accuracy 
obtained with different methods employing different features 
and features combination. 

TABLE 5 

DPOSE dataset: Accuracy with different prediction 

strategies 
 

 4-views 3-views 2-views 

Single Classifier (Eq.3) 
Classifier-comb (4-neighbor) 
Classifier-comb (8-neighbor) 

0.759 ± 0.005 
0.772 ± 0.005 
0.753 ± 0.011 

0.748 ± 0.004 
0.762 ± 0.008 
0.752 ± 0.005 

0.711 ± 0.003 
0.733 ± 0.012 
0.702 ± 0.006 

 
combining different descriptors. For all methods, maximum 

classification accuracy is obtained with HOG and KL 

feature combination. 

We also examine if a weighted voting strategy for 

combining classifiers from neighboring regions is beneficial 

in the test phase. Specifically, we compare three different 

approaches for prediction, namely, using a single classifier 

(as discussed in Sec.4.2), and employing a combination of 

classifiers from adjacent scene regions according to a 4- 

neighbor or 8-neighbor connection scheme. When multiple 

classifiers are employed, the class label is assigned by 

computing the mode of the classifier-score distribution. 

Table 5 shows the empirical results when 10 training sam- 

ples/class/region are used. By considering classifiers from 

four nearby regions, the classification accuracy generally 

improves with respect to the use of a single region-specific 

classifier. However, little performance improvement is ob- 

served when eight neighboring classifiers are considered, 

probably due to large appearance changes in the area 

covered by the eight regions. 

To study the influence of head localization accuracy 

on HPE performance (we use a multi-view particle filter 

tracker as described in Sec.3.2), we compare manually 

annotated head crops with the crops obtained with the 

proposed automatic procedure adding noise to the estimated 
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Fig. 8. (Top) Head pose classification results for a target moving freely within a 3-camera setup are shown two-by-two. The 
learned clusters, as seen from a fourth view, are shown on the bottom-left inset. Cluster corresponding to the target position 
(denoted using a stick model) is highlighted. (Bottom) Head pose classification results for the PARTY sequence involving 
mobile targets (best viewed under zoom). 

TABLE 6 

PARTY dataset: Head localization vs classification accuracy 
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head coordinates. To this end, we manually marked the 

head coordinates of all targets in the PARTY sequence 

and regenerated head crops upon adding different levels of 

Poisson noise to the estimated target head locations, which 

were then input to the FEGA-MTL. Corresponding results 

(Table 6) clearly indicate the importance of accurate head 

localization. λp indicates the Poisson noise level. Indeed, 

even perturbing head location estimates by few pixels in x 
and y (cropsize is 20 20) reduces HPE accuracy. These 

results also confirm the effectiveness of the proposed head 

localization method. 

We also examine the effect of varying FEGA-MTL 

regularization parameters (results correspond to one of our 

experiments on the DPOSE dataset). In Fig. 10 (left), the 

role of λ1 and λ2, i.e., the parameters which regulate 

the importance of the region and pose graphs respectively 

are analyzed. It is interesting to observe that when λs 

and λθ are fixed, very small or large values of λ1 and 

λ2 correspond to decreased classification accuracy, thereby 

evidencing the importance of both graph terms. Fig. 10 

(right) presents classification accuracies on varying λs and 

λθ when λ1 and λ2 are fixed. These parameters balance the 

importance of the two regularization terms S 2 and Θ 2 
or in other words, regulate the influence of the common and 

region-specific components of the classifier parameters. As 

expected, the highest classification performance is achieved 

when λs ∼ λθ, i.e., equal importance is given to the shared 

Fig. 10. Sensitivity analysis. Classification accuracy on 
varying regularization parameters λ1 and λ2 when λs and 
λθ are fixed (left); λs and λθ with λ1 and λ2 fixed (right). 

 

TABLE 7 

DPOSE dataset: Computational time comparison. 
 

 Solver 
 [15] This paper 

4-views 
3-views 
2-views 

972 sec 
594 sec 
346 sec 

241 sec 
125 sec 
97 sec 

 

and task-specific components. 

Finally, we examine the computational efficiency of the 

training phase of the proposed FEGA-MTL. As discussed 

in Sec. 4.3, in this paper to solve Eqn.(2) we propose a 

different approach with respect to the one introduced in [15] 

and based on ADMM. Compared with the ADMM solver, 

the novel approach is more efficient. To confirm this fact, 

in Table 7 we report the computational times required by 

the two solvers in some of our experiments on the DPOSE 

dataset. Specifically, we compute the times associated to 

the experiments done using 5 training samples/class/region 

and regularization parameters chosen with cross-validation. 

Our experiments run on a desktop computer with Intel (R) 

Xeon (R) CPU E5-2620 0 @ 2.00 GHz processor. 

A
C

C
 

A
C

C
 

Poisson noise 4-views 3-views 2-views 

Annotated head location 

λp = 0.05 × cropsize 

0.712 ± 0.003 

0.694 ± 0.004 

0.691 ± 0.003 

0.677 ± 0.006 

0.663 ± 0.005 

0.641 ± 0.007 
λp = 0.10 × cropsize 0.652 ± 0.006 0.647 ± 0.007 0.599 ± 0.008 
λp = 0.15 × cropsize 0.612 ± 0.007 0.599 ± 0.011 0.557 ± 0.013 
λp = 0.25 × cropsize 0.576 ± 0.013 0.554 ± 0.015 0.516 ± 0.018 
Localization via tracking 0.681 ± 0.004 0.663 ± 0.002 0.631 ± 0.005 
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TABLE 8 

FEGA-MTL classification accuracy obtained with different 

training sets. 
 

 supervised semi-sup ervised no learning 

  with 
filtering 

without appearance 
filtering 

motion 
direction 

no annotated 
samples/class/region 5 10 0 5 10 0 5 10 - 
4-view 0.66 0.75 0.64 0.74 0.82 0.61 0.73 0.78  

3-view 
2-view 

0.64 
0.60 

0.74 
0.71 

0.61 
0.58 

0.69 
0.66 

0.78 
0.76 

0.61 
0.55 

0.69 
0.64 

0.74 
0.70 

0.45 

1-view 0.49 0.58 0.45 0.59 0.67 0.44 0.59 0.63  

 

5.2.7 Extending MTL to a weakly-supervised setting 

We now evaluate FEGA-MTL performance when head pose 

labels extracted using motion trajectories (Sec.3) are used 

for learning. We again consider the DPOSE data in this 

series of experiments, and evaluate FEGA-MTL perfor- 

mance in three different settings: supervised (as in [15]), 

semi-supervised and unsupervised. For unsupervised learn- 

ing, we train FEGA-MTL exclusively using 1000 images 

(5 images/class/region) with head pose labels computed 

using motion direction. For supervised learning, we train 

the classifier only using annotated examples (i.e., 5/10 

training samples/class/region). We also evaluate FEGA- 

MTL performance in the semi-supervised case where the 

training set comprises the above annotated-plus-weakly 

labeled examples. 

Table 8 shows the results of our evaluation (note that the 

case corresponding to zero annotated samples in the semi- 

supervised setting exemplifies the unsupervised setting). 

While classification accuracy achieved with unsupervised 

learning is expectedly lower than with supervised learning, 

weakly labeled examples nevertheless boost performance 

when used in conjunction with annotated ones. An im- 

provement of 8.8% and 9.6% respectively is obtained by 

adding motion-based examples with 5 annotated exam- 

ples/class/region with four and single-view information. 

This result implies that FEGA-MTL can be used to ef- 

fectively estimate head pose in practice with few annotated 

and sufficient number of automatically labeled examples. 

Finally, the filtering approach employed for weak labeling 

is also found to enhance classification performance. Higher 

accuracies are observed by using only those examples 

where head and body motion are consistent using the 

filtering process (using appearance filtering, i.e. the samples 

where the appearance similarity score exceeds the threshold 

θS), with higher relative improvements observed when a 

larger proportion of (clean) annotated data is used for 

training. Overall, the obtained empirical results confirm 

the efficacy of the FEGA-MTL framework when unlabeled 

examples are used for training, and the usefulness of the 

proposed filtering procedure to extract image sequences 

with consistent head and body motion. As a reference, 

we also compute the accuracy obtained in estimating the 

head pose when motion direction is used as a label and 

no learning and no filtering (no spline smoothing, entropy 

and appearance filtering) are performed. This corresponds 

to estimating the level of noise of the weakly annotated 

samples. As expected performance significantly degrade 

(note that the last column report just one number since 

there is no learning involved). 

6 CONCLUSIONS 

The proposed FEGA-MTL framework for estimating the 

head pose of moving targets is found to outperform a host 

of monocular/multi-view HPE approaches as well as multi- 

task learning methods via extensive experiments. FEGA- 

MTL efficiently leverages on camera geometry information 

and sparsely annotated training data from different grid 

partitions to discover scene regions where the head pose- 

appearance relationship is consistent, and can also be 

utilized when no labeled training data are available through 

the use of motion direction as a proxy for head orientation. 

Since camera geometry is incorporated in the learning 

process, model training may be scene-specific as discussed 

in [15]. Nevertheless, this does not limit the applicability 

of our method as multi-camera installations are easy to 

calibrate nowadays, and efficient HPE is possible with 

few labeled examples even on the challenging DPOSE and 

PARTY datasets. Finally, it worth noting that the FEGA- 

MTL algorithm is a general framework, potentially applica- 

ble to many other computer vision and pattern recognition 

problems such as action recognition and event detection. 

Future works will be devoted to extend the proposed 

FEGA-MTL to deal with sparse training data and arbitrary 

camera configurations. Currently, FEGA-MTL cannot be 

used when the spatial distribution of training data is highly 

unbalanced across the scene. In this case, typically no 

grid partitioning with sufficient samples/class/region can 

be determined to learn robust region classifiers. Moreover, 

an early fusion approach is adopted to combine features 

corresponding to multiple cameras, hindering the use of 

FEGA-MTL in case of cameras with non-overlapping field 

of view. Addressing these limitations will involve new 

research towards a distribution-sensitive MTL approach and 

a late fusion scheme for combining multiple views. 
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