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Abstract—Change Detection (CD) in multi-temporal images 
is an important application of remote sensing. Recent techno- 
logical evolution provided Very High spatial Resolution (VHR) 
multitemporal optical satellite images showing high spatial cor- 
relation among pixels and requiring an effective modeling of 
spatial context to accurately capture change information. Here 
we propose a novel unsupervised context-sensitive framework - 
Deep Change Vector Analysis (DCVA) -for CD in multitemporal 
VHR images that exploits Convolutional-Neural-Network (CNN) 
features. To have an unsupervised system, DCVA starts from a 
sub-optimal pre-trained multilayered CNN for obtaining deep 
features that can model spatial relationship among neighbouring 
pixels and thus complex objects. An automatic feature selection 
strategy is employed layerwise to select features emphasizing 
both high and low prior probability change information. Selected 
features from multiple layers are combined into a deep feature 
hypervector providing a multi-scale scene representation. The 
use of the same pre-trained CNN for semantic segmentation of 
single images enables us to obtain coherent multi-temporal deep 
feature hypervectors that can be compared pixelwise to obtain 
deep change vectors that also model spatial-context information. 
Deep change vectors are analyzed based on their magnitude to 
identify changed pixels. Then deep change vectors corresponding 
to identified changed pixels are binarized to obtain a compressed 
binary deep change vectors that preserve information about the 
direction (kind) of change. Changed pixels are analyzed for 
multiple-change detection based on the binary features, thus 
implicitly using the spatial information. Experimental results on 
multitemporal datasets of Worldview-2, Pleiades, and Quickbird 
images confirm the effectiveness of the proposed method. 

Index Terms—Change detection, Very High Resolution images, 
Multi temporal images, Deep features, Deep Change Vector 
Analysis, Remote Sensing. 

 

I. INTRODUCTION 

Land-cover change detection is critical for monitoring phe- 

nomena like urbanization, industrial operations, natural dis- 

aster. There is a need to proper and timely monitoring such 

events as they can cause critical crisis in long run. Remotely 

sensed multi-temporal images are used for understanding such 

changes taking place on the Earth surface. Multi-temporal 

images have been used for a variety of applications that gain 

of the temporal dimension, including land cover monitoring 

[1], disaster management [2], urban planning [3]. Using the 

latest generation of satellite optical sensors, such as Pleiades, 

Ikonos, QuickBird, Spot-5, and Worldview, VHR images (up 

to 0.5 m) can be obtained. The availability of multi-temporal 
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VHR images has increased the range of possible applications 

of change detection. 

Both supervised and unsupervised change-detection tech- 

niques have been used in remote sensing. Supervised methods 

are preferred when an exact ”from-to” information is required. 

Post classification comparison [4] is a popular supervised CD 

method, which independently classifies multi-temporal images 

based on supervised classification. Single date classification 

results are compared to obtain the change map. The accuracy 

highly depends on the accuracy of each single-date classifica- 

tion. Another popular supervised method is Direct-multidate 

classification (DMC) [4] that represents pixels by stacking 

feature vectors corresponding to bi-temporal images. Each 

class transition is considered as a single class in DMC. Thus 

training data should have samples for each class transition. A 

more practical approach is Compound Classification (CC) that 

exploits the maximization of the posterior joint probability of 

classes [5], [6]. All supervised methods depend on availability 

of labeled samples for training data. Obtaining them in the 

context of multi-temporal analysis is difficult. Unsupervised 

methods do not require ground truth data. So, inspite of the 

fact that supervised methods may produce better results than 

unsupervised ones, in the literature significant attention has 

been paid to the unsupervised methods [7], [8], [9]. 

Most of the unsupervised change detection techniques for 

optical passive sensor images are based on the concept of 

Change Vector Analysis (CVA) [10] or difference image. 

In this paradigm, pixelwise difference of radiometry values 

is computed. Alternatively, pixelwise difference of features 

derived from images can be computed, e.g., vegetation indexes 

[4], Tasseled Cap Transformation (TCP) features [11]. The 

magnitude of the difference image is further analyzed to 

distinguish changed pixels from unchanged ones [7], [8], [9]. 

Additionally, a direction variable can be obtained from the 

multispectral difference image which is used to distinguish 

different kinds of change [12], [13], [14]. Though simple, 

such a framework based on image comparison is very effective 

for low/medium-resolution multi-temporal images where one 

pixel generally represents a large geographical extent and may 

cover one or more objects on the ground. Neighbouring pixels 

can be assumed to be independent and hence a pixelwise 

comparison is practical. 

Assumption of pixel independence does not hold for VHR 

images, thus it is necessary to model the spatial context 

information [15]. In VHR images, often radiometric changes 

are not enough to represent changes occurred on the ground 

due to many factors. One is the geometry of acquisition. 
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VHR images are often acquired at off-nadir angles. Change in 

viewing angle causes change in geometrical properties of the 

images even if no changes occurred on the ground. Moreover, 

seasonal variations of the solar ray incidence angle cause 

shadow differences that are not associated to the changes on 

the ground. Inspite of co-registering the VHR multi-temporal 

images, a correspondence between pixels is difficult to be 

achieved. Thus object level information and spatial context of 

pixels need to be exploited to benefit from VHR information. 

Following this idea, some CD algorithms have been recently 

proposed for VHR images, which exploit the spatial context 

of a pixel [16], [17], [18], [19], [20], [21]. Thonfeld et al. 

[16] introduced a version of CVA for binary CD, known 

as Robust CVA (RCVA) developed to mitigate pixel neigh- 

bourhood effects. RCVA considers a neighbourhood around 

each pixel to mitigate effects of poor co-registration between 

multi-temporal images, but it does not capture object-level 

information. Li et al. [20] proposed an object-oriented CVA 

(OCVA) method for binary change detection that segments 

the multi-temporal images and compares each segment instead 

of each pixel. Bovolo [17] proposed a parcel CVA (PCVA) 

that is based on independent hierarchical segmentation of 

multi-temporal images to encode the spatial context of pixels. 

Accuracy of such approaches depends on the performance of 

the image segmentation algorithm. Moreover, despite a priori 

object detection, the compared features are usually shallow 

and do not properly capture spatial context object complexity. 

Morphological profiles and morphological attribute profiles 

[18], [19] have been exploited for CD in VHR images because 

of their non-linear nature. Markov Random Fields (MRFs) 

have also been exploited due to their ability to integrate 

the spatial and temporal context information [7], [22]. Lv et 

al. [21] proposed a binary CD algorithm using multi-feature 

probabilistic ensemble conditional random field that captures 

structural properties of objects in high resolution images. In 

[23], Lv et al. combined object based methods with random 

field based methods for binary CD. Despite differences be- 

tween the mentioned methods, they emphasize the importance 

of using spatial context information, object level information, 

and complex non-linear features. Drawbacks of the existing 

algorithms are two-fold. First, they have limited capability 

in capturing spatial context information and complex visual 

features. Second, most of them are focused on binary CD (i.e., 

they distinguish presence/absence of change only) and there is 

still limited work on multiple CD in which the change class 

is further divided into different kinds of change. 

Recently deep learning, especially CNN has drastically 

improved performance in image understanding tasks [24], [25], 

including remote sensing image understanding [26]. Deep 

learning algorithms have been applied to different remote 

sensing image processing tasks, including semantic labelling 

[27], hyperspectral image classification [28], and target de- 

tection [29]. Deep learning based framework is suitable to 

extract high-level visual features that are semantically rich 

[30]. They are effective in capturing rich information about 

objects or image parts. However, deep learning methods are 

data hungry and training a deep learning based algorithm 

usually requires enormous amount of training data, which are 

not available for multi-temporal remote sensing images [31], 

[26]. So there are only few works exploiting deep learning 

for change detection [32], [33], most of them are supervised 

and deal with binary change detection only. Zhan et al. [34] 

proposed a supervised CD method for optical aerial images 

based on the deep Siamese network. Lyu et al. [35] proposed 

a supervised CD method based on recurrent neural network. 

Geng et al. [36] proposed a supervised binary CD method 

based on contractive autoencoders. To reduce the need of 

labeled training samples, some methods use pre-classification 

schema to obtain a coarse initial change map that is used to 

further train the change detection model [37], [38]. Zhang et 

al. [37] proposed a binary CD method that exploits coarse 

initial change map to identify most unlikely pairs that are used 

to learn a mapping neural network. Gao et al. [38] proposed 

a binary CD method for SAR images that identifies pixels 

having high chance of being changed/unchanged using wavelet 

based features and uses patches centered at those pixels to 

train a neural network. Xu et al. [39] proposed a binary CD 

method using autoencoder that learns correspondence between 

pre-change image and post-change image. Such methods have 

limited reusability as the model needs to be trained/tuned for 

individual datasets. 

However, it has been shown in the literature that deep 

learning based feature extraction shows excellent generality 

properties that enable transfer learning capability [40]. A 

deep network trained with images of a certain domain can 

become useful to treat images of other domains. Such fea- 

ture representation, known as deep features, has exhibited 

stronger domain invariance capability than shallow features 

representation for remote sensing classification task [41], [42]. 

Moreover deep features capture the spatial context information 

effectively. CNN is capable of learning complex features by 

using non-linear activation functions in multi-layer network 

configuration. In many application domains pre-trained CNN 

networks are used as a black-box feature extractor to obtain 

deep features from images, which can be further processed for 

change information extraction [43]. 

There are many available pre-trained CNN architectures in 

the literature [44], [45], [46]. For CD, we need to choose a 

pre-trained CNN suitable for feature extraction from each pixel 

of multi-temporal images. Originally CNN architectures were 

designed for image classification [44], [45]. Such architectures 

accept an RGB image as input and provide as output a class or 

class probability that best describes the input image. Such ar- 

chitectures generally consist of a series of convolutional layers 

followed by a series of fully connected layers. Convolutional 

layers form the basis of CNN. Core operation of training is 

performed by learning the weights of the convolutional layers. 

The training process is further enhanced by the presence of 

the other layers including pooling, non-linear activation. Fully 

connected layers are used in the last stages of the CNN to 

construct the desired number of outputs. However, limitations 

of such CNN architectures in the field of CD are as following: 

• Pre-trained CNNs are usually trained targeting RGB im- 

age classification. They are trained by the backpropaga- 

tion method where an error is calculated at the final layer 

and is propagated back through the layers [24]. In case of 
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CNN architectures designed for image classification, the 

error is calculated based on the label of the entire image 

and not on pixelwise label. Thus such networks are not 

trained for finer inference. 

• To obtain pixelwise features for an input image with 

spatial dimension R   C, we have to evaluate the network 

R C times, each time centering on a pixel and taking a 

window around it as input to the CNN. Such a strategy is 

not computationally efficient. A possible solution to this 

problem is to ignore the fully connected layers and use 

only the pipeline of convolutional layers when extracting 

features. In this way it is possible to obtain pixelwise 

features from input of any size at a single run. Such a 

solution is sub-optimal as we are ignoring visual concept 

learned by fully connected layers when discarding them 

completely during feature extraction process. 

• Since fully connected layers can only deal with input of 

a fixed size, such architectures are restricted to accept 

input of pre-defined size only [47]. 

• Most of pre-trained CNNs are trained to accept RGB 

input images whereas satellite optical VHR images also 

have a NIR channel that is important for change detection, 

especially for vegetation analysis. 

Recently some works have been proposed to shift the paradigm 

of CNN from image classification to finer interpretation of 

images. Some examples are bounding box object detection 

[48] and learning correspondence [49]. A step forward in this 

direction is the work by Long et. al. [47] for CNN based 

semantic segmentation. They proposed a new kind of architec- 

ture where all the learnable layers are convolutional. It consists 

of a series of convolutional, pooling, and activation layers 

followed by a series of deconvolutional and activation layers 

and can additionally have other layers like batch normalization 

and dropout [47], [46]. Such an architecture can accept input 

of any spatial dimension Xi and produce pixelwise output Xo 
for the entire image, effectively encoding the spatial context 

information of each pixel. This architecture has been extended 

to remote sensing applications too [50], [46]. 

In the proposed CD framework, we exploit a multi-layered 

CNN designed for semantic segmentation and trained on aerial 

optical images (thus accepting NIR input) to obtain pixelwise 

multi-layer deep features implicitly modeling the spatial con- 

text information of each pixels. Obtained deep features are 

sub-optimal as they are obtained from a CNN trained on 

different datasets and tasks. However, they reasonably capture 

object level information and the pre-trained CNN weights are 

still useful even if they are derived on other kinds of images. 

We exploit those sub-optimal deep features in a novel CD 

architecture. An automatic variance-ranking based feature se- 

lection strategy layerwise selects change-relevant deep features 

on spatial sub-splits to ensure that changes having low prior 

probability are retained. Selected deep features from multiple 

layers of CNN are combined to form a deep feature hyper- 

vector that aggregates multiple-scale abstractions. The use of 

the same pre-trained network on the pre-change and the post- 

change images enables us to obtain an unsupervised pseudo- 

Siamese architecture [51], [52], thus enabling a pixelwise 

comparison of deep features obtained from multi-temporal 

VHR images to obtain a deep change (hyper)vector. Assuming 

that unchanged pixels yield similar deep hypervectors, we 

follow the paradigm of CVA to discriminate between changed 

and unchanged pixels by analyzing the magnitude of deep 

change vectors (i.e., we define a Deep Change Vector Analysis 

- DCVA). Moreover, semantically rich deep features extracted 

from pre-trained CNN effectively capture information related 

to different types of change. To this end we binarize the deep 

change vectors to compress and simplify the deep change 

vectors, while retaining the information related to direction of 

changes. Then we further analyze the detected changed pixels 

based on binarized deep change vectors in order to extract 

multiple change information. Such a deep-feature-based CD 

framework preserves the simplicity of pixelwise comparison, 

while capturing spatial context information which is essential 

for VHR images understanding. Such a simplicity is important 

as many applications of remote sensing require (near) real- 

time processing capabilities. The proposed CD framework 

is not dependent on image segmentation or explicit object 

detection. Object level information is captured implicitly but 

effectively. CNN based feature-extraction strategy is robust to 

local spurious radiometric and geometric differences existing 

in multi-temporal VHR images. Deep change vectors contain 

semantically rich information relevant to both binary and 

multiple CD. 

An ad hoc CNN for change detection could be trained that 

accounts for the information from multitemporal images si- 

multaneously. This would require tens of thousands of patches 

of image pairs (pre-change, post-change) and corresponding 

change labels. However, multitemporal reference data are sel- 

dom available. Therefore we design an unsupervised approach 

and supervised methods are out of the scope of this work. 

In contrast to the state-of-the art CD methods based on 

deep learning, the proposed CD framework i) is completely 

unsupervised as it does not use any multi-temporal image for 

training the CNN, thus it does not require training overhead in 

terms of computational time/resources, ii) exploits the recently 

popular deep learning paradigm to obtain multiple-change 

information, thus solving the challenging task of multiple CD 

in VHR optical images, and iii) is reusable as new set of 

images does not need further training/tuning. 

The rest of this paper is organized as follows. The problem 

statement and a brief synopsis of the proposed solution are 

presented in section II. Section III details the proposed method. 

We present datasets and results in section IV. Finally we 

conclude the paper and discuss scope of future research in 

section V. 

 
II. PROBLEM FORMULATION AND SYNOPSIS OF THE 

PROPOSED SOLUTION 

We aim to design a CD framework, specifically addressing 

the following aspects: 

1) Let X1, X2 be two VHR optical images taken over the 

same geographical region at time t1, t2, respectively, 

using the same sensor. We aim to detect changes from 

the images in an unsupervised manner, dividing the set 
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of all pixels Ω into two subsets Ωc and ωnc corre- 

sponding to changed and unchanged pixels, respectively. 

Information in VHR images is complex and often re- 

dundant. Delineating change in such a scenario is not 

straightforward and can be subjective. If each pixel is 

considered individually, many pixels may have consid- 

erable radiometric dissimilarity between pre and post- 

change images. However, often such dissimilarities are 

either not meaningful from an object-based perspective 

or too small to be considered as a change of interest. 

Such small isolated radiometric dissimilarities are thus 

not considered as change. 

2) Further analyzing the changed pixels (Ωc) in an unsuper- 

vised way, we aim to separate different kinds of change 
ωc1, ωc2,..., ωcK which contain information related to 

different landscape characteristics. Here, 
SK      

ωck  = 

Ωc  and ωck1 ∩ ωck2 = ∅ (∀k1, k2 : 1 ≤ k1 < k2 ≤ K). 
The proposed deep feature based unsupervised CD frame- 

work addresses the above aspects in effective manner. After 

geometric and radiometric pre-processing, both pre-change 

and post-change images are processed through a N -layered 

CNN pre-trained for semantic segmentation. Deep features are 

extracted from a set of layers L of the CNN where cardinality 

of L  is |L| ≤ N . Let us denote features extracted from layer 

l ∈ L  as f 1 and f 2 for the pre-change image and the post- 
change image, respectively. They are layerwise compared and 

a subset of features more informative for change detection 

is chosen to obtain a D-dimensional deep change vector G. 

Deep magnitude ρ is calculated from G and analyzed to 

distinguish changed pixels Ωc from unchanged pixels ωnc. 

Deep change vectors in G corresponding to detected changed 

pixels Ωc are converted into binary deep change vectors Gbin 
and hierarchically clustered to distinguish different types of 

change (ωc1, ωc2, ..., ωcK). The proposed CD framework is 

shown in figure 1 and referred to as Deep CVA (DCVA). 

 
III. PROPOSED DEEP CHANGE VECTOR ANALYSIS 

(DCVA) 

DCVA is accomplished in the following steps: i) multi- 

temporal image pre-processing; ii) multi-temporal deep feature 

extraction; ii) deep feature comparison and selection; iii) 

binary CD; iv) multiple CD. 

Ω = {ωnc, ωc1, ..., ωcK} 

Fig. 1: Proposed Deep CVA technique 

 
orthorectification, pansharpening is applied to integrate the 

multispectral bands, which have rich spectral but poor geo- 

metrical content, and the panchromatic band, which has rich 

geometrical content [54]. The result is a set of multispectral 

channels showing both high spatial and spectral resolution. 

It has been shown in the literature that change detection 

benefits from pansharpening [54], [11]. Generally in satellite 

optical VHR images, panchromatic bands have a geometric 

resolution 4 times higher than the multispectral bands. Thus 

we gain spatial resolution by 4 times after pansharpening. 

Here pansharpening is applied by Gram-Schmidt method [55]. 

Finally a co-registration step follows. After co-registration 

we obtain images  X
' 

, X
' 

which are then  further processed 
1 2 

 
A. Multi-temporal image pre-processing 

The input bi-temporal images X1, X2 are first pre-processed 

to remove distortions introduced by the atmosphere and other 

physical phenomena [11]. We apply radiometric normalization 

which involves conversion of Digital Number (DN) values into 

the corresponding ground reflectance values [53]. To achieve 

this, the digitalization process performed at the optical sensor 

during acquisition is inverted to obtain radiance values. This 

step is followed by atmospheric correction [53]. Images are 

further processed to mitigate geometric differences caused 

by different viewing angles of satellite sensors as well as 

misalignments caused by the impact of topography. Images 

are then processed through following subsequent steps - or- 

thorectification, pansharpening, and coregistration. Following 

to extract change information. Pre-processing steps help to 

mitigate radiometric and geometric differences in the multi- 

temporal images, but in real applications local differences 

still exist in the multi-temporal image set. As the proposed 

subsequent CD framework exploits a CNN based feature 

extraction strategy to encode spatial context information, we 

expect the proposed framework to be less affected by the 

residual local differences. This is because CNN based features 

are partially invariant to translation, distortion, and scaling [56] 

and exhibit more robust performance in description of data 

than the shallow features [57], [58]. 

 
B. Deep-feature extraction 

CNNs are multi-layered deep architectures that capture 

levels of increasing abstraction and complexity throughout 

Image at t1 (X1) Image at t2 (X2) 

Deep feature 
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Fig. 2: Deep change (hyper)vector (G) generation 

 
the feature hierarchy and can learn powerful discriminative 

features. Our objective is to effectively exploit such a multi- 

layered CNN to extract features to be used for change detec- 

tion. Towards this goal, we obtain multi-temporal deep features 

by passing the pre-processed images (X
' 

, X
' 

) separately as 

spatial variation. But as we go deeper in the CNN, features lose 

generalization capability to new inputs and also lack spatial 

fineness. A balance needs to be striked when choosing layers 

to extract features. In the literature, it has been shown that 

obtaining features from multiple layers of CNN is more effec- 
1 2 

input to a pre-trained CNN and extracting features from certain 

layers of the CNN. A CNN architecture consists of many 

layers (N ) and each layer in turn consists of many features. 

Each feature has learned some complex visual concepts during 

the training process. The challenge for us is to effectively use 

those features to design a CD framework. Though we use a 

pre-trained CNN network like a blackbox feature extractor, it 

is important to select a suitable pre-trained CNN for the CD 

framework and to choose suitable layers to extract features 

from the CNN. Note that our challenge in the development 

of the unsupervised method is to define an approach for 

exploiting sub-optimal deep features for an accurate change 

detection task. CNN models trained on natural image datasets 

can accept only three channel RGB input, whereas optical 

satellite images generally have 4 (red, green, blue, Near 

InfraRed (NIR)) channels. Previous works on remote sensing 

with those architectures used only RGB input [41], [59], thus 

loosing a large amount of information. Currently some CNN 

architectures are available which are trained on remote sensing 

images [46], [27]. 

For the proposed DCVA, we can consider any possible 

architecture which can model remote sensing images to obtain 

pixelwise output. Features can be obtained from any of the N 
layers in the CNN. However, there is significant difference 

in characteristics of features depending on the layer from 

which they are extracted. As shown in [60], the initial layers 

of the CNN capture low-level visual concepts like edges, 

curves and color patches. As we go deeper, filters capture 

more complex concepts by combining lower level features of 

the previous layers. Such complex visual features are useful 

to analyze VHR images that are characterized by high local 

tive than obtaining features from a single layer [61], [43] as it 

allows reasoning at multiple levels of abstraction and scales. 

Following that, we propose to combine features from multiple 

layers of the architecture to form a hypervector of features 

(the concept is similar to hypercolumn in [61]) which enables 

us to obtain a multi-scale representation. The hypervector of 

features is obtained by choosing a set of layers L from the 

total number of layers N . The hypervector of features derived 

from CNN is based on capturing the essence of both the 

deeper layers that model semantic information but lack spatial 

fineness and the initial layers that model the spatial properties 

of the image in a better fashion. It combines the responses of 

multiple CNN layers in a concatenated format. CNN learns 

higher level representation of data by means of convolutions. 

Convolutional layers are generally followed by ancillary layers 

like batch normalization, non-linear activation and pooling 

layers. They help in imposing regularization effects on the 

learned network [62], incorporating non-linearity in network 

and preventing overfitting. However they are just deterministic 

functions applied to the outputs of the convolutional layers 

and thus do not contain any additional information for feature 

hypervector. Thus, we choose a set of layers L from the con- 

volutional layers and the deconvolutional layers. Features from 

each layer l in L are upsampled using bilinear interpolation 

to the spatial size of the input image to obtain f 1 and f 2 
corresponding to the pre-change and the post-change images, 

respectively. 

In this work, we chose the pre-trained model provided by 

Volpi and Tuia [46]. This network is trained on a remote 

sensing aerial image dataset for semantic labelling. The given 

architecture accepts 5 channel input, Red, Green, Blue, NIR, 

C
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N
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and Digital Surface Model (DSM). Obtaining DSM data at 

very high resolution is difficult and in the context of multi- 

temporal applications we do not expect they provide a sig- 

nificant contribution. Thus we modify the first layer of the 

architecture to exclude DSM input. Though exclusion of the 

DSM input may impact the purity of the CNN network as 

a classifier, it does not significantly impact its use in the 

proposed CD architecture. DCVA exploits the sub-optimal 

CNN network in a quasi-Siamese style to pass the pre and 

post-change images through the same embedding function. 

The CNN is pre-trained for a classification task and adapted 

to solve an unsupervised change detection task. Though the 

 

D. Binary Change Dectection 

In this step, we discriminate between unchanged (ωnc) and 

changed (Ωc) pixels based on the assumption that unchanged 

pixels yield similar deep features whereas changed pixels yield 

dissimilar deep features. Accordingly, components gd of deep 

change vector G have higher value for changed pixels than for 

unchanged ones. For a comprehensive comparison of changed 

and unchanged pixels, deep magnitude ρ is computed for each 

pixel (r, c) following the popular technique of Change Vector 

Analysis (CVA) [64]: 

‚
.ΣD 

 

and post-change images in case of no-change whereas signifi- 

cant different behaviours are expected in case of change. Thus 

the deep feature comparison in following steps allows us to to 

effectively extract multiple change information. 

 
C. Deep-feature comparison and selection 

The number of features obtained from each layer is high 

(up to 512 for the model provided in [46]). Some of these 

features may carry information relevant for CD whereas others 

do not. To identify relevant features, we use a feature selection 

strategy based on a variance measurement inspired by [63]. 

Assuming a fixed set of layers L, feature selection is done 

layerwise, i.e., individually for each l    L. A deep change 

vector G is obtained as concatenation of selected features from 

each layer in L. 

For a given layer l, a deep layerwise difference vector δl 
is computed by subtracting f 1 from f 2. In δl, there will 

ρ maps D dimensional G into a 1 dimensional index, while 

preserving the main properties of the changes despite this 

strong compression of the feature vector size. In lieu of ρ, 

any other possible feature reduction strategy that preserves 

the properties of the changes could be used. ρ  is expected 

to assume larger values in case of changed pixels compared 

to unchanged ones. So, ρ(r, c) are divided into two groups 

using a decision boundary or threshold value ( ) to obtain 

two sets Ωc(  ρ          ) for changed pixels and ωnc(  ρ  <    ) 

for unchanged pixels. 

Any suitable thresholding technique can be employed to 

obtain the threshold value . In our work, we have explored 

two techniques: a global technique and a local adaptive one. 

Otsu’s global thresholding is a popular method to determine 

decision boundary between changed and unchanged pixels 

[43], [16]. Using this method, the decision boundary value 
Totsu applies to the whole area. The set of pixels ρ(r, c) is l l classified into Ω , ω according to the following rule: 

be a subset δl' of features more sensitive to change infor- 
mation. Here we use the variance as an index of sensitivity 

c nc (
Ωc, if ρ(r, c) ≥ Totsu 

to change information. We assume that features containing 

potentially relevant change information have higher variability 
ρ(r, c) ∈ 

ωnc otherwise 
(4)

 

than those less affected by changes as feature values strongly 
vary between changed and unchanged pixels. To select δl' 

ensuring that the features that model changes having low prior 

probability are considered, a spatial-split-based approach is 

used [63]. Features are spatially divided into S  splits. For 

a given split s, feature variance (σ2 ) is calculated for all 

features in δl. Features having higher σ2    values are assumed 

to have potentially relevant change information. Thus, features 

in δl  are sorted as per the descending order of σ2 values. 

A subset δls is selected by retaining a certain percentile of 

sorted δl. All the selected features δl' for layer l  are obtained 

by taking features selected on each split: 

S 

δl' = δls (1) 
s=1 

Selected features from each layer in L are concatenated to 

obtain deep change (hyper)vector (G): 
 

 

An alternative to global thresholding is local adaptive thresh- 

olding which computes local(r, c) as a function of spatial 

position (r, c). Local adaptive thresholding may capture the 

strong local variation in the VHR images and furthermore 

contextual characterization by deep features. Low pass filtering 

is used for local adaptive decision boundary determination 

[65], [66]. Here, we have chosen Gaussian filtering to decide 

local adaptive threshold. Such a filtering scheme generates 

context dependent threshold value for each pixel by producing 

a weighted average of each pixel neighbourhood. The idea is 

similar in essence to the idea of image split based thresholding 

proposed in [63]. In our case each pixel is a split and a window 

around each pixel is used to decide the threshold for it. Here 

we obtain a decision boundary local(r, c) that is function of 

the spatial position (r, c). Pixels are classified into Ωc, ωnc 
according to the following rule: 

(
Ωc, if ρ(r, c) ≥ Tlocal(r, c) 

G is a D    dimensional vector (D =  δ1'    +  δ2'    + ... +  δL'  ) 

with each component represented by gd (d = 1, ..., D). A 
simplified block diagram of obtaining G is shown in figure 2. 

A parameter to decide context dependent threshold using 

Gaussian filtering is the neighbourhood size of the filter (α). 

Changed objects having different sizes can be captured using 

G = (δ1' , ..., δl' , ...δL' ) (2) 

weights learned by the CNN are sub-optimal for the change 

detection task, they generate similar outputs for pre-change 
(gd)2 (3) 

ρ(r, c) ∈ 
ωnc otherwise 

(5) 
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different neighbourhood sizes. The neighbourhood size can be 

varied based on the application and fixed if a priori knowledge 

on the expected size of change is available. As an alternative a 

multiscale approach can be designed that iteratively increases 

the neighbourhood size (α) and captures changed objects of 

different sizes. The final change map is obtained as a set union 

of the change maps obtained by different values of α. 

 
E. Multiple Change Dectection 

Changed pixels in Ωc are further analyzed to separate 

different kinds of change. This is done in an unsupervised way 

without any training set or apriori knowledge about the differ- 

ent kinds of change. Our goal is to group different changed 

pixels into different clusters. Deep change hypervector G is 

a high dimensional vector and hence clustering is challenging 

due to curse of dimensionality [67]. Very few multiple CD 

methods have the capability to handle high dimensional vec- 

tors [14], [68]. High dimensional spaces are inherently sparse 

due to the small number of data samples compared to the 

number of dimensions. Thus the inter-point distances become 

less informative. Discretization reduces number of values of 

continuous feature and thus simplifies the clustering task. In 

this context, binarization of the direction information has been 

found to be effective [68]. Following this, we have devised 

a simple yet effective approach for clustering G based on 

feature binarization and hierarchical clustering which allows 

to identify features that are descriptive of clusters. 

Considering changed pixels properties we are likely to 

have components of G which are either positive or negative, 

and different kinds of change are likely to show different 

behaviours on the gd (d = 1, ..., D) components  of  G. 

Feature binarization is an effective approach to simplify the 

information in G by preserving information relevant to change 

directions [68]. We binarize G with all components greater 

than 0 set to 1 and all components smaller than 0 set to 

0. Thus, we obtain a binary vector Gbin having the same 

dimension D as G. Each component of Gbin is represented 

that measures the informativeness of an individual feature by 

summing up Hamming distances with all features: 

D 

Rd = − H(d, j) (7) 
j=1 

The most informative feature (d∗) is defined as the feature 
given which most other features are considered redundant, i.e., 
which maximizes Rd: 

d∗ = arg max Rd (8) 
d 

After using d∗ to group pixels in Ωc into two classes and 
discarding the features made redundant by it, the next most 
informative feature is selected and pixels in Ωc are further 

clustered based on it. In this way, by selecting K′ features, 
pixels  in  Ωc  are  grouped  into  2K'   

classes.  Subsequently,  the 

number of desired classes (K      2K' 

) is obtained by agglomer- 

ating classes based on similarity of binary signatures. Though 

simple, this approach is effective demonstrating that deep 

features contain information that can effectively discriminate 

between different types of change. 

 
IV. EXPERIMENTS AND RESULTS 

Section IV-A describes validation datasets, and section IV-B 

illustrates our choice of layers L for deep feature selection. 

Section IV-C presents the tenets of an experiment that shows 

that the variance/ standard deviation is an effective variable 

to choose features containing change information. Following 

that, section IV-D presents binary CD results and section IV-E 

presents multiple CD results. 

 
A. Description of datasets 

In order to validate the proposed CD framework, three bi- 

temporal image pairs acquired by three sensors have been 

used. The images are from Trento in North Italy. They show a 

quasi-urban area containing both the typical urban setup and 
d 
bin (d = 1, ..., D), where: patches of vegetation. They also contain vertical structures of 

 
d 
bin 

1, if gd ≥ 0 

0 otherwise 
(6) 

different heights. Thus, effect of shadows is prominent as tall 

vertical structures generate different shadows in off-nadir VHR 

images. Such high elevations and variation in shadows are 

Thus each kind of change is expected to correspond to one 

specific binary signature. Following this, we hierarchically 

cluster all pixels in Ωc based on Gbin to obtain different 

classes ωc1, ωc2, ..., ωcK by constructing a decision tree [69]. 

Decision tree selects the most informative binary feature and 

groups the pixels into two classes based on the value of that 

feature. The most informative feature is selected inspired by 

the redundancy criteria [70]. It is plausible to assume that 

many features exhibit similar binary signatures and hence are 

redundant for discriminating different types of change. We 

prone to cause false alarms in CD on such VHR images in 

contrast to the case of low/medium resolution images. 

The Worldview-2 image pair was acquired in August 2010 
and May 2011. Pre and post-change images were acquired 

with 18◦and 12.9◦off-nadir angle (figure 3(a) and (b)), re- 
spectively. They have 0.5 meter/pixel spatial resolution and 
a size of 1200      1200 pixels. Worldview-2 has 8 spectral 

bands in the spectral range 400-1040 nm. A reference CD 

map (figure 3(c)) has been obtained primarily using photo- 

interpretation combined with prior knowledge on the evolution 

define  that  a  feature  gj (jth feature) is redundant given a of the analyzed geographic area. Changed pixels have been 

feature gi (ith feature) if they are equal for a large number grouped into the reference map based on their characteristics. 

of pixels in Ωc. To measure redundancy, Hamming distance 

(i, j) between two features is used, which is defined as 

number of pixels in Ωc for which the ith and the jth features 

differ. We define an index Rd for each feature d (d = 1, ..., D) 

Three kinds of change were identified: ωc1 denotes a signifi- 

cant increase of vegetation amount (green, 8524 pixels, and 2 

objects), ωc2 denotes the formation of white patches in place 

of semi-vegetation areas (blue, 5926 pixels, and 2 objects), and 

by g 
( 
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ωc3 indicates the formation of colored structure (e.g., building) 

in place of white patches (red, 6332 pixels, and 2 objects). 

The Pleiades image pair was acquired in August 2012 
and September 2013. The pre-change image (figure 4(a)) 

was acquired with 16.9◦off-nadir angle and the post-change 
image (figure 4(b)) with 20.9◦off-nadir angle. They have 0.5 
meter/pixel resolution and a size of 1400       1400 pixels. 

Pleiades has 4 spectral bands in the spectral range 450- 

900 nm. A reference change map is shown in figure 4(c). 

We demarcated two kinds of change: ωc1 denotes change of 

vegetation amount (green, 23236 pixels, and 5 objects) and 

ωc2 denotes changes related to the color of urban structure 

(red, 11945 pixels, and 2 objects). 

The Quickbird image pair was acquired in October 2005 
(figure 5(a)) and July 2006 (figure 5(b)). Pre and post-change 

images were acquired with 9◦and 14.1◦off-nadir angle, respec- 
tively. They have of 0.6 meter/pixel resolution and a size of 

800     800 pixels. Effect of seasonal change and shadow is 

very prominent and hence this dataset can be considered more 

complex than the others. Quickbird has 4 spectral bands in 

the spectral range 485-830 nm. A reference CD map is shown 

in figure 5(c). We demarcated three kinds of change: ωc1 
denotes increment in the greenness of the vegetation (green, 

17133 pixels, and 2 objects), ωc2 denotes sharp reduction of 

vegetation (blue, 8432 pixels, and 1 object), and ωc3 indicates 

change in urban structures (red, 19040 pixels, and 2 objects). 

 
B. Analysis on the choice of CNN and L 

To extract deep features, we apply the pre-trained CNN 

proposed in [46], which has 33 layers: convolutional, batch 

normalization, (ReLu) activation, pooling, dropout, convolu- 

tional, batch normalization, activation, pooling, dropout, con- 

volutional, batch normalization, activation, pooling, dropout, 

convolutional, batch normalization, activation, dropout, decon- 

volutional, batch normalization, activation, dropout, deconvo- 

lutional, batch normalization, activation, dropout, deconvolu- 

tional, batch normalization, activation, dropout, convolutional, 

and softmax prediction. CNN Dropout becomes a pass-through 

layer during feature extraction, thus in reality it does not 

apply to our processing. The network is trained on a remote 

sensing aerial optical image dataset and accepts R, G, B, NIR, 

and DSM input. As discussed in section III-B, DSM input is 

excluded by modifying the weights of first layer of CNN from 

7 7 (spatial size of filter) 5 (number of input channels) 

64 (number of output features) to 7 7 4 64. Worldview- 

2 images have 8 channels: red, green, blue, NIR, NIR-2, red 

edge, coastal blue, yellow. For Worldview-2 dataset, first layer 

of the CNN is modified to 7  7 8  64 by assigning to the 

additional input channels the same weights as those of the 

nearest channel in terms of wavelength, i.e., NIR-2 gets the 

same weight as NIR input. Though such modification of first 

layer is not optimal for using the CNN network as a classifier, 

note that this it does not significantly impact its use in the 

proposed CD architecture that does not exploit the network 

as a classifier but uses it in a pesudo-Siamese fashion to pass 

the pre and post-change images through the same embedding 

function. 

As described in section III-B, layers like pooling, ReLu are 

excluded from hypervector, as they are simply deterministic 

functions applied to the outputs of the convolutional or de- 

convolutional layers and thus do not contain any additional 

information for feature hypervectors. The convolutional layers 

learn the semantics of the image at a degraded resolution 

and the deconvolutional layers mainly learn to reconstruct 

the spatial arrangements [46]. Based on this, we chose more 

convolutional layers than deconvolutional ones to form the 

hypervector. First convolutional layer is excluded as it learns 

very primitive features that are significantly noisy. Key layers 

of the pre-trained CNN with feature dimension is denoted in 

table I. Deep feature hypervectors can be built with several 

combinations of layers. DCVA demonstrated to be robust to 

the minimal variations in layer selection resulting in good and 

similar performance for several different combinations. For 

sake of brevity, we show results for L =  28, 16, 11, 6 , i.e., 

the 3rd deconvolutional, 4th, 3rd, and 2nd convolutional layers 

of the CNN and omit other combinations. 

 
 

C. Validation of the feature selection techniques 

In section III-B, we postulated that variance/standard devia- 

tion based ranking is a simple but effective approach to select a 

subset of features being sensitive to change information. Since 

deep feature selection is done layerwise (see section III-C), 

validation was conducted for each layer in L independently. 

For sake of brevity, we demonstrate this for one layer (layer 

28) and we omit the other layers since results are similar. To 

illustrate this process, we chose two test regions from Pleiades 

multi-temporal images where change occurred (blue, yellow in 

figure 6) and two test regions from same couple where change 

did not occur (red, green in figure 6). Pre and post-change 

images marked with the four regions are shown in figure 6(a) 

and 6(b). All regions are of size 200 pixel      200 pixel, i.e. 

100 meter     100 meter. Deep features for the 28th layer (f28) 

are evaluated for both the pre and the post-change images to 

obtain δ28. The number of features from δ28 is 512. Standard 

deviation is computed (σ28) for all the 512 features for each 

of the four regions individually. We sort the σ28 values in 

descending order for each region (figure 6). We observe that 

the σ28 for both changed regions are much higher than those 

for the unchanged regions. This confirms that variance is a 

good index for layerwise selection of subset of features that 

are more sensitive to change information. 

Plain concatenation of features from L =  28, 16, 11, 6 
would have produced a deep change vector (G) of dimension 

960, whereas the dimension of G after feature subset selection 

is d = 63 for the Worldview-2 images, d =  85 for the 

Pleiades images, and d = 86 for the Quickbird images. 

Features have been selected with a split size of 400 400 

pixels for Worldview-2 and Quickbird dataset, 350 350 

pixels for Pleiades dataset (slight variation to obtain integer 

valued number of splits). Larger split size causes omission 

of features that model changes having low prior probability, 

thus increasing missed detection. Smaller split size allows to 

capture features that increase false alarm. 
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D. Binary CD results 

Experiments were conducted to achieve the following goals: 

• To compare the performance of global and local adaptive 

thresholding methods for the ρ variable. For local adap- 

tive thresholding, we have used α values (as discussed in 

section III-D) of 50 meter, 100 meter and 150 meter. As 

our test images are quasi urban, we expect all changes to 

be captured by the selected neighbourhood sizes. 

• To evaluate if formation of hypervector of layers is more 

effective than choosing a single layer to extract deep 

features. We demonstrate the performance of DCVA by 

using L = 28, 16, 11, 6 (as a hypervector of layers) 

versus L =  28  and L =  6   (as single individual 

layers). 

• To demonstrate that DCVA outperforms a mere post- 

classification CD setup. We demonstrate performance of 

DCVA by using L = 28, 16, 11, 6  versus L =  33 
(the final layer). 

• To compare results obtained by DCVA to the state of 

the art methods like RCVA, OCVA, and PCVA. Those 

methods calculate change magnitude followed by dis- 

crimination into changed and unchanged pixels using a 

decision boundary. For a fair comparison, the state of 

the art methods are modified to equip them with the 

same decision boundary determination scheme as used for 

DCVA. Comparison is shown for all the three considered 

datasets. 

Results are provided in terms of sensitivity and specificity. 

Sensitivity measures the proportion of changed pixels that are 

correctly identified as such. Specificity measures the propor- 

tion of unchanged pixels that are correctly identified as such 

[71]. Additionally, number of correctly identified and false 

changed objects are provided. 

Worldview-2 dataset: Change detection results for 

Worldview-2 bi-temporal images are shown in figure 3. The 

proposed DCVA using L = 28, 16, 11, 6 and a context 

dependent adaptive decision boundary Tlocal obtains a 

sensitivity of 0.86 and a specificity of 0.98. It detects all 

the 6 changed objects and 4 false objects as shown in figure 

3(d). The proposed DCVA using same layers and the global 

decision boundary determination obtains a sensitivity of 0.94 

and a specificity of 0.89. It detects all the true changed objects 

and many false objects as shown in figure 3(e). Thus, context 

dependent adaptive decision boundary scheme outperforms 

the global decision boundary one. 

As described in section III-B and section IV-B, we used 

features from multiple layers (L = 28, 16, 11, 6 ) of the 

CNN to form a hypervector of features. To demonstrate that 

this strategy is effective, we show the results obtained using 

the proposed DCVA but using only L = 6 (i.e., 2nd 

convolutional layer) in figure 3(f) and only L = 28 (i.e., 3rd 

deconvolutional layer) in figure 3(g). As L = 6 is an initial 

layer of the CNN, it captures primitive features and hence 

it is prone to false alarms caused by edges. As L =  28 
is a deeper layer, it learns more high-level abstract features. 

However it fails to extract some change information specially 

those related to vegetation patches. Moreover, detected bound- 

aries of changed objects are less accurate compared to those 

in figure 3(d) as deeper layers have reduced spatial accuracy. 

We further show the result obtained using DCVA but using 

the final layer of the CNN, i.e. L = 33 in figure 3(h). It 

fails to capture most of the change information demonstrating 

the difference of DCVA from a mere post-classification CD 

approach. 

Results obtained by using RCVA are shown in figure 3(i). 

It detects 5 out of 6 changed objects and many false objects. 

OCVA and PCVA detect 3 and 4 changed objects, respec- 

tively, and many false objects (figures 3(j) and 3(k)). Results 

demonstrate that the proposed method is more effective than 

the considered state-of-the-art ones. The proposed method 

produces more accurate boundaries for changed objects and 

it is less prone to error due to edges and shadows. However, 

there are still few false alarms due to high elevations and 

shadows. This can be attributed to the large difference of 

acquisition angle of the pre and post-change images. There 

are also false alarms due to inaccurate decision boundary 

demarcation in the vegetation area. Indeed, decision boundary 

determination in such inhomogeneous images with high local 

and global variance is challenging. Table II shows quantitative 

results. An analysis of the table clearly shows that DCVA 

outperforms state-of-the-art methods in terms of sensitivity 

(accuracy in detecting changed pixels) and produces similar 

or better specificity (accuracy in detecting unchanged pixels). 

Pleiades dataset: CD results for the Pleiades data are shown 

in figure 4. The proposed DCVA using L =  28, 16, 11, 6 

and a context dependent adaptive decision boundary Tlocal 
achieves a sensitivity of 0.84 and specificity of 0.96 and 

detects 6 out of the 7 changed objects as shown in figure 4(d). 

DCVA using global decision boundary determination achieves 

a sensitivity of 0.89 and specificity of 0.86 and detects 6 

changed objects and many false objects as shown in figure 

4(e). Proposed DCVA using L = 6 , L = 28 , or L =  33 
(figure 4(f-h)) exhibits similar characteristics as in Worldview- 

2 dataset. RCVA, OCVA, and PCVA detect 5, 3, and 4 changed 

objects respectively and many false objects as shown in figures 

4(i-k). It is evident that DCVA outperforms the considered 

state-of-the-art methods in terms of sensitivity as shown in 

Table III. Concerning specificity, DCVA outperforms OCVA 

and obtains similar result to RCVA and PCVA. There are some 

false alarms due to high elevation and shadow, which can be 

attributed to a quite large difference of acquisition angle of 

images (4◦). 
Quickbird dataset: CD results for the Quickbird multi- 

temporal images are shown in figure 5. Despite the strong 

effect of shadow and seasonal changes in Quickbird images, 

DCVA performs similarly as on other datasets. DCVA achieves 

a sensitivity of 0.87 and specificity of 0.93 and detects all 5 

changed objects as shown in figure 5(d). DCVA using global 

decision boundary determination achieves a sensitivity of 0.86 

and specificity of 0.91 and detects 4 out of 5 changed objects 

as shown in figure 5(e). Proposed DCVA using L =   6 , 

L = 28 , or L = 33 (figure 5(f-h)) exhibits similar 

characteristics as in the other two datasets. RCVA, OCVA, and 

PCVA detect 2, 0, and 1 changed objects only, respectively. 

Results obtained using RCVA, OCVA, and PCVA methods 
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TABLE I: Key structure of the pre-trained CNN [46] 
 

Layer number Layer type Feature dimension 

6 convolutional 64 

11 convolutional 128 

16 convolutional 256 

20 deconvolutional 512 

24 deconvolutional 512 

28 deconvolutional 512 

32 convolutional 6 

33 prediction 6 

 
TABLE II: Binary CD results (Worldview-2 images) 

E. Multiple CD results 

Multiple CD experiments aim at demonstrating the ability 

of the deep features in separating different kinds of change. 

For all the three datasets, the set Ωc after binary CD is further 

analyzed (section III-E) by setting K equal to the number 

of kinds of change demarcated in the reference map. For 

quantitative demonstration, we use the confusion matrix. As 

multiple change detection is dependent on the outcome of 

the binary change detection, error propagates from the binary 

CD to the multiple CD maps, and are shown in shaded cells 

of confusion matrices. The proposed hierarchical clustering 

approach is compared to C2VA approach [14] applied on deep 

change hypervectors (G). 

Worldview-2 dataset: Multiple CD results obtained by the 

proposed DCVA are shown in figure 3(d) and illustrated in 

the confusion matrix shown in Table V(a). The increase of 

vegetation (green, ωc1) has clearly been identified as a kind 

of change. Though there is a little clutter, ωc2 and ωc3 are also 

 

 

are shown in figures 5(i-k), respectively. Specificity value of 

DCVA slightly decreases for the Quickbird images compared 

to the other two datasets. This is due to a slight increment 

of false alarms. Some of the false alarms, especially those 

adjacent to the roads, are indeed real radiometric changes and 

denote growth of tiny green patches besides road. Some other 

false alarms are caused by shadow and edges of buildings. 

However, a stronger impact is recorded on the performance of 

the state-of-the-art methods that all show a significantly lower 

sensitivity compared to their performance on other datasets. 

Table IV presents detailed quantitative results. 

It is evident from the presented results that DCVA strongly 

outperforms the state-of-the-art methods as the contrast in 

acquisition (difference of acquisition angle, difference in ac- 

quisition season) of pre and post-change images increases. 

 
 

TABLE III: Binary CD results (Pleiades images) 
 

Method Sensitivity Specificity 

Proposed DCVA 0.84 0.96 
DCVA (Totsu) 0.89 0.86 

DCVA (L = 6) 0.80 0.97 

DCVA (L = 28) 0.50 0.95 

DCVA (L = 33) 0.10 0.87 

RCVA 0.52 0.97 

OCVA 0.52 0.87 

PCVA 0.64 0.96 

 
TABLE IV: Binary CD results (Quickbird images) 

 

Method Sensitivity Specificity 

Proposed DCVA 0.87 0.93 
DCVA (Totsu) 0.86 0.91 

DCVA (L = 6) 0.83 0.92 

DCVA (L = 28) 0.67 0.95 

DCVA (L = 33) 0.54 0.90 

RCVA 0.34 0.85 

OCVA 0.12 0.91 

PCVA 0.34 0.91 

correctly identified. C2VA confused a fraction of ωc2 with ωc3 
and vice-versa (figure 3(l) and Table V(b)). 

Pleiades dataset: Multiple CD results obtained by the 

propsoed DCVA are shown in figure 4(d) and illustrated in the 

confusion matrix shown in Table VI(a). We observe that the 

discrimination of changes into two kinds, ωc1 and ωc2 (shown 

in green and red), has been satisfactory. C2VA confuses a 

major part of ωc2 as ωc1 as shown in figure 4(l) and illustrated 

in the confusion matrix in Table VI(b). 

Quickbird dataset: Multiple CD results obtained by the 

proposed DCVA are shown in figure 5(d) and illustrated in 

the confusion matrix shown in Table VII(a). The increment in 

the greenness of the vegetation (ωc1, green change) has been 

identified. Some parts of the urban change are erroneously 

grouped together with sharp reduction of vegetation (ωc2, 

blue). The other changes related to the urban setup have been 

correctly grouped together (ωc3, red). Multiple CD results 

obtained by using C2VA are shown in figure 5(l). As shown in 

the confusion matrix shown in Table VII(b), C2VA confuses 

significant part of ωc3 as ωc2. 

 
V. CONCLUSIONS 

In this paper, a CNN based unsupervised technique for 

detecting changes in multi-temporal VHR optical images has 

been proposed. VHR images are highly complex and pixels 

have high spatial correlation in a neighbourhood. Moreover, 

inspite of being acquired by the same sensor, images often 

show strong differences in characteristics as angle of acquisi- 

tion, season of acquisition, atmospheric condition. To mitigate 

these problems, we propose an unsupervised CD technique 

that exploits sub-optimal (due to the lack of training samples) 

deep features extracted from a pre-trained multi-layer CNN in 

a novel CD architecture. Recent results in both remote sensing 

and general computer vision have demonstrated that CNN 

based feature extraction has better generalization capability 

than traditional hand-crafted features or pixel radiance values 

and thus tends to be reasonably invariant to the differences 

in acquisition conditions. Moreover, such deep learning based 

features are suitable to capture contextual information. The 

Method Sensitivity Specificity 

Proposed DCVA 0.86 0.98 
DCVA (Totsu) 0.94 0.89 

DCVA (L = 6) 0.76 0.97 

DCVA (L = 28) 0.36 0.98 

DCVA (L = 33) 0.28 0.98 

RCVA 0.49 0.97 

OCVA 0.25 0.95 

PCVA 0.49 0.96 
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ωnc ωc1 ωc2 ωc3 Bounding box denoting changes 
 

   
(a) (b) (c) 

 

(d) (e) (f) 
 

(g) (h) (i) 
 

(j) (k) (l) 

 
Fig. 3: Worldview-2 bi-temporal images: (a) Pre-change image (RGB), (b) Post-change image (RGB), (c) Reference change 

map. (d) CD map: Proposed DCVA. Binary CD map: (e) DCVA with global thresholding, (f) DCVA with L = {6}, (g) DCVA 

with L = {28}, (h) DCVA with L = {33}, (i) RCVA, (j) OCVA, (k) PCVA. (l) Multiple CD map: C2VA [14] 
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Fig. 4: Pleiades bi-temporal images: (a) Pre-change image (RGB), (b) Post-change image (RGB), (c) Reference change map. 

(d) CD map: Proposed DCVA. Binary CD map: (e) DCVA with global thresholding, (f) DCVA with L = {6}, (g) DCVA with 

L = {28}, (h) DCVA with L = {33}, (i) RCVA, (j) OCVA, (k) PCVA. (l) Multiple CD map: C2VA [14] 
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(d) (e) (f) 
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(j) (k) (l) 

 

Fig. 5: Quickbird bi-temporal images: (a) Pre-change image (RGB), (b) Post-change image (RGB), (c) Reference change map. 

(d) CD map: Proposed DCVA. Binary CD map: (e) DCVA with global thresholding, (f) DCVA with L = {6}, (g) DCVA with 

L = {28}, (h) DCVA with L = {33}, (i) RCVA, (j) OCVA, (k) PCVA. (l) Multiple CD map: C2VA [14] 
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proposed DCVA exploits these properties of deep features and 

processes those features through a layerwise feature selection 

mechanism that ensures that only change-relevant features are 

retained. A feature hypervector is subsequently formed by 

combining features from different layers of CNN that ensure 

the spatial context is captured at multiple level of abstractions. 

Pixelwise comparison of deep change vectors from the pre and 

post-change images enables us to obtain deep change vectors 

that are further analyzed to extract both binary and multiple- 

change information from multi-temporal VHR images. Binary 

CD is performed based on the magnitude of the deep change 

vectors. Multiple CD is performed by identifying the direction 

of changes after a compression of deep change vectors based 

on a binarization process and a subsequent clustering. Thus, 

on the one hand DCVA is effective in capturing the spatial 

context, on the other hand it preserves the simplicity of pixel 

based comparison. DCVA effectively exploits the recently 

popular CNN, without using any training data or supervi- 

sion. Experiments have been conducted by using the pro- 

posed method on three datasets acquired by different sensors: 

Worldview-2, Pleiades, and Quickbird. Results demonstrated 

the effectiveness of the proposed approach in capturing change 

information. Despite images were highly complex consisting 

of quasi-urban areas, results demonstrate that the proposed 

DCVA is able to effectively capture spatial information and 

is more resilient than other state-of-the-art techniques to 

variations in acquisition conditions (e.g., acquisition angle). 

As future development of this work we aim to improve the 

performance of binary change detection by developing better 

techniques for the decision boundary determination scheme to 

distinguish changed pixels from unchanged ones. The multiple 

change detection scheme can be improved by refining the 

hierarchical clustering technique for high dimensional deep 

change vector and automatically deciding the number of kinds 

of change. 

As a final remark we point out that the proposed DCVA is a 

step forward in designing an effective unsupervised technique 

for multi-temporal VHR image analysis. Note that even if the 

DCVA is focused on the processing of bi-temporal images 

acquired by optical sensors, it can also be extended to active 

sensors (SAR) and image time-series. 
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