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Abstract—Milano Retinex is a family of spatial color algo- 
rithms inspired by Retinex and mainly devoted to the image 
enhancement. In the so-called point-based sampling Milano 
Retinex algorithms, this task is accomplished by processing the 
color of each image pixel based on a set of colors sampled 
in its surround. This paper presents STAR, a Segmentation 
based Approximation of the point-based sampling Milano Retinex 
approaches: it replaces the pixel-wise image sampling by a novel, 
computationally efficient procedure that detects once for all the 
color and spatial information relevant to image enhancement 
from clusters of pixels output by a segmentation. The experiments 
reported here show that STAR performs similarly to previous 
point-based sampling Milano Retinex approaches, and that STAR 
enhancement improves the accuracy of the the well known 
algorithm SIFT on the description and matching of pictures 
captured under difficult light conditions. 

Index Terms—Retinex, Milano Retinex, Spatial Color Algo- 
rithms, Image Enhancement 
EDICS: ELI-COL, TEC-RST, SMR-HPM 

 
I. INTRODUCTION 

ILANO Retinex is a family of spatial color algorithms 

mainly devoted to color image enhancement [1]. As 

suggested by the name, these algorithms are inspired by 

the Retinex theory [2], introduced by Edwin Land and John 

McCann to estimate the so-called human color sensation, i.e. 

the color as seen by humans. Before Retinex, the human color 

vision system was supposed to work similarly to a camera, 

where the color signal from any observed point correlates with 

the luminance of that point and is independent of the other 

colors present in the scene [3], [4]. The experiments carried out 

by Land and McCann showed that, on the contrary, the human 

color vision is a local spatial process. Precisely, the human 

color sensation depends not only on the photometric cues of 

the observed point, but also on the spatial arrangement of the 

surrounding colors, with the colors closer to the observed point 

influencing more the color sensation than those located farther. 

Based on these principles, Land and McCann proposed 

an algorithm to estimate the human color sensation, starting 

from an RGB image. The image is first pre-calibrated, i.e. 

its digital values are converted into the actual luminances of 
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the observed scene [5], [6]. The color channels of the pre- 

calibrated image are processed separately, and each of them is 

mapped on to a new image, called channel lightness. In order 

to collect information about the spatial color distribution, the 

image support, i.e. the set of pixels composing the image, 

is scanned by a number of random paths. These define the 

locality of the algorithm, i.e. the range of action of the color 

influence. Over each path, Retinex computes the product of 

the ratios of the intensities of adjacent pixels, preventing, of 

course, division by zero. Every ratio close to one is cast to one, 

and every cumulative product exceeding one is cast to one. 

Then, Retinex computes the lightness at each pixel as a moving 

average of the cumulative products over the paths scanning the 

image. This mechanism is called ratio-product-threshold-reset- 

average mechanism from its computational phases. Finally, the 

color lightness, i.e. the RGB image composed of the channel 

lightnesses, is remapped according to a reference scale of 

appearance. The resulting image is an estimate of the human 

color sensation. 

When no pre- and post-calibrations are applied, the Retinex 

algorithm works as an image enhancer, i.e. it takes as input a 

RGB image and outputs a novel RGB image, that usually has 

a higher brightness and more visible details than the input. 

Milano Retinex is a family of algorithms performing spatial 

color processing procedures in line with the principles of the 

Retinex lightness computation. These algorithms have been 

mainly used for the image enhancement purpose. In this 

framework, they take as input a RGB image, skip the pre- 

and post- calibration steps (which are fundamental for human 

color sensation), and process the color channels separately by 

implementing novel, alternative definitions of the locality and 

new equations for the lightness. In Milano Retinex, each pixel 

is regarded as a target, and the channel lightness is computed 

pixelwise from a set of visual features extracted from pixels 

around the target. The first Milano Retinex implementations, 

e.g. [7], scan the neighborhood of each target by a set of 

random paths ending at the target. The lightness is the average 

of the cumulative products of the intensity ratios along each 

path, within the threshold- and reset rules of the original 

Retinex. According to [8], subsequents Milano Retinex im- 

plementations replace the ratio-threshold-reset rule with an 

intensity re-scaling procedure. This latter computes the target 

channel lightness as the ratio of the target channel intensity 

and a local reference white, i.e. an intensity level depending 

on the intensities of the pixels around the target, and, in some 

cases, also on image gradient and spatial cues. 
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Many Milano Retinex approaches model locality through a 

spatial sampling procedure that analyzes the channel intensi- 

ties over the image support [9] or over a part of it, such as 

paths [10], [11], [12], random sprays [13], [14], [15], edges 

[16], [17]. The local reference white at any target is computed 

by averaging the maximum of the intensity (e.g. [10], [11], 

[13], [14], [16]) or the maximals of the target intensity (e.g. 

[17] and [9]) over the sampled sets1. In some algorithms, these 

averages are weighted by functions of the distance between the 

sampled pixels and the target, e.g. [15], [16], [17], according 

to the empirical evidence that colors close to the target are 

more relevant than those far away. Other Milano Retinex 

algorithms, like [18], [19], [20], avoid the sampling procedure, 

and estimate the local reference white by a statistical analysis. 

In particular, the work in [18] re-writes the random paths 

sampling scheme in terms of absorbing Markov chains, while 

the papers in [19] and [20] propose a statistical model of the 

sampling scheme of [13]. 

The level of the image enhancement produced by the Milano 

Retinex methods depends on the locality model and on the 

lightness equation. In this respect, the Milano Retinex family 

provides a large variety of image enhancement techniques. 

This paper presents STAR, a novel spatial color algorithm 

for image enhancement, inspired by the Milano Retinex 

approaches. STAR is a Segmentation based Approximation 

of Milano Retinex sampling based methods. STAR aims at 

cutting down the computational burden of the image sampling 

and at reducing the number of operations needed to compute 

the lightness. STAR accomplishes this task by employing 

coarse color and distance information, computed from clusters 

of pixels detected by a segmentation and independent of the 

target. Moreover, STAR models locality by considering the 

mutual distances between the segments, instead of the pixel- 

wise distances between the target and the sampled pixels, as 

usually done in many other Milano Retinex approaches. 

STAR takes as input a RGB image and processes its color 

channel independently. The lightness of each channel is com- 

puted by two steps. In the first step, STAR performs a global 

channel analysis. STAR segments the channel in many regions, 

let’s say P1, . . . , PM , with M  > 0. For each region Pj , STAR 

selects a set of representative elements, which are the pixels 

maximizing  the  distance  transform  over  Pj ,  and  computes 

the  maximum  intensity  value  over  Pj .  Then,  it  computes 

the mutual distances between the segmented regions as the 

minimum distances between their representative elements. In 

the second step, STAR implements a pixel-wise analysis. For 

each target x, STAR detects the segment Pi including x, then 

computes the lightness at x as the average of the maximals of 

the target intensity over the M intensity values selected from 

the channel segments. The contribution of every maximal to 

the lightness is weighted by a function inversely proportional 

to the distance between Pi and the region containing the 

maximal, defined in the previous step. 

STAR entails the following novelties and computational 

advantages. 

1In this framework, the maximals of the target intensity I(x) are the 

intensities strictly greater than I(x). If no maximals exist, the local reference 
white is set up as the target intensity. 

First, differently from the sampling based Milano Retinex 

approaches, STAR does not define explicitly a set of sampled 

pixels, rather it picks up a set of intensity and distance values 

(i.e. the maximum intensity over each region and the mutual 

distance between regions), that in general do not correlate. 

In fact, the representative elements generally do not coincide 

with the pixels with maximum intensity over each segment. 

The number of intensity values sampled by STAR equals 

the number of segments, while the number of representative 

elements depends on the shapes of the segments. Both the 

numbers of the sampled intensities and of the representative 

elements are usually much lower than the number of pixels 

that need to be processed by the most sampling-based Milano 

Retinex algorithms. This procedure strongly decreases the 

number of operations to compute the lightness . 

Second, the set of sampled information is independent of the 

target: differently from many Milano Retinex approaches, that 

need to repeat the sampling procedure at each target, STAR 

computes the spatial and color features relevant to the lightness 

only once, before the pixel-wise estimation of the lightness. 

Third, the spatial terms weighting the maximals of the in- 

tensity target are pre-computed, cutting down the number of 

operations for the pixel-wise lightness computation. 

The performance of STAR on image enhancement have been 

evaluated in two objective ways: first, by comparing some 

visual features, related to the understanding of the image 

content, on real-world color images before and after applying 

STAR; second, by studying if and how the color enhancement 

produced by STAR improves the accuracy of the well known 

Scale invariant feature transform (SIFT) algorithm [21] on the 

description and matching of pictures captured under difficult 

light conditions. These experiments show that STAR performs 

similarly to previous point-based Milano Retinex approaches 

[22], meaning that STAR is a good approximation of them, 

and that its color image enhancement effectively increases 

the SIFT accuracy. These tests also show that STAR, here 

equipped with the segmentation algorithm [23], is computa- 

tionally more efficient than other point-based sampling Milano 

Retinex approaches. A comparison with some non-Milano 

Retinex enhancers is also proposed. Finally, the STAR per- 

formance has been judged by human observers, which looked 

at the images before and after STAR and expressed their 

preference in terms of details and content visibility. 

The paper outlines as follows: Section II reports the state 

of the art on the sampling based Milano Retinex algorithms; 

Section III describes STAR; Section IV details the evaluation 

of the STAR performance; Section V draws the conclusions. 

 
II. RELATED WORK 

This Section provides a brief survey of the sampling-based 

Milano Retinex algorithms, from which STAR is derived. 

More details can be found in [1] and [22]. 

Let I be an intensity channel of a RGB image. Let S(I) 
indicate the support of I, i.e. the set of the spatial coordinates 

of the image pixels. Hereafter, I is represented as a function 

from S(I) to the set of the intensity values, that here are 

normalized over (0, 1], with zero excluded to prevent division 
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Fig. 1. In clockwise order: the sampling figures computed by ETR [11], RSR 
[13], GREAT [17] and GRASS [16] at the barycenter of the image support. 

 
 

by zero. In particular, for any y S(I) such that I(y) = 0, 

I(y) is mapped on to I(y)+ϵ, where ϵ is a positive, real value 

close to zero. This modification makes I strictly positive. Let 

L indicate the lightness of I. 
The sampling based Milano Retinex approaches compute 

the lightness at any pixel x of S(I) by the following equation: 

The Milano Retinex algorithms propose different sampling 

figures (see Figure 1). For instance, the algorithm [7] uses 

random paths starting from x and obeying the rules of a 

Brownian motion. The algorithms Termite Retinex (TR) [10], 

Energy-driven Termite Retinex (ETR) [11] and its fast version 

Light Energy-driven Termite Retinex (L-ETR) [12] introduce 

image-aware paths, i.e. curves that - differently from those 

proposed in [7], [8] - are not completely random, but depend 

on visual features of the image. Specifically, the TR, ETR 

and L-ETR paths are thought as walks of artificial termites, 

that move from x to other image places in search for the 

local reference white, and adhere as much as possible to 

image edges. Edges are key elements for lightness computation 

because of their relevant role in human color formation [2]. 

A mechanism inspired by the insect communication system 

spreads the swarm around each target in order to avoid the 

multiple exploration of a same image portion. TR and ETR 

differ to each other in the way to compute the paths (by local 

rules in TR, by minimizing an energy functional in ETR), 

while L-ETR is an optimized version of ETR. In [7], [10], 

[11], [12], the sampling figure is the union of the paths from 

x: the regions close to x are sampled more densely than those 

far away. This is in line with the empirical evidence that the 

color sensation depends more on the colors close to the target 
I(x) 

L(x) = 
w(x) 

(1) 
than on those located farther. 

Based on this fact, Random Spray Retinex (RSR) [13] and 

where w(x) is the local reference white at x, and w(x) > 0. 

The value of w(x) is obtained by processing the intensities of 

one or more pixels sampled around x. The union of these sets 

is the so-called figure sampling at x. 

Equation (1) has been introduced by the Milano Retinex 

algorithm in [8], which explores the neighborhood of each 

target by n random paths γ1, . . . , γn ending at x. Each path 

γk (k = 1, . . . , n) is represented as a function from a discrete, 

ordered set Γk :=   1, . . . , lk       N to S(I), with γk(lk) = x, 

to S(I). The lightness L(x) is the average (over n) of the 

cumulative products of adjacent intensities along each path, 

with the threshold- and reset- constraints of the original 

Retinex theory: 

its subsequent versions Spatially Weighted Random Spray 

Retinex (swRSR) [15], Light Random Spray Retinex [14], 

and Smart Light Random Spray Retinex [24] sample the 

neighborhood of x by random sprays, i.e. sets of pixels 

randomly sampled around x with radial density. 

The algorithm GRASS [16] explores the target neighborhood 

by squares with random size and orientation and with the 

target located on the middle point of a square side. GRASS 

scans each square exhaustively by parallel segments, and 

detects over each segment the pixel maximizing the gradient 

magnitude and the closeness to the target. As in TR and ETR, 

the image scanning is optimized to avoid over-exploration. 

GRASS can be seen both as a path-based and a point based 

sampling method: in fact, the pixels selected from each square 
n lk−1 

L(x) = 
1 Σ Y 

δ  (R  ), (2) 
 

 

can be viewed as control points of a path, but, at the same time, 
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Here, ε indicates a positive number close to zero, introduced 
to implement the threshold rule. The paper in [8] shows that, 
for the most real-world images, the threshold operation is 

unessential, thus it can be skipped. Within this approximation 

(i.e. ε = 0), Equation (2) reduces to Equation (1), where w(x) 
is the average (over the number of paths) of the reciprocals of 

lightness equation by taking into account the Euclidean dis- 
tances between the target and the selected edges. 

The equation of the local reference white w(x) strongly 

depends on the sampling scheme. 

The methods TR, ETR, L-ETR, RSR, swRSR and GRASS 

the maximum intensity over each path. compute the term α(x)  =     1  in Equation (1) by this 

) mk k 
tk 

) mk k 
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exceeds a pre-defined threshold. Locality is modeled in the 
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ΣN    

vi(x) 1  

• Ij  is the maximum value of the intensity over Pj , i.e. 

Ij  = max{I(u)  :  u ∈ Pj}; (7) 
RSR,swRSR,GRASS N 

i=1 vi(x) • Lj is the set of pixels of Pj maximizing the squared 

where the Si’s, i = 1, . . . , N , are the paths of TR, the random 

sprays (including also the target x) of RSR and swRSR, 

a stripe along the paths of ETR and L-ETR, and a set of 

pixels adjacent to the edges selected by GRASS. The vi’s are 

real, strictly positive numbers, introduced to tune the spatial 

interaction among colors. Specifically, in [8], TR, ETR, L- 

ETR, RSR, and GRASS the values of v ’s are constant (they 

Euclidean  distance  transform  over  Pj ,  i.e.  the  elements 

of Lj maximize the Euclidean distance from the boundary 

∂Pj : 

Lj  =   uj Pj  : d(uj , ∂Pj ) =  max  d(uj , v) (8) 
v∈∂Pj 

where 
ǁ uj − v ǁ2 

 
 i 

are set to 1.0), while in swRSR they are inversely proportional 
d(uj , v) = 

diag(I)2     
, (9)

 
to the distance of the target from the pixels with the maximum 
intensity over the spray. The algorithms [14] and [24] propose 

some optimizations of RSR, where the final value of the 

lightness is smoothed in order to reduce the chromatic noise 

due to the random sampling. The Brownian approach [7] uses 

the ratio-reset-threshold mechanism in Equations (2, 3), that, 

as observed before, on the most real-world images, is well 

approximated by Equation (1), and, precisely, by Equation (4) 

with the vi’s equal to 1.0. 

The method T-Rex uses the following equation: 

and diag(I) is the length of the diagonal of S(I). The 
number of pixels of Lj  depends on the geometry of Lj : 

if Pj is a circle or a square, then Lj contains only one 

element,  that  is  the  barycenter  of  Pj ;  if  Pj   is  like  a 

dumb-bell, then Lj contains two elements, located at its 

extremes. Due to the discrete nature of the data, in the 

STAR implementation, ∂Pj  is the internal border of Pj , 

which is treated topologically as a closed set; 

Given the set {(Ij, Lj)}j=1,...,M , STAR computes the map 

δ : {1, . . . , M } × {1, . . . , M } → [0, 1] measuring the mini- 
1 1 

α (x) = 
v 

I 

I  I  I 
 

  

(5) 
mum,  mutual  distances  between  the  pixels  of  the  sets  Lj’s, 

i.e.: 
δ(i, j) = min{d(u , v ) : u  ∈ P , v   ∈ P }. (10) 

where I is an intensity value with I > vII(x) and vI  is 

a weight, inversely proportional to the minimum distance 

between x and any pixel y S such that I = I(y). The 

sampling figure of T-Rex at x does not appear explicitly in 

this equation, but it is fundamental to detect the intensities of 

pixels satisfying the inequality I > vII(x) and their weights. 

If no pixels satisfy this condition, then w(x) = I(x). 
The method GREAT implements the following formula: 

i   j i i   j j 
 

Pixel-Wise Processing 

For each pixel x ∈ S(I), STAR detects the segment Pi such 

that x ∈ Pi (i ∈ {1, . . . , M }). Then it computes the subset 

Wx ⊂ Λ = {(Ij, Lj)}j=1,...,M such that 

Wx = {(Ij, Lj) ∈ Λ : Ij > I(x)}. (11) 

Finally, STAR computes the lightness L(x) as follows: 

αGREAT(x) = v(x, y)   1   y∈S:I(y)>I(x) I(y) 
 

 

 (6) 1 Σ I(x) 
 

  

 

 

 (12) 

Σ
y∈S:I(y)>I(x) 

v(x, y) L(x) = Σ Ij ∈Wx (1 − δ(i, j)) Ij ∈Wx (1 − δ(i, j))  
I 

. 
where S the set the pixels adjacent to the sampled edges 

and to the target, and v(x, y) is a spatial term weighting the 

contribution of the maximals of the target intensity. 

All these Milano Retinex approaches contribute to investi- 

gate the concept of locality [4] and propose a large variety of 

color image enhancement techniques inspired by Retinex. 

 
III. STAR 

Let assume the notation introduced in Section II. STAR 

computes the lightness of I by two steps, called respectively 

Global Processing and Pixel-wise Processing. In the Global- 

Processing step, STAR segments the image and extracts spatial 

and color information from its segments; in the Pixel-wise Pro- 

cessing step, STAR processes the image pixel-wise according 

to the previous global analysis. 

Global Processing 

Let P be a segmentation of I, partitioning I into M > 0 
regions P1, . . . , PM . For each j = 1, . . . , M , STAR computes 

the pair (Ij, Lj) where: 

L is usually linearly rescaled to range over {0, . . . , 255}. 

Figure 2 illustrates the salient operations and the data of 

the global processing of STAR. The input image in (A) is 

partitioned in M = 160 regions, shown in (B). In (C), each 

segment is filled in with its maximum intensity value. The plot 

in (D) shows the global distance transform map ∆ of the image 

segments, i.e. for each pixel p with spatial coordinates (r, c), 
∆(r, c) = d(p, ∂P ) where P is the segment including p. The 

red circles in (E) highlight the representative elements of the 

segments. This example clearly shows that elongated regions, 

like those at the bottom of the image, have more representative 

elements than convex segments, as for instance the triangular 

region on the top of the home at right. The image in (F) depicts 

the M M matrix encoding the distances δ among the image 

segments. 

The choices of the Euclidean distance, of the distance 

transform, and of the regional maximum intensities for the 

lightness computation are motivated as follows. 

Use of the Euclidean distance: The use of the Euclidean 

j 

(4) 
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Fig. 2. (A) The red channel of an image from TEST35COLOR dataset; (B) its segmentation by [23] with M = 160; (C) image with the intensity values 
sampled by STAR: each segment of (B) is filled in with the gray level of the maximum value of the channel intensity over that segment (here, black = 0, 
white = 255); (D) the regional distance transforms ∆ (see text); (F) the M × M map encoding the mutual distances between the segments. 

 

distance to model locality is justified by many tests on human 

color perception [25], [4]. This metrics has been already em- 

ployed in many previous Milano Retinex and Milano Retinex 

inspired approaches, like all the methods briefly described in 

Section II, the statistical approaches in [19] and [20], and the 

Retinex inspired color equalization approach in [26]. 

Use of the distance transform: Two different methods for 

computing approximated mutual distances between segments 

have been considered: they describe the position of each 

segment respectively by its barycenter and by the pixels 

maximizing the regional distance transform. 

The barycenter of a region is commonly used to describe 

the position of the region in a compact and computationally 

efficient way. Nevertheless, measuring the distance between 

regions as the distance between their barycenters does not pro- 

vide a sufficiently accurate estimate of the spatial information 

required by Milano Retinex. In fact, while the representative 

elements of STAR are always inside the region, the barycenters 

may also fall out of them. This is the case of a non-convex 

region, let’s say Pi. whose barycenter falls out of Pi, and 

coincides with the barycenter of another region, let’s say Pj , 

adjacent to Pi (i = j). The distance between the barycenters 

is null: this information poorly describes the spatial relative 

position of Pi and Pj and cannot be used to weight the 

maximum intensities of Pi and Pj . This example clearly shows 

that pixels inside the segment describe better the location of 

the segment. Among the many possible choices of internal 

pixels (e.g. points randomly sampled inside the region), STAR 

considers the pixels maximizing the distance transform over 

the segment, i.e. the most internal points. 

Use of the Maximals of the Target Intensity: The computation 

of the lightness as weighted average of the maximals of 

the target intensity is inspired by previous Milano Retinex 

approaches, like GREAT and T-Rex (see Section II). 

STAR shares with GREAT also the extraction of spatial and 

color information independently of the target. This procedure 

allows to cut down the computational cost due to the pixel- 

wise sampling procedure. Nevertheless, as already highlighted 

in Section I, STAR strongly differs from GREAT and from 

the approaches mentioned in Section II, because it does not 

define explicitly a sampling figure, rather it samples a set of 

relevant intensity values and a set of pixels, not necessarily 

correlated to the sampled intensities and employed to estimate 

the spatial weights of the maximals in the lightness equation. 

This characteristic makes STAR an innovative spatial color 

algorithm inspired by Milano Retinex. 

The current implementation of STAR embeds the segmen- 

tation algorithm [23]. For each color channel, this algorithm 

represents S(I) by a planar weighted graph, where the nodes 

are the image pixels, the edges connect pixels which are 

neighbors in the 8-connected sense, and the weights on the 

edges measure the absolute difference of the intensities of 

the connected pixels. The segmentation divides S(I) in M 
regions P1, . . . , PM . For any i, j = 1, . . . , M , i = j let Di 
indicate the largest weight in the minimum spanning tree of Pi, 

and let Dij the minimum weight of the edges connecting Pi 
with Pj . The regions Pi  and Pj  are characterized as follows: 

the value of Dij is large relative to the values of Di and 

Dj with respect to a threshold depending on the size of 

the segments and tunable by the user. This segmentation has 

been choosen among others, e.g. [27], [28] for three main 

reasons: it exploits local spatial intensity variations, that are 

key-points in Retinex theory; it captures perceptual important 

regions; finally, it has a short execution time, thanks to its 

complexity nearly linear with I . Low complexity and short 

runtime are very important features, since STAR aims at 

reducing the computational burden and the execution time 

of point-based sampling Milano Retinex approaches. Within 

this segmentation, the computational complexity of STAR is 

O(M |I|), and since for the most real-world images M    |I|, 
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then O(M |I |)   O(|I |2)  (see also Section IV-E). 

IV. EXPERIMENTS 

Quantifying the performance of an image enhancement 

algorithm is a difficult task, mainly because of the lack 

of agreed measures [4], [29]. An universally optimal image 

enhancer does not exist: in fact, any image enhancer is usually 

designed for specific tasks [30], therefore its performance 

must be estimated according to the application for which 

the enhancer has been developed. Consequently, different 

evaluation measures have been proposed in the literature, e.g. 

[31], [32], [33], [34]. 

In this work, the performance of STAR have been evaluated 

by three ways: first, by measuring and comparing a set of 

numerical image features before and after applying STAR 

(Subsection IV-A); second, by measuring the benefit of the 

image enhancement produced by STAR on the unsupervised 

description and matching of images performed by SIFT [21] 

(Subsection IV-B); finally, by perceptual tests with human 

observers that compare the images before and after applying 

STAR and state which image has the most understandable 

content and the highest detail visibility (Subsection IV-C). 

The performance analysis has been carried out on two 

datasets with real-world color images (Subsection IV-D). The 

results are discussed in Subsection IV-E. 

 
A. Objective Visual Feature Comparison 

The following numerical image features are usually mod- 

ified by enhancers: the mean brightness (f0), the multi- 

resolution contrast [35] (f1), and the distance of the probability 

density function of the image brightness from the flatness 

(f2). These features are related to the human understanding 

of the image content, and they have been already employed to 

evaluate previous Milano Retinexes, e.g. [11], [16], [17], [9]. 

The fi’s are computed on the brightness B  of any color 

image J: here B is the mono-chromatic image obtained by 

averaging pixel-by-pixel the channel intensities of J. Precisely, 

f0 is the mean value of B. The multi-resolution contrast f1 
is the mean value of the local contrast over a pyramid of 

images, built up from a sequential down-scaling of B by 0.5 

as proposed in [35]. The value of f2 is the L1 distance between 

the intensity probability density function of B and of a variable 

uniformly distributed over (0, 1]. It measures the flatness of 

the histogram of B. 

The values of f0 and f1 (f2, resp.) of the color lightness are 

expected to be higher (lower, resp.) than those of the input 

image. The amount of the variations of the fi’s depends on 

the input image, on the sampling scheme and on the lightness 

equation. In particular, if the image content is already clear 

(resp. unintelligible), then the modification due to STAR will 

be slight (resp. very evident), and the variation of the fi’s 

before and after STAR will be negligible (resp. remarkable). 

An example is given in Figure 3. 

The perceptual differences between the input and the output 

images are measured here by the CIELab distance ∆E be- 

tween any RGB image and its color lightness [36], assuming 

a D65 illuminant. The value of ∆E is the mean value of the 

L1 distances between the color coordinates of these images 

expressed in the Lab space. The higher ∆E, the higher the 

amount of perceptual changes between the observed images 

is. 

STAR performance is also evaluated through the mea- 

sures NIQE [33] and BRISQUE [34]2. NIQE and BRISQUE 

quantify image distorsions that may be introduced by image 

processoing algorithms and that may affect the naturalness of 

the image. In this framework, image naturalness is defined as 

the regularity of low order image statistics, computed globally 

or locally. Regularity is modeled by multivariate Gaussians 

of the brightness estimated from training sets of images, that 

in [34] also include information about subjective judgements. 

NIQE and BRISQUE measure departures from this regularity: 

algorithms which decrease NIQE and BRISQUE, increase the 

image naturalness. 

 
B. SIFT Description and Matching before and after STAR 

The algorithm SIFT (Scale Invariant Feature Transform) 

[21] describes the visual content of an image by a set of 

histograms encoding the intensity distribution around a set of 

high-contrast pixels, termed key-points and invariant to image 

re-scaling. SIFT takes as input a gray level image I, and 

extracts its key-points as the local extrema of a difference 

of Gaussian functions computed over a series of re-scaled and 

smoothed versions of I. Key-points are filtered to retain only 

high-contrast pixels and edges with high gradient magnitude. 

SIFT associates each key-point to an histogram with 128 

entries, representing the intensity distribution in a 16 16 key- 

point neighbourhood. SIFT matches two images I and I′ by 
individually comparing their descriptors through the Euclidean 
distance. The best candidate match for each keypoint of I is 

its nearest neighbor among the key-points of I′. A candidate 
match is retained only if the ratio of its distance from the 

closest neighbor to the distance of the second closest is smaller 

than a fixed threshold τ (here τ = 0.7). 

Since STAR works as an image enhancer, and, in particular, 

it improves the visibility of the image details and thus its 

contrast, it can be very useful to detect keypoints in images 

captured under difficult illuminant conditions, for instance 

due to dark environments, backlight, low exposure time of 

the camera. This paper studies how the SIFT performance, 

measured in terms of numbers of key-points and matches 

changes when such images are enhanced by STAR. 

 
C. Subjective Image Comparison 

Objective measures, like the fi’s, provide numerical esti- 

mates of the variations of visual perceptual features, but they 

are not able to model the complex mechanism of the human 

perception, which involves both physical and psychological 

cues. For this reason, subjective evaluation is often recon- 

mended to assess the performance of an image enhancers in 

applications like image visualization and video restoration, e.g. 

[37], [38]. Therefore, this work reports a subjective analysis 

2NIQE and BRISQUE have been computed by the routines implemented 
in MatLab Release 2017b. 
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Fig. 3. From TEST35COLOR: two images and their color lightness computed by STAR. In (B) the input image (on left) is poorly readable and the image 
enhancement effects of STAR (on left) are much more evident than those in (A), where the input image is already clear. 

 

of the STAR performance on a set of natural images (see 

Section IV-D). Thirty volunteers, with different gender, age 

and profession, were asked individually to look at each pair of 

images and to select the image with the most readable content 

and most visible details. Each image was displayed on a screen 

along with its version processed by STAR. The order of the 

images on the screen has been randomly choosen at the begin 

of the experiments and it was the same for all the observers. 

 
D. Datasets 

The database TEST35COLOR is composed of 35 real-world 

color images, acquired by different commercial cameras and 

depicting indoor and outdoor environments (e.g. Figure 3). 

Despite their small size, ranging from 202 149 to 260 252 

pixels, these images are suitable to test spatial color algo- 

rithms, because of the different distributions and size of bright 

and dark areas depicted in. Moveover, they have already been 

employed to test other Milano Retinexes, e.g. [11], [12]. 

The dataset FLIR20 is composed of two sets of 20 real- 

world color pictures, hereafter denoted by FLIR20-Le and 

FLIR20-He. These images, with size 640 480 pixels, have 

been captured by the FLIR camera FireFly FMVU-03MTC- 

CS 3 with automatic exposure control disabled. The images of 

FLIR20-Le and FLIR20-He depict the same scene, but they 

differ in the content visibility. In fact, the images of FLIR20- 

Le have been captured with low exposure, so that they appear 

very dark and their content is poorly visible. The images of 

FLIR20-He have been acquired with a higher exposure and 

their content is thus more understandable (see Figure 4). The 

suffix Le (He, resp.) in the database name means just “Low- 

Exposure” (“High Exposure”, resp.). 

The measures in Section   IV-A   have   been   evaluated 

on both databases. Perceptual tests have been carried on 

TEST35COLOR, which includes a larger variety of images 

than FLIR20. Finally, the color enhancement of STAR as a pre- 

processing step of SIFT to match images taken under difficult 

light conditions has been evaluated on FLIR20. 

 
E. Results and Discussion 

Tables I, II and III reports the objective measures and the 

evaluation of STAR in terms of SIFT performance, along with 

a comparative analysis of STAR against Milano Retinex and 

non-Milano Retinex approaches. The comparison with Milano 

Retinexes aims at proving that STAR effectively approximates 

point-based sampling approaches, while that with non-Milano 

3https://www.ptgrey.com/firefly-mv-03mp-color-usb-20-micron-mt9v022 

Retinexes aims at giving a broad picture of STAR in the 

image enhancement context. To enable a qualitative analysis 

of the results, the images from TEST35COLOR and FLIR20 

displayed in the figures from 1 to 7 are available along with 

their enhanced versions at full resolution in the supplementary 

material attached to this work. For FLIR20, the figures with 

overlaid SIFT key-points are also provided. 

The Milano Retinex methods matched against STAR are 

GREAT, GRASS, RSR and L-ETR. Here, the parameters of 

GREAT, GRASS and L-ETR have been set as suggested in 

[17], [16], [12] respectively, while the number N of sprays 

and the number m of pixels per spray in RSR are specified 

in the tables. The experiments on TEST35COLOR considers 

all these methods, while that on FLIR20 excludes GRASS 

and L-ETR because of their long execution time, which is not 

comparable with that of STAR. 

The non-Milano Retinex methods considered here are: his- 

togram equalization (HE), contrast-adaptive histogram equal- 

ization (CLAHE), naturalness preserved enhancement algo- 

rithm for non-uniform illumination images (NPEA) [39], non 

uniform low-light image enhancement (LIME) [40] and non 

local retinex contrast enhancement (NL-RETINEX) [41]. 

HE and CLAHE improve contrast by manipulating the dis- 

tributions of the image brightness (HE-L, CLAHE-L) or of 

the image color channels (HE-C, CLAHE-C). Specifically, 

HE spreads globally the intensity distributions, while CLAHE 

clips the input histograms at a predefined threshold X and 

locally re-distributes the image intensities. NPEA, LIME and 

NL-RETINEX 4 address the (ill-posed) problem of reflectance- 

illumination image decomposition in a constrained solution 

space and enhance the input image by lowering or removing 

its illuminant component. In particular, NPEA imposes the 

preservation of the local relative order of the illumination 

values. LIME implements a variational model based on the 

dark channel prior widely employed for dehazing [42]. In- 

spired by the work [43], which hypothesizes smoothly varying 

illuminants, NL-RETINEX achieve image enhancement by 

using non local (NL) differential operators. 

Tables I and II show that STAR modifies the input image 

by increasing its brightness, contrast and histogram flatness, 

and this behaviour is reported also by the other algorithms 

compared with STAR. The exact amount of the fi’s depends 

on the way the image colors are processed and thus varies from 

4NPEA, LIME and NL-RETINEX codes and parameters used here are 
available respectively at https://shuhangwang.wordpress.com/2015/12/14, 
https://sites.google.com/view/xjguo/lime and 
https://it.mathworks.com/matlabcentral/fileexchange/47562-non-local- 
retinex?focused=3833114&tab=function (without downsampling). 

http://www.ptgrey.com/firefly-mv-03mp-color-usb-20-micron-mt9v022
http://www.ptgrey.com/firefly-mv-03mp-color-usb-20-micron-mt9v022
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(c) 

Fig. 4. From FLIR20: (a) an image from FLIR20-LE, its under-exposed version from FLIR20-HE and its enhanced versions by STAR and other algorithms; 
(b) SIFT key-points (in green) detected on the images in (a); (c) the portion of an image from FLIR20 and of its enhanced versions. See also the Supplementary 
Material attached to this paper. 

 

 

Fig. 5. From TEST35COLOR: An image and its STAR color lightnessess obtained by varying the parameters of the segmentation [23]. 

 

algorithm to algorithm. Examples of image enhancement by 

STAR and/or by other enhancers are depicted in Figures 3, 4, 

5, 6, 7 (see also Supplementary material). 

On TEST35COLOR, the parameters of the segmentation 

algorithm (i.e. three values controlling the size of the segments 

and the image smoothness) have been tuned to produce a 

different number of segments (see Figure 5). The objective 

measures of STAR obtained by varying M are shown in Table 

I(A), where M denotes the mean number of image segments. 

On these data, a finer segmentation produces on average higher 

(smaller, resp.) values of f0 and f1 (f2, resp.) than a coarser 

one. It is to note that STAR performs image enhancement 

whatever the segmentation algorithm is. Anyway, different 

segmentations may yield different enhancement levels. There 

are two limit cases: (i) M = 0: STAR behaves like scale-by- 

max; (ii) M = I : STAR does not have any computational 

advantage, since its computational complexity is ( I 2). A 

general recommendation is to use a not too coarse and not too 

fine segmentation. The effects of the segmentation granularity 

(i.e. number of segments) on L can be inferred from Equation 

(12). These effects are related to the shape of the segments as 

well. Precisely, a fine segmentation tends to split any almost 

uniform region R more than a coarse segmentation. This 

means that, for any target x, more intensity values close to 

each other, let’s say I1, . . . , IK, are sampled from R and 

contribute to L(x). Within a coarse segmentation, where R is 

a unique segment, only the intensity Imax = max(I1, . . . , IK) 
contributes to L(x). The different values of L(x) output by 

these two segmentations depend on the spatial terms weighting 

the Ij ’s and Imax, i.e. on the shape of R  and more generally 

on the image content. From Equation (12) it follows that, if 

the  spatial  terms  weighting  the  Ij ’s  and  Imax  in  the  finer 

and coarser segmentations are comparable, then the finer 

segmentation outputs the highest value of L(x). In other cases, 

the result depends on the values of the Ij ’s and Imax  and of 

their distances from x. 
Tables I and II show that STAR performs similarly to 

GRASS, RSR and in particular to GREAT, meaning that 

STAR is effectively a good approximation of these point-based 

sampling approaches. L-ETR performs very differently from 

STAR, RSR, GRASS and GREAT because of its different 

sampling mechanism (path-based versus point-based). Among 

the point-based sampling methods, STAR yields the highest 

values of f0 and ∆E and the smallest value of f1, while the 

value of f2 is close to those of the other point-based sampling 

approaches (here we assumed M = 160 for TEST35COLOR). 

Among the non-Milano Retinex algorithms, NPEA is that 

reporting more similar values to STAR. 

On average, the effects of the color enhancements on the 

image regularity (in terms of NIQE and BRISQUE) differ on 

(b) 
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Fig. 6. TEST35COLOR: an example of color lightness computed by STAR in comparison with other approaches 

 

the two datasets. On TEST35COLOR, all the enhancers except 

GREAT decrease the naturalness of the input images: LIME 

provides the worst results, while STAR increase the NIQE 

and BRISQUE values of the input images by the 1.82% and 

0.57% respectively. On FLIR20, all the algorithms improve the 

image naturalness. On these data, STAR decreases the NIQE 

and BRISQUE values of the input images respectively by the 

7.96% and by the 19.86%. CLAHE-L and RSR achieve the 

lowest values of NIQE and BRISQUE respectively. 

Despite the objective measures reported in Tables I and 

II have a similar trend, the enhanced images exhibit impor- 

tant visual differences. A qualitative analysis shows that the 

non-Milano Retinex methods often over-enhance the images 

highliting unessential details and noise (see Supplementary 

Material) much more than STAR and Milano Retinexes. Ar- 

tifacts introduced by over-enhancing are particularly visible 

in the images processed by HE and CLAHE (see Figure 

4(c)). The presence of noisy edges may adversely affect the 

image description and matching, providing a verbose and often 

meaningless characterization of the image content, as proved 

by the experiments with SIFT. In this framework, the images of 

FLIR20-He and their enhanced versions have been compared 

with those of FLIR20-Le by SIFT. For this task, all the 

images have been converted to gray-scale and input to SIFT 

for description and comparison. Table III reports the mean 

The subjective analysis reports that the 59.71% of the 

observers prefers the images of TEST35COLORS processed 

by STAR, the 24.01% selected the input images, while the 

16.28% had no preferences. In general, when the brightness 

and the contrast are low and the intensity distributions are 

peaked, people prefer the enhanced image. When the content 

of the input image is already readable and thus it differs 

from the output at most for the presence of a color dominant 

(which is partially removed by STAR), then observers have no 

preferences or select one image upon their aesthetic feeling. 

For instance, in Figure 3, in (A) the 74.7% of the observers 

preferred the input image, while in (B) the 83.3% preferred 

the color lightness. 

 
TABLE I 

OBJECTIVE  EVALUATION ON (A) TEST35COLOR AND (B) FLIR20. 

(A) 

 
 

number of key-points (Nkp), the mean number of retrieved 

matches (Ntm) and the mean number of correct matches 

(Ncm), where a match is correct if it links corresponding 

key-points. On average, the value of Nkp on FLIR20-Le is 

much smaller than that on FLIR20-He. For some images of 

FLIR20-He, no key-points have been found (e.g. Figure 7(A)). 

All the enhancers considered here report a very high value 

of Nkp, often much greater than that of FLIR20-He. This is 

because these algorithms not only enhance actual, important 

details, but also the noisy pixels due to the camera low- 

exposure. On FLIR20, the worst performance is obtained by 

the non-Milano Retinex approaches (e.g. Figures 4(A) and 

(B), and Supplementary Material), that generally return a high 

percentage of noisy key-points and false matches. Among the 

Milano Retinex algorithms, the performance of STAR are once 

again very close to that of GREAT. Anyway, all the enhancers 

considered here improve the SIFT performance, retrieving at 

least 3 matches between corresponding images. 

(B) 
Algorithm f0 f1 f2[×10−3] ∆E 
FLIR20-Le (none) 32.39 6.67 6.00 - 

FLIR20-He (none) 73.65 15.51 4.05 28.28 

STAR (M = 1538) 124.54 12.43 4.73 52.13 
GREAT 106.71 12.59 4.71 43.18 
RSR (N = 20, m = 200) 87.00 15.09 4.06 34.93 
HE-C 139.14 24.65 3.95 57.45 
HE-L 138.37 24.76 4.72 54.89 
CLAHE-C (X = 8) 78.20 20.38 3.35 32.02 
CLAHE-L (X = 8) 69.98 18.71 3.73 25.97 
NPEA 118.84 15.89 4.26 51.50 
LIME 113.18 17.18 3.75 47.51 

NL-RETINEX 68.56 18.90 3.57 28.29 

 

From the computational view-point, STAR (with OST AR = 

O(M |I|))  is  the  most  efficient  algorithm  among  L-ETR, 

Algorithm f0 f1 f2[×10−3] ∆E 
INPUT    64.30 15.34 4.13 - 

STAR (M = 160) 98.62 19.98 3.16 20.82 

STAR (M = 137) 94.87 19.83 3.19 18.32 

STAR (M = 69) 91.76 19.49 3.27 17.04 
GREAT 96.93 19.74 3.29 18.88 
GRASS 89.19 20.81 3.14 16.65 
RSR (N = 20, m = 150) 87.41 20.66 3.20 14.33 
L-ETR 104.30 23.13 2.67 25.15 
HE-C 131.62 25.65 1.55 43.99 
HE-L 129.96 26.04 2.04 38.94 
CLAHE-C (X = 4) 100.72 27.09 2.23 27.86 
CLAHE-L (X = 4) 93.61 26.31 2.45 23.49 
NPEA 99.60 20.49 3.04 24.56 
LIME 125.81 27.81 2.21 32.92 

NL-RETINEX 84.18 22.32 3.08 23.34 
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(A) (B) 

Fig. 7. FLIR20: (A) SIFT key-points of an image from FLIR20-Le (left), of its corresponding version in FLIR20-He (middle) and of its color lightness by 
STAR (right); (B) key-point matching by SIFT between the image from FLIR20-Le enhanced by STAR and its version from FLIR20-He. 

 

TABLE II 
NIQE AND BRISQUE ON TEST35COLORS (A) AND FLIR20 (B). 
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TABLE III 
FLIR20: EVALUATION AND COMPARISON OF STAR COLOR 

ENHANCEMENT IN TERMS OF SIFT PERFORMANCE. 
 

Dataset Nkp Ntm Ncm Ncm/Ntm) 
FLIR20-He 588 – – – 
FLIR20-Le 117 68 41 0.60 
STAR 680 154 140 0.91 
GREAT 625 166 152 0.92 
RSR (N = 20, m = 200) 807 232 214 0.92 
HE-C 2660 385 165 0.43 
HE-L 2619 369 155 0.42 
CLAHE-C 2227 436 201 0.46 
CLAHE-L (X = 8) 1670 416 197 0.47 
NPEA 2233 391 113 0.29 
LIME 1260 444 270 0.61 

NL-RETINEX 1367 364 161 0.44 

 

 
GRASS, RSR and GREAT. L-ETR has the highest computa- 

tional complexity, i.e.  L−ET R =  ( I 2 log I). GRASS per- 
forms computationally better: in the worst case, i.e. when all 

the sampled squares have size |I|, the complexity of GRASS 

is    GRASS =    ( I 2), but in general,    GRASS    L−ET R. 
The computational complexities of RSR and GREAT are 

much lower than OL−ET R and OGRASS: they are respectively 

ORSR  = O(Nm|I|)  and OGREAT  = O(Σ|I |), with Σ  being 

the size of the GREAT sampling figure. In the most real- 

world applications, both Nm and Σ are greater than M , so 

that   ST AR is lower than   RSR and   GREAT . In particular, 

on a standard PC with CPU Intel(R) Xeon(R) CPU E3- 

1245 v6 @ 3.70GHz, on the images of FLIR20, the current 

implementations of L-ETR and GRASS require more than one 

hour, versus about 20 minutes of GREAT (with Σ  3  I )) 
and RSR (with N = 20, m = 200), and versus 11 seconds of 

STAR (with M = 1538). In these experiments, segmentation 

requires on average less than 0.1 seconds per channel. 

Finally, Figure 8 emphasizes an advantage of the determin- 

istic sampling of STAR against the random sampling of RSR, 

i.e. the absence of chromatic noise in the image processed by 

STAR. 

 

(a)  (b)  (c)  

Fig. 8. (a, left) A toy image displaying a bright square over a dark one, 
and its color lightnesses by (b, left) STAR and (c, left) RSR (N = 20, m 
= 100). The small squares in (a, b, c, right) are enlargements of the bottom 
right corner of the images on left. Enlargements have been equalized to allow 
the visualization of the noise generated by RSR. This noise is totally absent 
in the image processed by STAR. 

 

 

 
V. CONCLUSIONS 

This paper presented STAR, a spatial color algorithm in- 

spired by Retinex principles. STAR introduces a novel scheme 

for the lightness computation based on non-correlated spatial 

and color information extracted from clusters of pixels in- 

stead of single pixels. The experiments reported here show 

that STAR is a good approximation of point-based sampling 

Milano Retinex approaches, in particular of GREAT, and that 

its color enhancement may be successfully used to detect 

visual features relevant to describe and match images captured 

under difficult light conditions. Future work will investigate 

other applications of STAR to computer vision, e.g. object 

recognition, image retrieval, image/video restoration, and it 

will include a further optimization of the STAR code. 
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Algorithm NIQE BRISQUE 

INPUT 7.01 26.28 

STAR (M = 160) 7.14 26.43 
GREAT 7.19 24.87 
GRASS 6.82 22.59 
RSR (N = 20, m = 150) 7.16 23.63 
L-ETR 7.24 24.29 
HE-C 7.79 26.91 
HE-L 7.81 28.51 
CLAHE-C (X = 4) 7.81 27.68 
CLAHE-L (X = 4) 7.79 26.91 
NPEA 7.33 28.36 
LIME 8.26 30.24 

NL-RETINEX 7.49 26.86 

Algorithm NIQE BRISQUE 
FLIR20-He (none) 3.79 39.23 
FLIR20-Le (none) 4.65 48.45 
STAR 4.28 38.93 
GREAT 4.23 41.12 
RSR (N= 20, m = 200) 4.46 25.93 
HE-C 4.48 40.92 
HE-L 4.45 40.89 
CLAHE-C (X = 8) 3.85 35.67 
CLAHE-L (X = 8) 3.78 38.12 
NPEA 4.46 42.15 
LIME 4.98 46.01 

NL-RETINEX 4.17 32.37 
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