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A B S T R A C T

This article explores Human-Centered Artificial Intelligence (HCAI) in medical cytology, with a focus on
enhancing the interaction with AI. It presents a Human–AI interaction paradigm that emphasizes explainability
and user control of AI systems. It is an iterative negotiation process based on three interaction strategies aimed
to (i) elaborate the system outcomes through iterative steps (Iterative Exploration), (ii) explain the AI system’s
behavior or decisions (Clarification), and (iii) allow non-expert users to trigger simple retraining of the AI
model (Reconfiguration). This interaction paradigm is exploited in the redesign of an existing AI-based tool
for microscopic analysis of the nasal mucosa. The resulting tool is tested with rhinocytologists. The article
discusses the analysis of the results of the conducted evaluation and outlines lessons learned that are relevant
for AI in medicine.
1. Introduction

Although there is an increasing awareness of the potential of Ar-
tificial Intelligence (AI), a substantial challenge persists in harnessing
its benefits while ensuring reliability, safety, and trustworthiness for
humans [1]. AI is often approached with a focus on autonomy and
efficiency in decision-making [2]. Yet, while high autonomy can be
advantageous, it carries inherent risks [3,4].

The emerging field of Human-Centered Artificial Intelligence (HCAI)
suggests employing AI to support and enhance human cognitive ca-
pabilities rather than replacing them. In this respect, a paradigm
shift from an algorithm-focused view to a human-centered perspective,
integrating Human–Computer Interaction (HCI) strategies for designing
and testing, is necessary [5]. A crucial aspect of HCAI is the emphasis
on user control, promoting a new relationship between humans and
machines to design systems that are not only efficient and autonomous
but also beneficial to humans in various respects [6].

User control can be achieved by building AI models and algorithms
that ensure transparency in the system behavior, a concept known as
model explainability [7]. Although this approach may enable users to
comprehend and trust system decisions, a challenge arises as explana-
tions are often tailored for AI specialists, making them less meaningful
for end users who are experts in their domain but lack AI expertise.
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Another avenue for achieving user control is through interactive ma-
nipulation of parameters influencing system behavior [8]. In the HCAI
vision, user control and system autonomy are not seen as conflicting
forces but rather as dimensions that need careful calibration when
designing AI-based systems. This implies supporting domain experts in
negotiating and reconfiguring algorithm outcomes, and ensuring they
play an active role in shaping the system behavior over time.

Calibrating control with efficiency is extremely important when
using AI for decision-making in medicine. In this domain, the need
to trust AI as a supporting tool has to be counterbalanced, allowing
physicians to skeptically inquire about AI assistance to preserve their
judgment [9] as well as their professional competence [10].

Despite several examples in the literature, a comprehensive design
framework is still lacking. The research proposed in this article aims
to fill this gap by presenting a conceptual framework that emphasizes
a new notion of explainability embedded in a full-fledged negotiation
process for users to understand and modify system behavior itera-
tively. Specifically, in 2022 we started to explore three strategies to
interact with AI systems: Clarification, Negotiation, and Reconfigura-
tion [11]. Clarification involves explaining the AI system’s behavior
or decision directly, providing alternatives to deep learning systems’
‘‘black-box’’ nature. Negotiation involves reaching system outcomes
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through iterative steps driven by user-AI interaction, offering strategies
for progressive decision segmentation and recalibration. Reconfigura-
tion allows users to trigger simple retraining of AI models based on
new examples or user feedback, providing adaptability within reach of
non-expert users. These three broad strategies have been experimented
in a main case study in the medical domain, aiming to derive grounded
principles of human interaction with AI systems.

The challenging context of the case study is medical cytology,
addressing the problem of AI-supported microscopic analysis of cells
contained in the nasal mucosa. Our exploration has been based on an
existing tool called Rhino-Cyt [12,13]. We designed and deployed a
new prototype of Rhino-Cyt, which adopts an interaction paradigm that
allows physicians to use the three strategies. The new Rhino-Cyt was
evaluated with real users, i.e., physicians specialized in rhinocytology,
to investigate if and how the three strategies suggested by the proposed
conceptual framework improve the interaction of physicians with the
system. The findings reveal the value of the devised strategies and
disclose significant aspects that are still underexplored in the litera-
ture. These include the importance of offering explanations that can
be customized and accessed ‘‘on demand’’, i.e., without presuming
their acceptance by every user and at every stage of the interaction
with the AI system. We also learned lessons for AI in medicine that
can contribute to the broader understanding and application of HCAI
principles.

This article is structured as follows. Section 2 discusses the ratio-
nale and background of our work. Section 3 outlines the methodol-
ogy adopted for the human-centered design of the new interaction
paradigm. Section 4 introduces the conceptual framework for Human–
AI interaction that we applied to redesign Rhino-Cyt and validated
through user studies. Section 5 illustrates the interviews conducted
with rhinocytology experts to gather initial requirements for designing
the new interaction paradigm. Section 6 then details the Rhyno-Cyt
redesign, grounded in the conceptual framework for Human–AI inter-
action introduced in Section 4. Section 7 presents the study that inves-
tigated the impact of the three strategies on the physicians’ interaction
with Rhino-Cyt and Section 8.1 outlines the lessons learned. Finally,
Section 9 concludes the article by highlighting the study limitations
and suggesting directions for future research.

2. Rationale and background

With the rise of Machine Learning (ML) and AI systems, algorithms
that automatically extract information, learn from data and act in the
world without human intervention can be developed. In several tasks,
this may bring advantages in terms of efficiency and performance [14],
but also risks, exacerbating the drawbacks of knowledge bias and lack
of trust by the final recipients of algorithmic decisions [3]. To amplify
the advantages and avoid the drawbacks, a paradigmatic change is
needed to design and develop this new type of system. Recently,
‘‘Human-In-The-Loop’’ approaches in ML processes [15], the HCAI
perspective [1,3], and the Interactive Human-Centered AI [16] aim to
propose methods to design new interaction paradigms that can amplify,
augment, and enhance human performance, in ways that make systems
reliable, safe, and trustworthy.

A fundamental element in HCAI is the control by end users. As
envisaged by a leading AI researcher [6], a new relationship between
humans and machines is needed to design machines that are ‘‘not just
intelligent but also beneficial to humans’’. In high-stakes domains, such
as healthcare, full automation is often undesirable due to safety, ethical,
and legal concerns. End users’ control is thus needed. This could be
fostered by means of AI models and algorithms that grant transparency
of the system behavior, making it easy for the end users (and all the
stakeholders, in general) to understand and trust the system decisions,
the so-called model Explainability [7] and explainable AI [17].

Reliable user control of the system can also be achieved by granting
an interactive manipulation of the relevant parameters determining the
2

system behavior [16]. In the HCAI vision, user control and system
autonomy are not considered to be opposing each other, but rather as
two dimensions to be adequately calibrated when designing intelligent
systems beneficial to people [3]. Users should be enabled to take
advantage of the power of AI algorithms, but the importance of the
knowledge that users, as domain experts, possess must not be neglected.
For example, Cai et al. present an ML-based tool to visually retrieve
medical images (tissue from biopsies) from past patients [8]. The tool
supports medical decisions with new patients, empowering the physi-
cian to cope with the search algorithm on the fly, and communicates
what types of similarity are most important in different situations. This
interaction between the human and the system determines a step-wise
refinement that increases the diagnostic utility of images found, as well
as the user’s trust in the algorithm.

The opportunity for the users to modify the system behavior and
adapt it to their needs (the so-called End-User Development [18,19]),
possibly acting on the system’s AI models, is crucial in the long term
for real empowerment in the use of AI systems. Meta-design prin-
ciples [19] must be adopted to define a methodological framework
in which developers and AI specialists do not design a rigid system;
rather, they provide a scaffolding environment where adequate model
explanations can empower domain experts to reconfigure algorithm
outcomes through negotiation. In [20], the authors discuss Interactive
ML techniques enabling model reconfiguration through experts’ inter-
vention in medical scenarios. However, they also highlight the need for
HCI methods to identify adequate interaction paradigms.

2.1. Explainable AI

The field of eXplainable AI (XAI) addresses the need for trans-
parency and interpretability in AI systems, which is relevant to granting
user control. XAI algorithms provide explanations for the decisions
made by AI systems, enabling users to understand and trust the system’s
outputs [17]. However, explainability is generally considered a means
to highlight technical features characterizing the performance of AI
models. Methods proposed in the literature to open black-box models
identify explainability strategies [21]. Important issues remain open. In
particular, different scientific communities address explainability from
different perspectives. The explanations provided by the AI community
are mainly directed to AI specialists. The HCI community considers
these approaches inadequate since they are not meaningful to the end
users, who are possibly domain experts but not AI experts [5,22].
Furthermore, special care must be given to XAI in the field of medicine.
Several studies highlight the complex challenges associated with the
use of explanations in medicine, stressing the need for caution due to
the potential inaccuracy and irrelevance of explanations [23–25].

An additional aspect is that current research on XAI does not
provide clear guidance on generating feature-based explanations start-
ing from Convolutional Neural Networks (CNNs). In a 2018 survey,
Guidotti et al. highlighted GradCAM [26] as a way to extract infor-
mation on pixels relevant to the classification task [21]. The current
state-of-the-art computer vision model, the Vision Transformer [27],
provides a similar capability through the attention mechanism [28].
However, these techniques fail to generate explanations based on fea-
tures deemed relevant by the end users (i.e., the physicians). Creating
satisfactory explanations requires a novel architecture.

Although applicability to CNNs may vary, various techniques allow
the post-hoc generation of feature-based explanations (e.g., SHAP [7]).
However, the main drawback of using post-hoc explanation techniques
lies in a potential lack of fidelity to the original model’s computation
(as, if that was the case, the explanations would equal the original
model, making it white-box) [29]. Furthermore, explanations using
post-hoc techniques may provide complex or partial explanations that
do not fully allow comprehension of the model’s inner workings. Thus,

the most effective way to provide feature-based explanations without



Artificial Intelligence In Medicine 155 (2024) 102933G. Desolda et al.
Fig. 1. The typical process of rhinocytology involves direct observation under the microscope, requiring considerable effort by the physician.
using post-hoc techniques involves adopting white-box models (such as
decision trees or knowledge-based expert systems).

To overcome these issues while still enabling an adequate level of
explainability, in line with recent work proposed in the literature [30],
our solution adopts a mixed approach in which black-box models are
used for feature extraction while white-box models, e.g., decision trees,
generate explanations on top of the extracted features.

2.2. HCAI in medicine

The state of the art in HCI for AI in medicine is rapidly evolving,
with researchers exploring various aspects of this intersection. Several
studies have investigated the onboarding needs of medical practitioners
for Human–AI collaborative decision-making [8]. These studies high-
light the importance of providing medical experts with the necessary
information when introducing them to diagnostic AI assistants. Ad-
ditionally, patient apprehensions about using AI in healthcare have
been examined, emphasizing the need to address concerns and build
trust [31].

One of the key challenges in HCI for AI in medicine is decision-
making. While AI systems demonstrate strong predictive performance,
full automation is often not desirable [32]. The impact of the COVID-
19 pandemic on stroke care has been evaluated using AI, highlighting
the need for continuous monitoring and surveillance [33]. Under-
standing the expectations and requirements of physicians for future AI
applications is crucial for successful implementation [34].

Explainability and trustworthiness are critical factors in adopting AI
in healthcare. The explainability of AI systems has been recognized as
essential, and principles and guidelines have been developed to guide
the application and evaluation of AI in medicine [35–37]. The chal-
lenges of delivering trustworthy AI in healthcare have been explored,
emphasizing the need for transparency and accountability [38].

Overall, the state of the art in HCI for AI in medicine is focused
on addressing the specific needs and challenges of the healthcare do-
main. Researchers are working toward developing AI systems that are
explainable, trustworthy, and aligned with the requirements of medical
professionals and patients. The integration of AI in healthcare has the
potential to revolutionize diagnostics, treatment planning, and patient
3

care, but it requires careful consideration of ethical, legal, and social
implications. Future research in this area will continue exploring novel
applications, improving user experiences, and addressing the challenges
associated with adopting AI in healthcare.

2.3. Rhino-Cyt: an AI-enhanced system supporting rhinocytology diagnosis

Our investigation of HCAI paradigms has been organized around a
case study in the challenging context of medical cytology, and more
specifically, rhinocytology, by tackling the problem of AI-supported
microscopic analysis of cells contained in the nasal mucosa [12,13].
Unlike what happens in other medical fields, for example, hematol-
ogy, nasal cytology does not yet benefit from a network of public or
private laboratories that carry out in-depth analyses quickly and at a
low cost. Therefore, the diagnostic process is mainly based on direct
observation under the microscope, which requires a prolonged effort
by rhinocytologists (Fig. 1).

Modern scanning systems for cytological preparations and new
affordable digital microscopes enable software systems to be designed
to support physicians’ activities [39]. By exploiting these capabilities,
Rhino-Cyt employs AI models to automate the cytological examination.
It encodes a CNN to automatically identify and classify cells in a nasal
cytological preparation based on a digital image of the preparation.
Compared to standard approaches automating cell counting, Rhino-
Cyt aims to move from the current semi-quantitative estimation to a
quantitative one, which is more precise and valuable on a scientific
level for standardization, to catalog cellular elements and get a more
accurate diagnosis in the shortest time. These changes may help in the
more widespread use of nasal cytology, a diagnostic investigation that
has not yet been widely adopted by the new generation of physicians.

Rhino-Cyt segments histological samples of the nasal mucosa, iden-
tifying and classifying individual cells [13] based on nine cytotypes
[39]: (i) ciliated, (ii) muciparous, (iii) basal cells, (iv) striated cells,
(v) neutrophils, (vi) eosinophils, (vii) mast cells, (viii) lymphocytes,
(ix) metaplastic cells [13]. Fig. 2 illustrates how Rhino-Cyt visualizes
histological samples classified for a specific cytotype, e.g., ciliata. For
each cytotype, Rhino-Cyt then supports the cytological examination,
producing the cell count.
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Fig. 2. The Rhino-Cyt interface.
Fig. 3. The design process.
Despite its high accuracy [12], Rhino-Cyt might still classify cells
incorrectly. Physicians may need to intervene in the model’s decisions,
assuming control over the cytological examination, to achieve more
accurate results. As better illustrated in the following sections, this
aspect highlights the importance of designing paradigms that can lead
to the final diagnosis through a process of successive steps, with the
intervention of the rhinocytologists. It is fundamental to investigate and
design interaction mechanisms able to sustain a high level of automa-
tion while also simplifying the examination process by providing the
domain experts with the capability of understanding, controlling, and
reconfiguring the system behavior [8].

3. Design process

Our work follows a research-through design approach [40], which
emphasizes the early involvement of users, also thanks to the produc-
tion of prototypes as vehicles for inquiring about foundational aspects
of a research challenge. This human-centered design approach aligns
with other work on software development in medicine (e.g., [41]).
Fig. 3 summarizes the process for the (re)design and evaluation of
Rhino-Cyt, which aimed to provide not just a better interface for the
tool but also relevant lessons for the design of AI-based tools for
decision-making in medicine.

As reported in Fig. 3, we started by grounding our design in already
established principles [11], namely (a) the centrality of the control,
(b) the need to balance explainability with interactive manipulation of
parameters to guide the system’s behavior, and (c) the need to enable
model reconfiguration. In this first phase, we sketched alternative
4

interfaces for Rhino-Cyt to identify how to accommodate those different
principles in an organic view.

In the second phase, we involved rhinocytology experts in semi-
structured interviews. The aim was to deepen the diagnostic procedures
they employ, also in relation to the automation of cytological exami-
nation already coded in Rhino-Cyt, to identify needs and values and
explore the potential role of an AI-based system in aiding their work.

The principle-based alternative ideas for the redesign allowed us to
prototype a new user interface on top of the Rhino-Cyt system. This
phase had an iterative structure and included several occasions of in-
volvement of a sample of rhinocytologists in discussing the opportunity
(and the potential risks as well) of adopting new technologies and
new working practices. The availability of Rhino-Cyt’s already-existing
datasets, models, and backend algorithms permitted to immediately
focus on new interaction techniques in an effective co-design process.

Finally, through a usability test in conjunction with a thinking-
aloud protocol, we compared two versions of the Rhino-Cyt system and
distilled the lessons learned through the entire design process.

4. Conceptual framework for Human-AI interaction

Despite the novel contributions in the field of HCAI illustrated
in Section 2, the literature still lacks a comprehensive framework
able to guide designers in creating HCAI systems. Our work aims
to fill this gap: its ultimate goal is to propose design models and
methods promoting explainability techniques that can be adequate for
non-technical people besides being useful to their understanding of
the AI system, and new paradigms for the interaction between the
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human and the system that can enable a progressive exploration of the
available data. These elements should shape up a negotiation process
that can empower the human not only to understand the reasons that
determine a specific system behavior, but also to intervene and modify
it through iterative reconfigurations. Negotiation is an important aspect
of Human–AI interaction, as it promotes an iterative process that allows
users and AI systems to reach mutually satisfactory outcomes [11].
Unlike a one-sided interaction where the AI simply outputs results
based on predefined algorithms, negotiation involves a dynamic and
continuous exchange where both the user and the AI adapt and respond
to each other’s inputs. This synergy can be achieved through adequate
interaction paradigms, which are the focus of our research.

Recently, industry players, i.e., Google and Microsoft, have pro-
posed guidelines, toolkits, and design patterns to build the interaction
with AI tools. They address explainable AI features but, to the best
of our knowledge, they specify what to explain while they do not
provide guidelines on the specific strategies to be adopted to pro-
vide explanations. The interaction process, in which explainability can
allow the users to control the system and trigger iterative reconfigura-
tions, is not addressed. In particular, our analyses of current research
highlighted three lacking design dimensions that, if investigated, can
provide building blocks for the creation of HCAI systems:

1. Clarification: involves providing clear, usable explanations about
the inner workings of an AI system, enhancing user compre-
hension of its behavior and decisions. It implies strategies for
explanations that can be meaningful and accessible to the target
users. It aims to move away from the ‘‘black-box’’ model typi-
cal of deep learning systems (e.g., [42]), where many existing
methods reveal technical aspects of the AI model but fail to be
helpful to those without a technical background [43]. It aims to
propose new models of explanations, which should consider the
needs and characteristics of users and the specific requirements
of the application domain, as identified through human-centered
design methods.

2. Reconfiguration: refers to enabling non-technical users to initiate
the retraining of AI models easily. This becomes relevant when
users identify incorrect predictions or when there is a need
to integrate new data into the model (e.g., [20]). Retraining
an AI model, to make it adapt and evolve, is inherently tech-
nical and requires continual learning techniques to facilitate
the incremental absorption, updating, and application of new
knowledge [44]. However, equally crucial is the establishment of
effective interaction paradigms that empower users to contribute
their knowledge to the retraining process.

3. Iterative Exploration: relates to reaching the system outcome
through a sequence of iterative steps driven by the interaction
between the user and the AI system. It involves meta-strategies
designed to break down the decision-making process into pro-
gressive, manageable steps that can favor human-in-the-loop
paradigms [16] and provide means to assess and recalibrate the
request to the system (e.g., [8]).

These three dimensions contribute to building a scaffolding layer for
negotiation that fosters Human–AI interaction as a dialog for mutual
comprehension. Negotiation is not just a sequence of isolated actions
but a process characterized by continuous feedback and adaptation:
users progressively engage with clarifications and AI model recon-
figuration to understand and control the system. Concurrently, the
system adapts and evolves, leveraging the knowledge users contribute
through their interactions. Negotiation thus lies in the overall Human–
AI interaction, characterized by an alternating sequence of iterative
exploration, clarification, and reconfiguration actions (see Fig. 4).

While AI represents a novel design material [46,47], the negotiation
process outlined above can still be understood through foundational
5

HCI principles. Referring to Norman’s execution gulf, where the users
try to understand how to operate with a system [45], adequate inter-
vention mechanisms [16] can constitute the channel for the user to
control the AI model. These mechanisms are meant to improve the
user’s perception of the automated process outcomes, suggest options
for intervention, and allow the user to adapt the behavior of the
currently running processes with immediate effect [4]. As for Norman’s
concept of the evaluation gulf, where the users try to figure out what
happened after their actions [45], it is crucial to support users in per-
ceiving, interpreting, and evaluating the AI system’s status. In particular,
the key to interpretability is the provision of explanations for specific
outcomes in a manner that users can easily comprehend. Clarifications,
when highlighting incorrect system behavior, may prompt requests for
reconfiguration. Thus, for a successful negotiation cycle, it is essential
to offer explanations that are not only accessible when needed but
also easily interpretable. As Section 4 will illustrate, in our conceptual
framework intervention mechanisms introduce actions for the user to
give two types of input to the AI model: (i) requests for clarifications,
when the user wants to understand the reasons behind a given out-
come and (ii) indications for reconfigurations, when the user identifies
incorrect outcomes and tells the system how to change its behavior.

For these mechanisms to be effective, they must emphasize simplic-
ity and minimality, mirroring the language of the users to let them form
their intentions and identify and carry out the actions to control and
reconfigure the AI model. The users should also be in control, being
enabled to explicitly ask for both clarification and reconfiguration.
Consequently, adopting human-centered design methods, and involving
the target users in the design process becomes crucial. This ensures the
creation of intervention mechanisms that are not only functional but
also usable by the intended end users.

The following sections will illustrate how this conceptual framework
has informed and guided the following design activities, suggesting rel-
evant dimensions that are critical for identifying constituent elements
promoting understandability and control in a paradigm for Human–AI
interaction.

5. Interviewing experts in rhinocytology

In November 2022, we started our investigation by involving
rhinocytology experts in semi-structured interviews aimed to confirm
the diagnostic procedure, already coded by Rhino-Cyt, and explore
the potential role of an AI-based system in aiding their work. Thus,
three experts in rhinocytology were interviewed as a preparatory phase
more akin to co-design than to requirement analysis. Specifically, the
goal of this initial phase was to set the objectives of the redesign of
Rhino-Cyt by instantiating an approach that, while mainly principled-
based, aimed at being informed by experts in the field, with a specific
emphasis not just on their procedures and practices, but rather on their
attitude toward AI as a new design material [47].

5.1. Participants, data gathering, and data analysis

The three rhinocytologists work in hospitals and collaborate with
their local universities. They signed a digital consent form to permit
the collection of audio recordings and the management of sensitive
data. Participants were not given any remuneration or reward for
participating in this study.

The semi-structured interview was composed of 5 sections (see
Appendix A for details). After welcoming the interviewee, the first
section asked about the interviewees’ medical specialization, where
they work, and their experience in rhinocytology. The second section is
related to information about their patients and the process of arriving at
a diagnosis. The third section concerns the cell population process, how
it is performed, and if and what tools the physicians use. The fourth
section investigated the physicians’ expectations of using an AI-based
system to support their work, to what extent they trust the system,

and their interest in understanding how the system works. The fifth
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Fig. 4. Structuring the interaction with AI systems (based on Norman’s evaluation and execution gulfs [45]).
T
T

ection pertained to the physicians’ opinion about the AI technological
evolution and how they envision the future usage of an AI-based
ystem in their work.

Two researchers were involved in each interview: one researcher
erved as the interviewer, and the other one assisted by taking notes.
he interviews were audio-recorded. Each interview was transcribed
efore analysis. An inductive thematic analysis of the collected data
as performed. Two researchers independently examined the interview

ranscripts and analyzed them in terms of themes. The interrater relia-
ility was 70%. The remaining 30% of the results were discussed until
consensus was reached.

.2. Results

Table 1 presents the two primary themes and their corresponding
odes derived from the thematic analysis of the answers provided by the
hinocytologists. Specifically, the theme of ‘‘Traditional Rhinocytological
nalysis’’ delineates the core activities undertaken by physicians in
stablishing a diagnosis, while ‘‘AI-enhanced Rhinocytological Analysis’’
lucidates the principal implications physicians anticipate upon inte-
rating AI-based systems into their practices. The first theme encom-
asses various aspects, including the patients the physicians receive,
he clinical data they collect, and the main important diagnostic inves-
igation the rhinocytologist performs to arrive at an accurate diagnosis,
.e., the cell population process. The theme of ‘‘AI-Enhanced Rhinocyto-
ogical Analysis’’ highlights the factors physicians perceived as pivotal
n seamlessly integrating an AI-based system into their practice. This
ncompasses the desired level of support from AI, the trust physicians
ish to have in the system, as deriving from their control over the

ystem decisions, and the assurance that all AI systems should be easily
omprehensible.

.2.1. Themes for the Traditional Rhinocytological Analysis
atients. Their patients are people of all ages with symptoms such
s rhinorrhea and nasal obstruction for some months. Generally, the
atients have already consulted other specialists, mainly allergologi-
al ones, without resolving their situation. The patients may also be
6

atients of their colleagues who are not rhinocytologists.
able 1
hemes and codes identified in the thematic analysis.
Theme Code

1. Traditional Rhinocytological Analysis
1. Patients
2. Diagnosis process
3. Cell population process

2. AI-enhanced Rhinocytological Analysis
1. Support
2. Trust and Control
3. Understandability

Diagnosis process. When the rhinocytologist receives the patient, they
collect the patient’s data (e.g., age, symptoms, possible allergy, previ-
ous visits to the ENT) in a record. The most critical data is whether the
patient is allergic; if yes, the physician notes what they are allergic to.
Then, the physician proceeds with the rhinocytological analysis. Along
with this diagnostic investigation, three other activities are carried
out: patient anamnesis, endoscopy, and rhinometry. An interviewee
claimed, ‘‘Each activity, taken individually, says nothing but all together
defines the diagnosis’’.

Cell population process. The cell population process is an important
step of rhinocytological analysis, starting with nasal cytology, which
consists of scraping cells from the nasal mucosa that are placed on a
slide. The physicians collect 7/8 slides. These slides are then analyzed
with a microscope for the cell population process. Cells taken by
nasal scraping are gently swiped onto a slide and left to dry in a
dedicated box. After the slide is dry, the physician stains it using the
May-Grunwald Giemsa method [39]. This step takes about 30 min.
At this point, the slide is ready to be analyzed under a microscope
at 1000x magnification for a total of 50 microscopic fields. The cells
on the slide are classified using the standardization described in the
Atlas of Rhinocytology [39]. It is a semi-quantitative classification. The
physician looks at the four types of inflammatory cells: neutrophils,
eosinophils, mast cells, and lymphocytes. The analysis of a slide takes,
on average, 15 min; even if the patient situation is clear from reading
the first fields (e.g., the physician finds a large number of eosinophils in
the first fields, that means inflammation is ongoing), the physician still
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reads all 50 fields. The physician uses a table with the cell classes on the
rows. Each time the physician recognizes a cell type, they mark a tick
in the class cell to which the cell belongs. Ultimately, they count the
number of cells in each class. An interviewee said: ‘‘The result obtained
is similar to that of a blood count ’’.

.2.2. Themes for the AI-Enhanced Rhinocytological Analysis
upport. All interviewees would appreciate using an AI-based system

that performs the cell population process in their place. An interviewee
said, ‘‘If a system comes along that reads the slide well, it would be
nice’’. Another interviewee added, ‘‘Beyond the passion of reading a slide,
having the possibility of the system reading it and giving me an automated
answer would be interesting. Then, the physician can still look at the slide.
The two things are not incompatible!’’ The last one added: ‘‘After all,
we do not risk losing our art’’. The interviewees reported three main
reasons why they consider using an AI-based system useful for the
cell population stage, which refers to automation, increased accuracy,
and easy comparison between different diagnoses. First, as an interviewee
pointed out, ‘‘Automating an operator-dependent technique, such as the cell
population process, is very valuable’’. Time is one of the physicians’ more
ritical resources, so this automation would save them time. Regarding
lassification time, an interviewee said, ‘‘The classification time is irrele-
ant if this can affect the cell classification. Once the physician has taken the
ample from the patient, he will meet him again after 10–15 days to make
he diagnosis. Thus, if the system needs more time to be more accurate, there
s no problem. There is no hurry!’’ Another interviewee added, ‘‘It’s better
o have more precise and standardized data rather than one that is quick
ut maybe leaves something behind’’. Another interesting aspect that all
hree physicians highlighted is that an AI-based classification system
ould allow them to look at the cells of the same class altogether; one

nterviewee claimed, ‘‘This experience would be very nice... because seeing
ll these cells together... is something we don’t see’’.

rust and control. All interviewees agreed they could eventually trust
n AI-based classification system, provided they could exert their own
xpertise for the final decision. The main reason is that physicians
ould somehow control the results provided by the system to ensure

hey are correct because they must correlate them with the patient’s
edical history. If they find that the classification made by the system

onnects well with the other evidence, the diagnosis can be confidently
ade. If, on the other hand, the physician has doubts, they may end up

eading the slide; an interviewee claimed: ‘‘Nobody prevents you from
oing to see the slide anyway’’. Lastly, the fact that a system visualizes a
lassification that the physician can assess is regarded as a possibility
or a double check; as an interviewee highlighted, ‘‘The safer you are, the
etter’’. The same interviewee pointed out, ‘‘We are not talking about a
ancer slide’’, so even if the system misclassifies a few cells, it would not
e severe, ‘‘We are not endangering people’s lives’’. Even if the physician
rusts the system classification, they will not rely entirely on it. An
nterviewee said, ‘‘Artificial Intelligence could change our work, but we can
ardly be replaced. The clinical aspect should always remain in our hands.
therwise, it becomes a bare laboratory examination’’. The physicians’
linical reasoning, based on their experience and knowledge, is fun-
amental. Thus, an interviewee concluded, ‘‘The figure of the physician
emains fundamental. The rhinocytologist does not want to lose his dignity.
t must be clear that the physician must confirm the classification. We trust
he system, but our relationship with the cells must remain’’. The same
nterviewee, however, emphasizes that ‘‘The system is mechanical, so I
on’t know to what extent it could match my past. It could only help me
ith the cell count, but I must do the correlation! I would trust the cell count
ecause I think the system must be taught by me!’’

nderstandability. All physicians wish to understand the reasons be-
ind a system classification. They believed the explanations could be
he basis for a dialogue with the system; an interviewee claimed, ‘‘I
ould like to dialogue with the system that would become a real interlocutor
7

ith which to carry out the cell classification process’’. And continued, ‘‘I a
hought the system should have classified a cell as eosinophilic: since that did
ot happen, I discarded its decision. In this case, the system should tell me
hy it classified it that way and then ask why I discarded it’’. The system
ould become an interlocutor, a mechanical collaborator, and must

emain so. One interviewee added that system explanations could be
elpful when the physician is a neophyte and is approaching rhinology
or the first time. In fact, thanks to the dialogue with the system, the
eophyte can learn how to classify the cells of the nasal mucosa.

. Human-centered redesign of Rhino-Cyt

By combining the conceptual framework illustrated in Section 4
ith the insights gained through the initial interviews with the rhinocy-

ology experts, we identified a set of requirements to redesign the
ser interface for the Rhino-Cyt system. As highlighted in Fig. 5, the
ew user interface comprises five distinct areas that serve different
asks in the negotiation process, allowing the users to scrutinize the
I model outcomes, also based on explanations, and enact model
econfigurations when they identify wrong model behaviors.

The new Rhino-Cyt prototype has been implemented as a web-based
pplication integrating all the required functionalities. Nevertheless,
or the sake of experimentation, the outcome of the analysis has been
urposely crafted to test the different cases needed for the evaluation.

.1. Displaying the classification output

The classification result is the main output of the Rhino-Cyt system;
ccording to the insights gathered from the interviews (Theme 2.1),
his is the result in which the users are most interested. As discussed
ith the rhinocytologists, it is shown on a class-by-class basis in an
verview screen that shows the high-level results (Fig. 6). Physicians
an then select a class to examine the results more in detail. Rhino-Cyt
hows all instances classified in the selected cytotype, and the users
an use a dropdown menu to change the visualized class (Fig. 5(a)).
he instances are grouped by three levels of classification confidence,
omputed by the AI model as low, medium, and high. In accordance
ith the Theme ‘‘Trust and control’’ (Theme 2.2 in Section 5), an
dditional ‘‘verified’’ group is created if the user manually confirms
classification: physicians clearly highlighted their need to confirm

he system classification. In addition, the confidence-based grouping
hows the system’s capabilities, adhering to guidelines for Human–
I interaction that suggest helping users understand how often the
ystem could commit errors [48,49]. This also aligns with the need
or understandability the physicians highlighted during the interviews
Theme 2.3). A sidebar allows the user to inspect the properties of a
ingle instance by clicking on its image. The topmost area of the sidebar
hen shows an enlarged image of the selected instance and details on
he classification results.

.1.1. Allowing interventions and reconfiguration
To accommodate the need for control and trust highlighted by

he interviewees (Theme 2.2), a specific area of the user interface
mpowers the users to intervene in the AI model to take control of
ts decisions: dedicated UI controls available in this area allow the
sers to mark cell classification as correct or wrong and these actions
onstitute feedback for the system to learn how to modify its behavior.
his feature holds particular significance when addressing exceptional
ases, outliers, or instances that the AI model may not have accurately
dentified [4]. By incorporating this feature, the Rhino-Cyt interface
lso aligns with best practices in the HCAI field, addressing the efficient
uditing and editing by the users of an AI model outcome [48,49].
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Fig. 5. The Rhino-Cyt redesigned interface.
6.1.2. Providing adaptable clarifications
The final two areas in the lower-right corner of the interface are ded-

icated to explanations. Among different types of explanation (e.g., tex-
tual, visual, etc. [50]), a textual explanation is provided, designed
in accordance with social science guidelines that emphasize the im-
portance of providing the most distinctive characteristics for each
class [51]. The textual explanations can be edited on-demand to let
the users indicate wrong behaviors and possible corrections. Depending
on the nature of the features highlighted in the explanation, users can
take actions such as marking the explanation as accurate or wrong or
adjusting feature values used in the explanation (e.g., if the system
recognizes a cell as red, while the user perceives it as purple), thus
allowing the user to align the model with their perspective.

To enforce the understandability of the model decision-making
process, which in turn can favor users’ trust [52,53], the last area of
the interface shows additional counter-examples that enable the users
to compare the selected instance with instances from other classes [50].

To provide on-demand access to information while maintaining
the interface minimal [54], both clarification areas are collapsible,
ensuring that users can request additional information when needed
without being overwhelmed by data that may be deemed irrelevant or
8

excessive for the task at hand. This responds to the aspects highlighted
by the code ‘‘Support’’ of Theme 2, identified in the initial interviews.

6.2. AI-model architecture

Besides adopting an adequate interaction paradigm, the strategies
discussed in Section 4 require adequate AI model architectures. To
avoid typical drawbacks of post-hoc feature-based explanations [29],
we propose the ‘‘gray-box’’ architecture depicted in Fig. 7 to create an
AI model that can provide explanations while still utilizing images as
input data set. The architecture comprises two distinct blocks: the first
focuses on feature extraction from images, employing feature-specific
black-box models (e.g., CNNs in the current Rhino-Cyt prototype). The
rationale is that explanations do not need to detail why a particular
qualitative feature was obtained, as this is likely to be of minimal
interest to end users [51]. The second block handles the final clas-
sification by employing a decision tree that generates explanations
starting from the features extracted by the previous block, thus enabling
clarifications. A pivotal role in the classification is played by the model
calibration, which is carried out to output a classification with three
levels of confidence: low, medium, and high. This calibration activity
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Fig. 6. Rhino-Cyt’s redesigned overview screen.
Fig. 7. The proposed AI-model architecture.
could be enhanced by the adoption of specific metrics, such as the ECI
(Estimated Calibration Index) provided in the evaluation framework
described in [55].

Given its white-box nature, this model is configurable, allowing end
users to edit the features and the parameters used in classification,
thus enabling reconfiguration. In particular, the reconfiguration can be
operated in different ways: (i) automatically at the feature-level: when
the user marks an explanation as right or wrong, the instance is added
to the dataset to train the feature-specific model that is responsible for
the explanation; (ii) automatically at instance level: when the user marks
a classification as right or changes the class, the instance is added to the
dataset to train the final classification model; (iii) manually at feature-
level: the system may expose parameters of the final classification
model, allowing the user to disable the usage of certain features that
may have been wrongly learned in the training process.

7. Evaluation study

An exploratory study was conducted to assess to which extent the re-
designed interaction paradigm, based on the three strategies illustrated
in Section 4, improved the users’ understanding and control in the
9

interaction with the AI system. The study was structured as a within-
subject usability test with a thinking-aloud protocol. The details of the
study are reported in the following.

7.1. Participants

We employed convenience sampling to recruit a diverse group of
9 physicians (4 F, 5 M), from different Italian hospitals. Their de-
mographic details are reported in Table B.6. The participants have
been recruited through personal contacts. These participants varied in
seniority and expertise within the field of rhinocytology. Participants’
ages ranged from 30 to 70 years, with a mean age of 53.44 years (SD =
13.74). Their professional experience varied from 10 to 20 years, with
a mean of 14.89 years (SD = 5.78), except for one participant with
only 2 years of experience. Before their participation, all physicians
provided explicit informed consent for their involvement in the study.
None of the participants had previous experience with the Rhino-Cyt
system. None of the interviewees recruited for the initial investigation
(Section 5) took part in this second study.
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Fig. 8. A photo of a user during the user test, showing Rhino-Cyt’s redesigned layout.
7.2. Methods

Rhino-Cyt prototypes. We utilized the two versions of the Rhino-Cyt sys-
tem: the initial Rhino-Cyt (referred to as ‘‘original’’) and the redesigned
prototype introduced in Section 6 (referred to as ‘‘redesigned’’). Both
prototypes were implemented as Web applications. By default, in
the ‘‘redesigned’’ interface, explanations were visible while counter-
examples were collapsed. To maintain control over the dataset shown
in the prototype, we introduced incorrect instances of cells to evaluate
the usefulness of features such as explanation and reconfiguration in
case of both correct and wrong classified cells. Efforts were made to
optimize UI component reuse, to ensure a consistent visual experience
between the two prototypes, minimizing potential biases from purely
aesthetic differences. Fig. 8 shows a participant during the user test,
showing the default layout of the prototype.

Platform for remote test. A custom platform developed using Node.js
managed the study. Once opened, participants were presented with a
consent form, and upon acceptance, one of the prototypes was opened.
Participants completed the tasks, and the platform administered the
questionnaires. The platform then displayed the second prototype, with
the order of administration counterbalanced across participants.

Outcome measures. The study focused on assessing participants’ work-
load, acceptability, trustworthiness, User eXperience (UX), as well as
the impact of the system on human and professional values.

To assess the workload, we used the NASA Task Load Index (NASA-
TLX) questionnaire, a well-established tool for assessing subjective
workload [56]. It includes questions and rating scales that assess men-
tal, physical, and temporal demands, performance, effort, and frustra-
tion and provides insight into user-perceived workload.

To evaluate the UX, we performed a content analysis of quali-
tative data obtained from answers to the open questions and from
the recorded video footage of participants interacting with the pro-
totypes. Content analysis was used in this study because it provides
valuable information about user engagement, task performance, and
user satisfaction [57] and can help identify patterns and trends in users’
behaviors.
10
Regarding acceptability, the Unified Theory of Acceptance and Use
of Technology (UTAUT) was used to measure performance expectancy,
effort, expectancy, attitude toward using technology, behavioral inten-
tion to use the system, self-efficacy, and social influence [58].

Trust in the Rhino-Cyt system was measured using the Trust in
Automated Systems Test (TOAST) questionnaire [59]. This tool assesses
trust in different aspects of automated systems, such as reliability,
transparency, and overall trustworthiness.

Finally, we also engaged physicians in evaluating how design
choices might impact human and professional values within the con-
text of cytological analysis. This assessment followed the principles
of Value-Sensitive Design [60], which defines ethical acceptability in
terms of how much the technology supports their personal (or, in this
case, professional) values. Four values were selected as relevant for
physicians:

• Autonomy : the degree to which physicians using the tool can plan
and act in a way that supports their goals.

• Accountability : the possibility of uniquely tracing physicians’ ac-
tions and the tool’s responses.

• Freedom from Bias: concerns about potential systematic unfairness
due to technical or socio-technical biases.

• Identity : understanding who physicians are in terms of profes-
sional skills and competencies when using the tool.

7.3. Procedure

This section details the procedure adopted for the user study. The
overall procedure is shown in Fig. 9. Twenty potential participants
from a group of rhinocytologists were invited to join the study through
personal emails, SMSs, and WhatsApp messages. Nine physicians ex-
pressed their availability to participate in the study. Participants were
scheduled for 90-min appointments over the following two weeks.
Due to their locations across Italy, a remote user test was organized
using Microsoft Teams (with the exception of one participant, that
participated in presence). Participants received a link to the MS Teams
room and the study platform via email.
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On clicking the MS Teams room link, the participant found two
esearchers (a conductor and an observer) waiting. After welcoming
nd thanking the participants, the conductor instructed them to open
he link to the study platform. A consent form was presented, and
articipants were asked to sign it digitally. All participants gave their
onsent. Participants then provided their gender, age, and email ad-
ress. Being a within-subject study, the participants experience both
onditions but the order was randomized.

In each of the two conditions, participants were presented with
ne of the prototypes and asked to complete four tasks. These tasks
ere designed to observe user behavior and preferences concerning the
I model’s clarification and intervention features. The tasks were as

ollows (presented in random order):

1. Check the classification of class ‘‘muciparous’’ cells and correct
errors, if any.

2. Check the classification of class ‘‘eosinophils’’ cells and correct
errors, if any.

3. Identify misclassified cells in class ‘‘neutrophils’’ and correct
errors, if any.

4. Identify cells misclassified in class ‘‘ciliated’’ and correct misclas-
sifications and explanations, if any.

After completing the tasks, participants filled out the NASA-TLX,
TAUT and TOAST questionnaires. They were then given a 5-min
reak. After the break, participants repeated the entire procedure with
he second experimental condition.

A semi-structured individual interview was conducted after partic-
pants completed tasks with both prototypes. Specifically, participants
ere asked to share general comments on the two prototypes and to dis-

uss the value-based design dimensions. Then, they were introduced to
arious values related to their role as professional physicians and were
sked to rank the impact of the system (Rhino-Cyt) on these values.
dditionally, they discussed any differences they observed between the

wo interfaces regarding these values and were invited to suggest other
alues for consideration.

.4. Quantitative data analysis and results

In the following subsections, the study results along the outcome
easures, i.e., workload, acceptability, and trustworthiness, are re-
orted. Wilcoxon Signed Rank test was computed to analyze the results
f the NASA-TLX, UTAUT, and TOAST because of the violation of nor-
al distribution (assessed with the Shapiro–Wilk test). An alpha level

f 0.05 was used for all statistical tests. The rank-biserial correlation (𝑟)
was calculated as a measure of the effect size of the difference between
experimental conditions; this test is suited for non-normally distributed
interval data, as the one of our study (normality assessed with Shapiro–
Wilk test). A value of 𝑟 = 0 implies the absence of a relationship.
Values of 𝑟 below ±0.29 are considered indicative of a weak correlation,
between ±0.30 and ±0.49 indicate a moderate correlation, and finally,
11

values between ±0.50 and ±1 suggest a strong correlation [61]. a
7.4.1. Workload
The analysis of the workload perceived by participants while using

the two prototypes resulted in very similar low, thus, positive values
(Original M = 25, SD = 12.13; Redesigned M = 23.7, SD = 9.12). The
result of the Wilcoxon Signed-Rank test was not statistically significant.
Also the observed effect size 𝑟 is very small, 0.06.

To gain more insights from this analysis, the six subscales of the
NASA-TLX, i.e., Mental Demand, Physical Demand, Temporal Demand,
Performance, Effort, and Frustration (each scale ranges from 0 = low to
100 = high), were analyzed separately. The details for each subscale,
as well as the results of the Wilcoxon Signed Rank tests, are reported
in Table 2. Also, in these cases, no significant differences emerged and
all the observed effect sizes are 𝑟 small.

7.4.2. Acceptability
The analysis of the acceptability perceived by participants while

using the two prototypes resulted in very similar high scores (Original
M = 3.87, SD = 0.7; Redesigned M = 3.98, SD = 0.89). The result of
the Wilcoxon Signed Rank test was not statistically significant. Also the
observed effect size 𝑟 is small in all cases, except for physical demand.

To gain more insights from this analysis, the six subdimensions
f the UTAUT, i.e., Performance Expectancy, Effort Expectancy, Attitude
oward Using Technology, Behavioral Intention to Use the System, Self-
fficacy, and Social Influence, were analyzed separately. The details for
ach subscale, as well as the results of the Wilcoxon Signed Rank tests,
re reported in Table 3. Also, in these cases, no significant differences
merged and all the observed effect sizes are 𝑟 small in all cases.

.4.3. Trust
The analysis of the trust perceived by participants while using the

wo prototypes resulted in very similar high scores of the TOAST index
M = 5.7, SD = 1.5; Redesigned M = 5.7, SD = 1.5). The result of the
ilcoxon Signed Rank test was not statistically significant. Also, the

bserved effect size 𝑟 is very small in all cases.
To gain more insights from this analysis, we analyzed the TOAST

ubdimensions, i.e., understanding and performance. The details for
ach subscale, as well as the results of the Wilcoxon Signed Rank tests,
re reported in Table 4. Also in these cases, no significant differences
merged. Also, the observed effect sizes 𝑟 are very small.

.5. Qualitative data analysis and results

In this subsection, we report the results of the analysis of the
ualitative data, i.e., the observers’ notes and the participants’ oral and
ritten comments, and finally the results of the value-based evaluation.

.5.1. Content analysis
Various insights were extracted from the video analysis of the

articipants during the interaction with both versions of Rhino-Cyt.
enerally, participants approached the system addressing it as a tool for
isualizing the collected and classified cells, rather than as a tool that
ould automatize the diagnostic process: this highlights that Rhino-Cyt
as able to correctly set the expectations and trust level.

By examining the participants’ interactions with both system ver-
ions, we discovered interesting patterns of how physicians approach

n AI-enabled diagnostic tool, which we discuss in the following.
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Table 2
Results of the NASA-TLX questionnaire. For the means, 95% confidence intervals are provided.

NASA-TLX Mental Demand Physical Demand Temporal Demand Performance Effort Frustration

x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn

Classic 25 ± 9.33 21.67 36.67 ± 13.31 30 24.44 ± 14.44 20 28.89 ± 13.56 20 15.56 ± 19.26 10 26.67 ± 13.86 20 17.78 ± 10.01 10
Redesigned 23.7 ± 7.01 23.33 33.33 ± 14.89 30 18.89 ± 7.13 20 25.56 ± 11.6 20 14.44 ± 19.64 10 34.44 ± 19.26 30 15.56 ± 6.78 10

w-Test 𝑍 = −0.2
𝑝 = .859
𝑟 = −0.06

𝑍 = −0.5
𝑝 = .608
𝑟 = −0.2

𝑍 = −0.9
𝑝 = .395
𝑟 = −0.3

𝑍 = −0.09
𝑝 = .931
𝑟 = −0.03

𝑍 = −0.3
𝑝 = .766
𝑟 = −0.1

𝑍 = 0.3
𝑝 = .792
𝑟 = 0.1

𝑍 = 0
𝑝 = 1.000
𝑟 = 0
Table 3
Results of the UTAUT questionnaire. For the means, 95% confidence intervals are provided.

UTAUT Performance
Expectancy

Effort
Expectancy

Attitude Toward
Using Technology

Behavioral Intention
to Use the System

Self-Efficacy Social Influence

x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn x̄ Mdn

Classic 3.87 ± 0.54 4 3.72 ± 0.82 4 4.53 ± 0.33 4.5 4.17 ± 0.71 4.5 3.75 ± 0.96 4.25 4.39 ± 0.52 4.75 2.5 ± 0.86 2.5
Redesigned 3.98 ± 0.69 4.17 3.97 ± 0.98 4.5 4.64 ± 0.32 4.75 4.11 ± 1 4.75 3.86 ± 1.11 4.25 4.42 ± 0.43 4.5 2.89 ± 0.79 3

w-Test 𝑍 = 0.4
𝑝 = .676
𝑟 = 0.1

𝑍 = 0.7
𝑝 = .514
𝑟 = 0.2

𝑍 = 0.3
𝑝 = .752
𝑟 = 0.1

𝑍 = 0.7
𝑝 = .512
𝑟 = 0.2

𝑍 = 0.2
𝑝 = .833
𝑟 = 0.07

𝑍 = 0.2
𝑝 = .833
𝑟 = 0.09

𝑍 = 0.2
𝑝 = .833
𝑟 = 0.09
Table 4
Results of the TOAST questionnaire. For the means, 95% confidence intervals are provided.

TOAST Reliability Transparency

x̄ Mdn x̄ Mdn x̄ Mdn

Classic 5.7 ± 0.66 5.88 5.97 ± 0.35 6 5.42 ± 1.14 6
Redesigned 5.75 ± 0.82 6 5.94 ± 0.63 6 5.56 ± 1.11 6

W-test 𝑍 = 13
𝑝 = .547
𝑟 = 0.2

𝑍 = −0.07
𝑝 = .944
𝑟 = −0.02

𝑍 = 0.2
𝑝 = .866
𝑟 = 0.06
Pattern 1: Trade-off between experience and use of explanations. A strik-
ing behavior observed in most participants concerns the use of expla-
nations. In fact, explanations were almost always used only by the
less-experienced physicians, while the experienced ones felt they did
not need to be helped by an AI-based system. For example, participant
P3, an experienced physician, said: ‘‘I don’t need the system to tell me
why a cell is classified in a certain class. I can understand whether a
cell is correctly classified by looking at the picture rather than reading
the explanation. Therefore, I would only use the system because it speeds
up the classification process and the number of cells in each class, which
helps me to make a diagnosis’’. This comment could be useful to explain
he high workload of this participant (NASA-TLX score = 32.5/100),

mainly caused by the Effort sub-dimension; indeed, this sub-dimension
concerns how difficult it was to achieve the goal and the presence of
classification and explanations could be an obstacle to diagnosis if the
physician simply wants a system that counts the cells in each category.
On the contrary, less-experienced physicians found the explanations
very useful to support their decisions, especially in cases where they
were undecided. For example, the participant, who has only 2 years of
experience in this field, said: ‘‘I find the explanations very useful because,
in some cases, I could not remember the details of a class of cells and the
explanations helped me to remember and decide on the correct classifica-
tion.’’. This facilitation offered by the explanations to less-experienced
participants also emerges clearly as a positive aspect in the participant’s
questionnaire results. Indeed, she achieved one of the lowest workloads
(NASA-TLX score = 20/100), the highest acceptability value among
the participants (UTAUT score = 4.9/100), and the highest trust value
(TOAST score = 4.9).

Pattern 2: Lack of visual relationship between the explanation and its target.
A total of 3 users expressed difficulty linking the explanation to the
cells reported in each picture, especially when the pictures presented
several cells inside. Indeed, it was unclear to them which cell the
explanation referred to, which was more complicated in the presence of
12

similar cells. Participant P6, for example, said: ‘‘I can’t understand if this
explanation refers to one or both cells in the image’’. This comment may
explain the low acceptability of the system on his part (UTAUT score =
3.2/10), since an ineffective explanation may be perceived as causing
a low quality of the whole system, which in turn results in a low users’
inclination to adopt the system in real contexts. Another participant,
P7, also said: ‘‘It should be visually evident which cell the explanation
refers to’’. For this participant, we also observed a particularly high
workload (NASA-TLX score = 35.8/100) with the redesigned system,
caused mainly by the dimensions of Mental demand, Temporal demand
and Effort. The high values of these 3 dimensions may explain the
user’s effort to relate the explanations to the cells shown in the images.
An improvement in this aspect could probably positively impact the
workload of the entire system. This brings to mind the possibility of
using heat maps on images to highlight the connection between the
explanation and the cell involved.

Pattern 3: Experts are not omniscient — they cannot always correct the
system. Both systems made it possible to reclassify the cells deemed
to be wrong, albeit with different interaction mechanisms. Regardless
of the underlying interaction mechanism provided by the system, one
comment from participant P7 concerns the lack of complete knowledge
of an expert, who may know that a cell does not belong to a class
but may not know which class it belongs to. This implies the need
to include a new class to collect cells that need to be reclassified but
for which the physician cannot specify the correct class. In addition
to having an implication on the interaction and the UI, this comment
also implies a re-training of the model that differs from what would be
done by explicitly tagging an instance with another class: in this case,
the probability for a certain instance to belong a certain class must only
be lowered, and nothing can be deduced about the remaining classes.

Pattern 4: Cells classification features must be chosen also by experts,
not only by AI models. Both systems used by the participants started
from the actual training of a CNN-based model for the recognition and
classification of cells within slide images. However, the comments of 2
participants (P3 and P6) revealed that the visual features selected by
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the model to classify cells do not consider the real needs of physicians,
who instead need explanations of features not included in the classi-
fication process. For example, participant P3 said: ‘‘Other features that
are much more indicative for human classification would be useful in the
explanation, e.g. nuclear reinforcement useful for identifying muciparous
calciforms’’. Similarly, participant P6 said that ‘‘For eosinophils there
would be Degranulation, a typical feature of an allergic phase’’. These
comments suggest an a priori selection of a set of cell characteristics
that takes into account the needs of the end user in the diagnosis
process, otherwise explanations may be useless.

Pattern 5: The correction of explanations is often neglected. The re-
designed version of the system offered the possibility of editing the
explanation on demand so that the model could be fine-tuned. How-
ever, in very few cases the participants used this function of the system.
It is unclear whether this is due to a secondary role of this functionality
in the UI or whether the functionality itself was considered to be of
little use. In some cases, it appeared that users had difficulty using
this function because they were confused by the explanation, i.e., not
understanding which cell it referred to made it impossible for them to
correct the explanation. In other cases, on the other hand, it seemed
unnecessary for some users to correct the explanations because they
were considered to be of little relevance to them, particularly the more
experienced ones.

7.5.2. Value-sensitive assessment
As part of the debriefing interview, we ask participants to rank the

importance of four values that may pertain to this type of technologies.
Of the nine participants, one did not agree to participate in this part
of the evaluation. Table 5 reports the relative ranking of the other
physicians.

The values of autonomy and freedom from bias are those that seem
to be more at risk of being impacted by the system: the impact of
these values is regarded as either ‘‘very relevant’’ or ‘‘relevant’’ by
two participants. The physicians reporting those values acknowledged
potential risks that the system’s suggestions are taken for granted and
induce errors (that is, an impact on ‘‘freedom from bias’’). Two of
them explicitly mentioned a possible risk to autonomy because the
tool may prevent or somehow discourage a deep analysis of the cells
not explicitly selected. On the other hand, one physician claimed that
autonomy is not a relevant value because collaboration is fundamental
in the medical domain, and that requires reducing autonomy (it is
worth noting that the participant was not referring specifically to the
use of Rhino-Cyt but to the medical professional in general).

The risk of accountability raised more disagreement among the
participants: while four physicians dismissed it as relatively relevant,
other two found it quite a concern. For one of the two, the emphasis is
on the negative side: this kind of system can induce errors, impacting
the value of accountability (that is, whose fault is it if the physicians
accept the wrong suggestion?). The other participant stressed the other
aspect: the physician should always be held responsible, and human
decisions should easily override this system. This stance confirms the
adequateness of including reconfiguration mechanisms in a paradigm
for Human–AI interaction in the medical domain.

Finally, the risk posed to the physicians’ professional identity seems
overall not perceived as relevant. The only physician who ranked this
risk as ‘‘relevant’’ did not comment on this decision but claimed that
the other values are even less impacted. We can assume that all these
professionals are used to employing digital interfaces in their work, and
both the Rhino-Cyt interfaces might look like standard tools.

All the physicians are positive about using this type of tool overall.
As emerged during the initial interviews, they commented that cytolog-
ical analysis is just a step in the diagnostic process, and possible errors
cannot have dramatic consequences. One of them actually recognized
that using such tools might be beneficial not only for the sake of
efficiency but also as a way of fostering more objectivity in this kind
13

of analysis.
Table 5
Relative ranking of values as reported by the physicians. Each cell reports the number
of participants that ranked each value as of a particular relevance.

Very
relevant

Relevant Relatively
relevant

Not much
relevant

Autonomy 3 4 0 1
Freedom from bias 3 3 2 0
Accountability 2 0 4 2
Identity 0 1 2 5

Only one of the physicians had an explicit preference for the in-
terface without explanation because it was regarded as more efficient:
they claimed that they do not have time to delve into long digressions
about the system’s motivation for a suggestion, yet they also acknowl-
edged that, in case the only task of the specialist is cytological analysis,
such explanations might be helpful.

Two of the eight participants strongly preferred the new interface
because, in case of misalignment between the user’s and the system’s
classification, the explanation may help understand the system’s in-
terpretation and clarify the issue. On the other hand, the other two
participants preferred the old interface because they claimed the physi-
cian should not be bothered by the reasons for the system’s different
interpretation (that is, the physician is always correct). It might be in-
teresting to note that the two former participants are the younger (and
less experienced), while the latter are among the most experienced.
This aspect may highlight a potential educational or scaffolding role
for AI-based tools, as already emerged from the initial interviews.

8. Discussions

In HCI and AI, the integration of computer-aided diagnosis tools for
physicians has been a subject of significant research and experimen-
tation (see, for example, [62–64]). In this work, we tried to enlarge
the perspective from the usability and the acceptance of a specific
tool to the wider proposal of a conceptual framework, together with
its application and evaluation to a specific tool. This section discusses
the lessons learned toward future adaptations and application of this
framework.

8.1. Lessons learned

Lesson 1—Expertise-driven insights: Tailoring AI clarifications for optimal
user engagement. Our conceptual framework emphasizes the impor-
tance of clarification in promoting user understanding and control
over AI systems. The study reaffirms this, revealing a pattern in user
engagement based on expertise levels, and this divergence in prefer-
ences aligns with the framework’s call for meaningful and accessible
explanations. As reported in Pattern 1 (Trade-off between experience
and use of explanations), a significant portion of users opted not to
utilize clarification. Specifically, experienced physicians emerged as a
group showing a high confidence level in the system’s decisions, thanks
to their knowledge, without additional explanations. In contrast, the
physician with less experience (only 2 years) exhibited a perceived
benefit from clarification, finding it supportive in their decision-making
process. This divergence aligns with established principles in user in-
terface design, which promote flexibility and adaptation to give control
and freedom to the users so that they can feel that they are in control
of the system themselves — see, for example, the notion of Internal
Locus of Control promoted by the Shneiderman’s golden rules for UI
design [65]. Existing research, such as [66], substantiates the notion
that expert users, like senior physicians, often rely on robust mental
models and pre-existing knowledge. Thus, they require less explicit in-
formation. On the other hand, novice users, akin to younger physicians,
tend to derive substantial benefits from detailed clarifications [67].

This phenomenon also aligns with the principles of cognitive load [68]
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and the expertise reversal effect [66]. Therefore, future investigations
in this domain could delve into identifying specific expertise levels at
which explanations become more or less beneficial. This exploration
may also lead to adaptive interfaces [69] capable of tailoring the
provision of explanations to align precisely with the user’s expertise,
thereby optimizing user experience and system trust. This lesson further
confirms the importance of the negotiation process outlined in the
conceptual framework (Section 4), with an emphasis on the system’s
capability to understand when and how users seek clarification and
contribute to the iterative cycle of clarification and reconfiguration.

Lesson 2—Customizing explanations: User-centered design for enhanced
cognitive resonance. Our investigation into the utilization of explana-
tions uncovered a pivotal user behavior: a preference for explanations
tailored to features that are perceived as distinctive for the user and,
thus, useful. This aspect clearly emerged from the observation of the
user interaction, as described in Pattern 4 (Cells classification features
must also be chosen by experts, not only by AI models). The emphasis
on ‘‘distinctive and odd’’ features in users’ preferences for explanations
also reflects the well-established concept of saliency in visual percep-
tion, i.e., users tend to prioritize information that stands out [70].
In addition to the system-driven personalization discussed above, this
lesson, therefore, emphasizes the necessity of enabling user-driven
customization, which can be highly favored by an active negotiation
process during runtime interaction with the AI system. By gathering
and incorporating user feedback and preferences dynamically, explana-
tions can be tuned in real time to align with individual cognitive styles
and actual needs, optimizing both user engagement and understand-
ing [71,72]. The process of negotiation is essential in this context and
requires mechanisms enabling a continuous and interactive exchange
between the user and the AI system.

Users’ preference for explanations tailored to distinctive features of
the classified entity (the medical image in our study) aligns with the
framework’s call for strategies that move away from the ‘‘black-box’’
model. The innovative aspect is the opportunity given to the users to
negotiate with the system what the explanations should focus on. This
lesson also reinforces the importance of involving users in the design
process, as suggested by the conceptual framework, to identify, already
at design time, possible dimensions along which to tailor explanations,
coupled with interaction mechanisms to let the users express their
preferences.

Lesson 3—Unveiling user needs: The unspoken desire for intervention in
AI-assisted systems. The study brought forth a noteworthy aspect: al-
though participants did not explicitly express the need for intervention
functionality in the system, the usage of the two systems showed that
this is a desirable requirement. This was driven by users utilizing
functions in both system versions to correct erroneously classified cells.
Notably, the simplicity of the reconfiguration process played a pivotal
role: while the original version allowed for reconfiguration with a
single click, the redesigned version required two steps, leading to a
notable drop in the user completion rates. The implicit user inclination
toward intervention and reclassification highlights the importance of
adequate intervention mechanisms; this aligns with the concept of
user agency and control in interactive systems to give the users the
capability to intervene and modify system outputs as needed [73]. This
result also highlights the importance of devising intuitive and high-
efficiency interaction paradigms that are able to compete with the
immediateness of the AI systems’ autonomous behaviors. Concerning
our conceptual framework, the user inclination toward intervention
functionality confirms the importance of mechanisms allowing users
to initiate clarification and reconfiguration sessions. This, in turn,
highlights the need for interactive negotiation strategies, enabled by a
dialog for mutual comprehension between the user and the AI system.
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Lesson 4—Focusing attention: Enhancing medical imaging interpretation
with localized explanations. A notable user behavior observed in in-
teractions with the redesigned system highlights the importance of
localized contextual explanations (see Pattern 2, Lack of visual rela-
tionship between the explanation and its target). Participants expressed
a preference for explanations to be specific to the part of the image
under model classification. Some participants articulated the need for
a visual cue, such as highlighted cells, to accompany explanations.
This would assist in associating the explanation with the addressed
image features, preventing ambiguity, especially in scenarios where
the presence of multiple cells, makes it challenging to discern which
cell the explanation pertains to. In the domain of medical imaging
and diagnosis, localizing explanations to specific regions of interest
aligns with the principles of attention and visual perception [74].
This approach ensures that users can direct their focus to relevant
information within complex visual stimuli, a situation occurring for
medical images with multiple cells or structures.

The emphasis on localized contextual explanations also supports the
negotiation process outlined in our conceptual framework: providing
explanations specific to the part of the image under classification can
contribute to improving user comprehension within the negotiation
cycle, as it improves the system’s ability to present outcomes in per-
ceivable and interpretable ways. It is also in line with recent results in
XAI that highlight the significance of providing contextual explanations
that are pertinent to the user’s ongoing task and environment [26,27].

Lesson 5—Empowering trust: The role of transparent learning in human-
centered AI systems. The study highlighted how not all users utilized
the functionality for reconfiguring the model. On the contrary, users
expressed appreciation for the model’s transparent learning from its
mistakes instead of explicitly correcting the model, as reported for
Pattern 5 (The correction of explanations is often neglected). The model’s
capacity to learn from its errors reinforces the feedback-driven adap-
tation concept, and favors active user participation in the learning
process. This lesson, therefore, emphasizes the role of the negotiation
process, where users systematically assess the AI model’s outputs and
take intervention steps. It also highlights the importance of trans-
parency, user control, and robust feedback mechanisms, especially
in sensitive domains like medical diagnosis. By gathering and ac-
commodating user preferences for transparent learning over explicit
reconfiguration, AI systems can improve trust and offer a sense of user
agency, thus contributing to the evolution and refinement of these
systems within critical domains.

Lesson 6—Considering experts’ knowledge limitations in the design process.
In the overall design process, as the one proposed in this research, it is
important to recognize the limitations of expert knowledge within the
context of system correction and reclassification. This was highlighted
by the content analysis, and in particular emerged from Pattern 3
(Experts are not omniscient — they cannot always correct the system),
which revealed that experts may not always possess the complete
knowledge required to correct the decision of an AI-based system [75,
76]. This lesson has multifaceted implications for the design of these
kinds of systems. Firstly, it highlights the need for system designers
to consider the limitations of expert knowledge when developing in-
teraction mechanisms and UI elements. The comment from participant
P4 highlights the potential impact on user experience and the design
of system interfaces, emphasizing the importance of accommodating
the expert knowledge uncertainty within the system [76]. Furthermore,
it also extends to model re-training within Human-centered systems.
Unlike the conventional reclassification of an instance into another
class, the scenario described by participant P4 necessitates a different
approach. For example, the probability of a specific instance belonging
to a certain class can only be lowered, without providing informa-
tion about the remaining classes. Different aspects, from interaction
mechanisms to model reconfiguration techniques, need to consider the
fallibility of expert knowledge [75].
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Lesson 7—Preserving values: A human-centered approach to mitigating risks
in AI interactions. Physicians identified autonomy and freedom from
bias as values most at risk of being impacted by the AI system. The
perceived risk to accountability showed mixed opinions, while their
professional identity was considered less relevant. A fear of deskilling
in case of long-run use clearly appears (Section 5.2.2). This aspect
needs to be further investigated. More in general, this lesson rein-
forces the importance of understanding and addressing user values in
designing ethical and value-sensitive AI interactions. Identifying and
prioritizing values at potential risk is essential. Addressing concerns
related to autonomy and bias should be a focal point in system design,
emphasizing features that empower users and mitigate biases to ensure
ethical and value-sensitive AI interactions. This lesson acknowledges
the importance of the negotiation process where users progressively
engage with clarifications and AI model reconfiguration, preserving
their capability to intervene and give feedback on the outcome relia-
bility to mitigate biases. Beyond allowing for interactive improvement
of the model, the negotiation process might also be helpful in prevent-
ing deskilling [77–79]. Therefore, AI applications should adopt clear
mechanisms to suggest and enable intervention.

Lesson 8—Efficiency and objectivity as drivers for adoption. Physicians
expressed positive attitudes toward using AI tools for cytological anal-
ysis, recognizing potential benefits in terms of efficiency and objectivity
of the diagnosis process. However, opinions varied on the necessity
of detailed explanations, with some favoring efficiency over elabo-
rate justifications. Highlighting the efficiency gains and objectivity
enhancement brought by AI tools can be key in promoting adoption.
Offering customization options for explanation depth caters to diverse
preferences, ensuring that both efficiency-focused and detail-oriented
users find value in the system. This lesson aligns with the framework’s
focus on new paradigms for interaction and clarifications that cater
to diverse user preferences. Favoring efficiency gains and objectivity
enhancement is in line with the negotiation process, where users are
in control, assess the AI model’s outputs, and seek clarifications when
necessary, as well as being able to customize the explanation depth.

8.2. Discussion on the quantitative results

Although the quantitative analysis did not find statistical differ-
ences, possibly due to the small sample size, the results can still be
helpful for reproducibility. In addition, the results highlight situations
that are worth to be investigated in the future. However, we want
to emphasize that, given the absence of significant differences, the
following discussion is mostly speculative and should be considered as
a guide for future research and additional longitudinal studies.

The Rhino-Cyt redesigned version generally seems to improve the
original for all evaluated properties, although the effect sizes are
mediocre for all dimensions, except for the physical demand in the
NASA-TLX, where a moderate effect is observed.

The workload is generally lower (25.00 for the original version and
23.70 for the redesigned version). More specifically, the participants
felt that fewer mental, physical, and temporal demands were requested
by the redesigned version. The effort required to fulfill the task in-
creases. However, this increased effort may aid in decreasing the risk
of deskilling, promoting the redesigned version of the system as an
example of frictional AI : friction is added deliberately to reduce the risk
of deskilling [80].

Similarly, the system acceptability slightly improves (3.87 for the
original version and 3.98 for the redesigned version). This result sug-
gests that the negotiation between users and the AI in the redesigned
system reduces the negative feelings toward AI. The negotiation process
allows users to edit the AI output interactively, eliminating the feel of
replacement that users may experience when dealing with AI-enabled
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systems (Section 5).
Finally, trust in the system also increases (5.69 in the original
version and 5.75 in the redesigned version). More precisely, the per-
ceived reliability slightly decreases while the perceived transparency
increases. Although it may seem trivial, this suggests that introducing
explanations may introduce an additional point of failure in the system.
However, overall, the added transparency increases the trust in the
system.

9. Conclusions

Within the field of HCAI, the work illustrated in this article aims to
investigate new classes of AI-assisted systems, where the drawbacks of
Black-Box approaches, and especially model biases due to the lack of
domain knowledge, are overcome by means of tools that can empower
domain experts to control and customize the outcome of AI algorithms.
The work promotes the importance of human-centered methods as
the key to better understanding the final users’ domain. The applied
research methodology, emphasizing users’ involvement in inquiring
about foundational aspects of a research challenge, is commonly used
in HCI but rarely used in AI. This article emphasizes the benefits of
applying human-centered methods. It also proposes and validates a
Human–AI interaction paradigm based on three strategy that open new
perspectives for designing AI-based systems. Overall, the goal is to over-
come Black-Box approaches, so that the end users can understand the
algorithmic decisions and possibly influence them with their perception
and knowledge; these benefits can also contribute to building increased
trust in the AI model. These are indeed among the main criticalities
observed for AI tools; they need to be addressed, especially in the field
of medicine where physicians’ judgment still plays a central role and
experts must be in control and trust the technology.

The insights gathered through the human-centered redesign of the
Rhino-Cyt tool are encouraging. However, additional user studies are
needed to identify and characterize the salient features for explanations
that can effectively sustain rhinocytologists’ tasks within the proposed
conceptual framework. One interesting result would be the definition
of a human-centered model for explainability, capable of capturing the
specificity of the addressed domains and the specific needs of the target
users for providing customized and meaningful support. Technical
experiments will also compare the performance of the proposed AI-
model architecture to that of Black-Box models, to investigate how the
reconfigurations operated by the end users can contribute to improving
the model performance. Further and extensive investigations will also
assess the validity of the proposed methodological framework beyond
the specific domain Rhino-Cyt refers to. In particular, we acknowledge
that, for the sake of simplicity, we did not fully investigate the impor-
tant case in which the user does not agree with the system when the
system is actually right. This scenario, which is of course plausible, may
trigger further problems if not recognized during the negotiation phase.

In rhinocytology, the application of AI to cell image classification
represents a solution where the consequences of misclassification are
nuanced and generally less critical than in other medical domains.
Although the AI system will demonstrate high levels of accuracy in the
future (a preliminary evaluation of classification models for our system
has been reported in [12]), it is important to note that AI tools will
never be fully accurate. In rhinocytology, misclassification of a cell type
does not usually result in serious patient harm. This is mainly because
rhinocytology is often used as a preliminary assessment rather than a
definitive diagnostic tool. In other medical fields, such as oncology or
cardiology, the margin for error is much smaller: AI misclassifications
can lead to incorrect treatment decisions with potentially serious con-
sequences, including delayed diagnosis of life-threatening conditions,
administration of inappropriate treatments, or even patient death. This
difference in error tolerance highlights the need for domain-specific
considerations when integrating AI into medical diagnostic processes.
It emphasizes the need for strong fail-safes, human oversight and the

use of AI to complement human expertise rather than replace it. It also
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highlights the importance of AI systems being transparent and able to
defend their decisions so that medical professionals can make informed
decisions based on the insights generated by AI.

It is worth noting how the quantitative assessment of the redesign
did not find statistically significant differences between the two in-
terfaces or significant effect sizes, while the verbal protocol and the
observations allowed us to gain interesting insights. Of course, there
might be multiple reasons, from the small sample to the lack of real
challenge because of the lab setting. Yet, a final lesson learned might
be an encouragement to apply mixed methods to investigate the use
and acceptance of these novel systems to prevent partial and distorted
inferences by the users.

Overall, our research’s ultimate goal will be to define methodologies
for crafting AI interfaces aligned with user values, able to give value to
human competence while still recognizing the benefits deriving from
AI automation offered by AI tools. The lessons learned through our
study highlighted several relevant aspects, from the nuanced nature
of user preferences to the interplay between system autonomy and
user control, and the importance of identifying a trade-off between
automation efficiency and explanation supports in AI-assisted medical
systems. Designing interfaces that align with these values is paramount
for the successful adoption of such medical systems and positive user
experiences.
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Appendix A. Interview

Warm-up

• What is your specialization?
• How many years have you been a cytologist?
• Where do you work?

Main section

• Who are their patients? What symptoms do they typically en-
counter?

• What is the process you follow to reach a diagnosis?
• Could you please explain the cellular population process?
• Do you use specific methods of classifying cells?
• Do you use specific tools?
• How likely/frequent are classification errors and how do you

prevent them?
• Do you collaborate with other doctors?
• Are there challenges you face during your work?
• Are there any difficulties you encounter during your work?

Further possible questions

• Do you have expectations regarding the use of an AI-based system
to carry out your work?

• At what stage of the cell population process do you wish to have
an AI-based system?

• To what extent would you trust the AI-based system?
• If you are not sure about an answer provided by the system, what

information should it provide to help you distinguish a system
error from your own error?

• What factors could increase trust in the system?
• What should be the balance between efficiency and accuracy?
• Do you have any idea what information would clarify how the

system works?
• How would you like to interact with the system?
• Would you like to understand how your choices influence the

final result and/or make the system itself evolve?

Cool off

• In summary, what are your thoughts on the technological revolu-
tion of artificial intelligence and how they believe it will change
the work of doctors?

• Additional comments

Appendix B. Participants details

See Table B.6.

Appendix C. Questionnaire answers

See Tables C.7–C.9.
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Table B.6
Details of the nine participants. The skills in IT technologies are self-evaluated from 1 to 10 (inclusive). The Italian region groups are identified
following the standard Nomenclature of Territorial Units for Statistics (NUTS).

Participant Gender Age Skills in IT technologies Years of experience in rhinocytology Geographic area

1 M 70 7 18 Insular Area
2 F 66 4 14 North-East
3 F 49 3 18 Central
4 M 67 9 15 North-West
5 F 29 8 2 South
6 M 56 10 17 North-East
7 M 49 8 20 South
8 M 57 8 20 South
9 F 38 5 10 South
Table C.7
Answers to the NASA-TLX questionnaire.

Participants Original Redesigned

Mental
Demand

Physical
Demand

Temporal
Demand

Performance Effort Frustration Workload Mental
Demand

Physical
Demand

Temporal
Demand

Performance Effort Frustration Workload

P1 30 20 40 10 20 10 21.7 10 10 10 0 10 10 10.2
P2 10 10 10 0 10 10 8.3 40 10 20 10 40 20 19.8
P3 30 10 20 20 20 20 20.0 30 30 30 10 90 30 32.5
P4 30 30 30 10 30 20 25.0 10 10 20 0 20 10 14.4
P5 50 20 20 80 30 20 36.7 20 20 20 80 30 10 29.6
P6 20 10 20 0 10 10 11.7 30 30 50 0 20 30 22.7
P7 60 50 50 10 60 50 46.7 50 20 50 10 50 10 35.8
P8 60 60 60 0 10 10 33.3 70 30 10 0 10 10 21.7
P9 40 10 10 10 50 10 21.7 40 10 20 20 40 10 21.5
Table C.8
Answers to the UTAUT questionnaire.

Participants Original Redesigned

Overall Performance
Expectancy

Effort
Expectancy

Attitude
Toward Using
Technology

Behavioral
Intention to
Use the System

Self-Efficacy Social
Influence

Overall Performance
Expectancy

Effort
Expectancy

Attitude
Toward Using
Technology

Behavioral
Intention to
Use the System

Self-Efficacy Social
Influence

P1 3.7 3.8 4.5 3.8 4.3 5.0 1.0 2.0 1.0 4.5 1.0 1.0 3.3 1.0
P2 2.2 1.0 4.3 2.0 1.0 3.3 1.5 4.4 4.0 5.0 5.0 4.8 4.8 3.0
P3 4.0 4.0 4.3 4.8 4.3 4.0 2.5 4.7 4.5 5.0 4.8 5.0 5.0 4.0
P4 4.5 4.0 5.0 4.8 4.8 5.0 3.5 4.1 4.8 4.0 5.0 4.3 4.3 3.0
P5 4.5 4.0 5.0 4.3 5.0 4.8 4.0 4.9 5.0 5.0 5.0 5.0 4.8 4.5
P6 3.9 4.0 4.8 3.8 3.0 4.8 3.0 3.2 3.0 4.5 3.3 2.0 4.0 2.0
P7 4.0 4.3 4.0 4.8 4.5 3.5 2.5 4.4 5.0 4.0 4.8 5.0 4.5 3.0
P8 4.1 4.8 5.0 5.0 4.0 5.0 1.0 4.0 4.5 4.8 4.0 3.5 5.0 3.0
P9 3.8 3.8 4.0 4.5 3.0 4.3 3.5 4.2 4.0 5.0 4.3 4.3 4.3 2.5
Table C.9
Answers to the TOAST questionnaire.

Participants Original Redesigned

Reliability Transparency Overall Reliability Transparency Overall

P1 6 5 5.5 4.5 1.8 3.15
P2 5.5 1.8 3.65 6.5 5.8 6.15
P3 5.75 6 5.875 6 6 6
P4 6.75 6 6.375 5.25 5.4 5.325
P5 6 6.2 6.1 6.75 6.6 6.675
P6 6.5 6 6.25 6.5 6 6.25
P7 5.25 5.6 5.425 5.5 6.2 5.85
P8 6 7 6.5 7 6.2 6.6
P9 6 5.2 5.6 5.5 6 5.75
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