
This is a preliminary version of:

Loris Bozzato, Thomas Eiter, Luciano Serafini, Enhancing context knowledge
repositories with justifiable exceptions, ARTIFICIAL INTELLIGENCE, Volume
257, April 2018, Pages 72-126
DOI: 10.1016/j.artint.2017.12.005

The final published version is available online at:
https://www.sciencedirect.com/science/article/pii/S0004370218300018

When citing, please refer to the published version

SROIQ

Enhancing Context Knowledge Repositories with
Justifiable ExceptionsA

Loris Bozzatoa,∗, Thomas Eiterb, Luciano Serafinia

a Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
b Institut für Informationssysteme, Technische Universität Wien, Favoritenstraße 9-11, A-1040 Vienna, Austria

Abstract

Dealing with context dependent knowledge is a well-known area of study that roots in John
McCarthy’s seminal work. More recently, the Contextualized Knowledge Repository (CKR)
framework has been conceived as a logic-based approach in which knowledge bases have a two
layered structure, modeled by a global context and a set of local contexts. The global context not
only contains the meta-knowledge defining the properties of local contexts, but also holds the
global (context independent) object knowledge that is shared by all of the local contexts. In many
practical cases, however, it is desirable to leave the possibility to “override” the global object
knowledge at the local level: in other words, it is interesting to recognize the pieces of knowledge
that can admit exceptional instances in the local contexts that do not need to satisfy the general
axiom. To address this need, we present in this paper an extension of CKR in which defeasible
axioms can be included in the global context. The latter are verified in the local contexts only for
the instances for which no exception to overriding exists, where exceptions require a justification
in terms of facts that are provable from the knowledge base. We formally define this semantics
and study some semantic and computational properties, where we characterize the complexity of
the major reasoning tasks, among them satisfiability testing, instance checking, and conjunctive
query answering. Furthermore, we present a translation of extended CKRs with knowledge bases
in the Description Logic -RL under the novel semantics to datalog programs under the
stable model (answer set) semantics. We also present an implementation prototype and examine
its scalability with respect to the size of the input CKR and the amount (level) of defeasibility in
experiments. Finally, we compare our representation approach with some major formalisms for
expressing defeasible knowledge in Description Logics and contextual knowledge representation.
Our work adds to the body of results on using deductive database technology such as SQL and
datalog in these areas, and provides an expressive formalism (in terms of intrinsic complexity) for
exception handling by overriding.

Keywords: Knowledge representation, contextual reasoning, description logics, datalog,
defeasible knowledge

APart of this work has been previously presented in preliminary form in [1, 2, 3].
∗Corresponding author at: Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy.
Email addresses: bozzato@fbk.eu (Loris Bozzato), eiter@kr.tuwien.ac.at (Thomas Eiter),

serafini@fbk.eu (Luciano Serafini)

mailto:bozzato@fbk.eu
mailto:eiter@kr.tuwien.ac.at
mailto:serafini@fbk.eu

1

1. Introduction

In the field of Knowledge Representation and Reasoning, the problem of dealing with context
dependent knowledge is a well-known area of study. Initial proposals for a formal definition
of contextual knowledge and reasoning date back to the works of McCarthy [4], Lenat [5], and
Giunchiglia et al. [6, 7]. In the era of the Semantic Web (SW), representation of context dependent
knowledge has been recognized as an extremely relevant issue, due to the necessity to qualify each
data set with meta-data to allow users and applications to interpret the data set contents in the right
context. This interest has led to a number of logic based proposals, e.g. [8, 9, 10, 11, 12, 13, 14, 15].
In the current article we will extend one of the current formalisms, the Contextualized Knowledge

Repository (CKR) framework [12, 16, 17], with its latest formulation in [1], with a new form of
non monotonic reasoning based on justification.

A CKR knowledge base is a two-layer structure: the higher level consists of a global context;
the lower level consists of a set of local contexts. For example, a CKR for a touristic recommenda-
tion system in the Trentino region,1 is composed of a global context that describes all the locations,
the venues and the events that are available in the region, and by a set of local contexts each of
which describes the details of an event or the profile, interests and plans of a single user. The
global context contains two types of knowledge: the former is composed by a context independent
kernel of facts about the domain of discourse. The truth of these pieces of knowledge is assumed
to be immutable; for instance, the fact that Castello del Buonconsiglio is located in Trento. This
knowledge is accessible by all the local contexts. The second type of knowledge contained in the
global context, is meta-knowledge specifying the properties of local contexts. Local contexts, on
the other hand, contain knowledge that holds under specific circumstances or assumptions (e.g.
during a certain period of time, or when a certain event occurs) and thus they represent di fferent
partial and perspective views of the domain. Knowledge in different contexts is not completely
independent, as the global context independent knowledge is propagated from the global to the
local contexts and it is used to constrain local knowledge in different contexts.

In many practical cases, however, it is desirable to leave the possibility to “override” the
global object knowledge at the local level, by allowing axioms to admit exceptions in their local
instantiations. For example, in the above scenario of the event recommendation system, we might
want to assert at the global level that “by default, all of the cheap events are interesting”, but then
override this implication for particular kind of events in the context of a specific participant. (e.g.,
a user might not be interested in sport events independently of their price). We might also want
to express defeasibility on the propagation of information: for instance, in a CKR representing
an organization, we might want to express that “by default, all the employees of a year will be

employees in the next year” and override the axiom in the context of a specific year for employees
that finished their working contract.2 In other words, we want to allow certain global axioms to be
defeasible, so that they admit exceptional instances in local contexts, while holding in the general
case: this clearly requires to add a notion of non-monotonicity across the global and the local parts
of a CKR.

The aim of this work is thus to extend the CKR framework in order to support the form
of defeasibility for global object knowledge as described above, under some desiderata: (1)
defeasibility should be used parsimoniously, in the sense that information is inherited as much as
possible, such that the information loss in conclusions at the local level is as little as necessary; (2)

1cf. Examples 4 and 5 in Section 3.
2cf. Example 6 in Section 3.

2

2

SROIQ

SROIQ

overriding should be supported by clear evidence, in terms of facts that lead to a contradiction; and
(3) reasoning with exceptions should be realized using deductive database technology, in particular
SQL and datalog, that has been fostered for CKRs [1] in line with work around Description Logics
[18, 19, 20, 21, 22, 23, 24].

To this end, we introduce defeasible axioms guided by the approach of inheritance logic
programs in [25], extending the datalog representation of CKR semantics in [1]. In inheritance
logic programs the idea is that special rules recognize exceptional facts at the local level and
others propagate global facts only if they are not proved to be overridden at the local level, which
happens if the opposite is derived; in the same vein, we consider instances of axioms that might
be overridden at the local level. On the basis of this semantics, we develop a translation for CKRs
on -RL (i.e. OWL-RL [26]) with defeasible axioms into datalog programs. Specifically,
instance checking over a CKR reduces this way to (cautious) inference from such programs under
the answer set semantics [27] (also known as stable model semantics [28]), which thus can be
used to implement query answering for CKR with defeasibility.

The main contributions of this paper are briefly summarized as follows:

(1) We present a new syntax and semantics of an extension of CKR for defeasible axioms

D(α) in the global context. Notably, this allow us to introduce for the first time a notion of
non-monotonicity across contexts in CKR (Section 3). Intuitively, a global defeasible axiom
D(α) means that, at the level of instantiations for individuals, α is inherited by local contexts
unless it generates a contradiction in the local context knowledge base. Model based semantics
of CKR needs thus to be extended in order to reason with exceptions for such axioms. Axiom
instances α(e) representing local exceptions are called clashing assumptions: in the evaluation
of α at a local context, its instantiation with e is not considered (i.e. α is “overridden” for e).
However, such assumptions of exceptions must be justified: the instance of α for e must be
provable to be unsatisfiable at the local context. This is ensured if (atomic) assertions can be
derived which prove this unsatisfiability; we call such assertions clashing sets (cf. Section 3.2).
As such, CKR interpretations are thus extended with a set of the local clashing assumptions
CAS and called CAS-interpretations: intuitively, CAS-interpretations interpret local axioms by
disregarding exceptional instances in CAS (cf. Section 3.2.1). Then, CKR models can be defined
as those CAS-models that are justified, i.e. that provide a reason for the presence of each clashing
assumption in CAS by verifying a correspondent local clashing set.

(2) We characterize reasoning in CKR with defeasible axioms, where we consider entailment
of axioms and conjunctive queries (CQs) (Section 4). In details, we derive helpful semantic
characterizations of justified clashing assumptions; based on this, we study the computational
complexity of major reasoning tasks. We show that justified CAS- and CKR-model checking
are tractable, while satisfiabilty is NP-complete in general. Under data complexity, entailment
of axioms is coNP-complete while answering conjunctive queries is Πp-complete, with lower
complexity for restricted inputs.

(3) We extend the datalog translation for -RL based CKR from [1] with rules for the
translation of defeasible axioms and for considering local exceptions in the propagation of such
knowledge (Section 5). We express non-monotonicity using answer set semantics, such that
instance checking over a CKR with defeasible axioms reduces to cautious inference from all
answer set of the translation, and likewise conjunctive query answering. In particular, we note
that the proposed translation (based on positive datalog programs) is not trivial and need special
attention for dealing with the negative knowledge inside clashing sets that needs to be derived

3

for the justification of a clashing assumption (in particular in presence of negative disjunctive
information, cf. Section 5.2). As a solution to this problem, we propose a translation in which
reasoning over such negative knowledge is performed by encoding it through individual proofs by
contradiction. In Section 5.3 we show that the proposed translation provides a sound and complete
materialization calculus for instance checking and conjunctive query answering over CKRs in
OWL-RL.

(4) We study scalability of our approach. In particular, the experiments confirm that scalability
of the approach is influenced by the percentage of defeasible axioms in the initial CKR and the
number of their exceptional instances. To this aim, we have developed a prototype implementation,
called CKRew (CKR datalog Rewriter) that compiles a CKR to a datalog program following the
presented translation (Section 6). We present the prototype and we study its behavior with respect
to different sizes of the input CKR and percentage of defeasible axioms. The prototype and test
sets are freely distributed for use, replication of experiments and possible comparison with other
similar implementations.

The contributions of this work are interesting in general for the area of (logic based) Knowl-
edge Representation: our solution proposes an expressive means for combining reasoning with
structured Description Logics knowledge bases (viz. contextualized Semantic Web knowledge
bases) with a notion of axiom overriding. As such, our work can be compared not only with
respect to methods for representation of defeasibility in contextualized logics (e.g. [9, 29]), but
also to solutions for introducing non-monotonic reasoning in Description Logics (e.g. [30, 31]).
In Section 7, we provide an extended comparison of our approach with some of the major non-
monotonic formalisms for description logics and contextual knowledge representation mentioned
above, highlighting commonalities and differences. In particular, our work differs from these

formalisms with respect to some relevant aspects:

– our approach allows to reason with non-monotonic features in modular knowledge bases under
an expressive language (cf. Sections 7.1 and 7.2);

– in case of conflicts across possible overridings, it does not request or elicit a preference
on possible interpretations, but it presents—in line with the ASP paradigm—alternatives as
different models, thus allowing to “reason by cases” on the conflicting solutions (cf. Sections
7.2 and 7.4);

– the definition of model is not defined by minimization, but through the idea of justification of
exceptions which is based on semantic consequence (cf. Section 7.3). In particular, no “normal”
members of a concept are defined, but instead single or tuples of individuals are regarded as
“exceptional” w.r.t. defeasible axioms: this allows us to deal with inheritance of properties at
the level of instances (cf. Section 7.4);

– we provide a translation to datalog that is a direct extension of the materialization calculus
approach proposed for the monotonic case in [1] and shows how modular knowledge can be
encoded for non-monotonic reasoning using existing tools.

To increase readability, some proofs of technical results have been moved to the Appendix. The
prototype and test sets used in the experiments are available on-line at http://ckrew.fbk.eu/.

2. Preliminaries

In this section, we recall the relevant languages from description logics (DLs) and from logic
programming that underlie the context knowledge repositories presented in the later sections.

http://ckrew.fbk.eu/

4

D E

¬
A

K

∪ ∪

R ±
± ≡

R ±

≺ R ≺

SROIQ
SROIQ

I K I | K K
I |

I
∈ ⊆ × ∈ ·

∈ ∈ ⊆
·

SROIQ SROIQ

SROIQ K (T R A) T
◦

¬ п п ∃ ∀

∈ { } ◦ ◦ ◦ ± ≺ ∈ { } R
± ◦ ◦ ± ≺ ∈ { } ◦ ◦ ◦ ± ≺

≺ ≺ ≺ ◦ ±
≺

R SROIQ

More specifically, these are -RL, which is a fragment of [32] corresponding to
OWL-RL in [26], and datalog under answer set (i.e., stable model) semantics [27].

2.1. SROIQ syntax and semantics

In the following we assume the usual presentation of description logics [33] and we will
consider the logic [32]. For ease of reference, the detailed presentation of syntax and
semantics for constructors and axioms is presented in Table A.13 in the Appendix. We
summarize in the following the basic definitions that we will use throughout the paper.

A DL vocabulary Σ = NC NR NI consists of three mutually disjoint countably infinite sets
NC of atomic concepts, NR of atomic roles, and NI of individual constants. Complex concepts

(complex roles) are recursively defined as the smallest sets containing all concepts and roles that
can be inductively constructed using the usual concept constructors , , , , etc. and role

constructors −, etc. as usual (see Table A.13).
A knowledge base = , , consists of a TBox which contains general

concept inclusion (GCI) axioms C D and concept equivalence axioms C D, where C and D
are concepts; an RBox which contains role inclusion (RIA) axioms S R, reflexivity, and role
disjointness axioms, where S and R are roles; and an ABox which contains assertions of the

forms D(a), R(a, b), R(a, b), a = b, and a ≠ b, where a and b are any individual constants (see
Table A.13)3.

A DL interpretation is a pair I = ∆I, ·I where ∆I is a non-empty set called interpretation

domain and I is the interpretation function which provides denotations for individuals, concepts

and roles: it assigns an element aI ∆I to each individual constant a NI, a subset AI ∆I to

each concept A NC, and a subset RI ∆I ∆I to each role R NR. Furthermore, I extends
to complex concepts and roles as described in Table A.13. An interpretation satisfies an axiom
(inclusion, assertion etc.) φ, denoted =DL φ, if the respective semantic constraint in Table A.13
is fulfilled; is a model of , denoted =DL , if it satisfies all axioms of .

Furthermore, in the context of each role in min-cardinality and self restrictions as well as
in (ir)reflexivity, asymmetry, and disjointness axioms must be simple [32], which is defined as
follows:

a) an atomic role R is simple, if it does not occur on the right-hand side of a RIA in R;

b) an inverse role R− is simple, if R is simple;

c) if R occurs on the right-hand side of a RIA in and each such RIA is of the form S R

where S is simple, then also R is simple.

To preserve decidability, the RBox in knowledge bases is required to be regu-
lar [32]. Formally, a regular order is a strict partial order on roles such that, for any roles R, S , R

S iff R− S . A RIA is -regular if it is in one of the following forms: (i) R R R; (ii)
R− R; (iii) S 1 . . . S n R with S i R for i 1, . . . , n ; (iv) R S 1 . . . S n R with S i R
for i 1, . . . , n ; (v) S 1 . . . S n R R with S i R for i 1, . . . , n . An RBox is regular,
if there exists a regular order such that all role inclusions in are -regular.

For developing our approach, we use without loss of generality the standard name assumption

(SNA) in the DL context, cf. [35, 36]: we have an infinite subset NIS ⊆ NI of individual constants,

3Note that the Dis(C, D) axiom is not part of the original presentation of SROIQ [32] (while it is present as an

operator in OWL 2 [34]). It can be easily expressed in terms of subsumption as C п D ± ⊥ or C ± ¬D.

5

∈ ≈
∈

I { | ∈ }

V

\
\

∈
∪

()

{ }

SROIQ
SROIQ

SROIQ SROIQ
± ≡

SROIQ
∈ { }

called standard names such that in every interpretation we have (i) ∆I = NIIS = cI c NIS

and (ii) cI ≠ dI, for every distinct c, d NIS ; thus we may assume that ∆I = NIS and cI = c
for each c NIS . Equality = is then in the FO-translation replaced by a predicate for which
the axioms of a congruence relation are added, i.e., reflexivity, symmetry, transitivity, and
∀x.P(x) ∧ x ≈ xJ → P(xJ), where x = x1, . . . , xn, and xJ = x1

J , . . . , xn
J and x ≈ xJ stands for

n
i=1 xi ≈ xi

J. The standard names are supposed not to occur in the knowledge base, and allow
us to access each element in an interpretation, apart from those elements that are “named” by
individual constants occurring in a knowledge base (which are from NI NIS). The unique name

assumption can as usual be enforced by assertions c ≠ d for all individual constants in NI NIS

resp. occurring in the knowledge base.

2.1.1. SROIQ-RL

We base our framework on a restriction of the syntax that corresponds to OWL-
RL [26], which we refer to as -RL. To this end, we define the following grammars for a
left-side concept C and a right-side concept D respectively:

C := A | {a} | C п C | C п C | ∃R.C | ∃R.{a} | ∃R.T (1)

D := A | ¬C | D п D | ∃R.{a} | ∀R.D | ≤ nR.T (2)

where A is a concept name, R is role name and n 0, 1 . A both-side concept is a concept
expression that is both a left- and right-side concept. Then, in -RL TBox axioms can
only take the form C D, where C is a left-side and D is a right-side or E F, where E and F

are both-side concepts. Next, in -RL the RBox can contain all role axioms of
except Ref(R). Finally, ABox concept assertions can only be of form D(a), where D is a right-side
concept; without loss of generality, we may also assume that D is atomic. For example, the

following expressions are well-formed SROIQ-RL axioms and assertions: A ± ¬B, {a} ± ∃R.{b},
∃R.{b} ≡ A, ¬B(a).

2.2. Datalog programs and answer sets

Following the approach in [20], we will express our rules in the language of datalog. However,
while the rules in [20, 1] are positive, in order to capture defeasibility we need (default) negation

not under the interpretation of answer sets semantics [27].

2.2.1. Syntax

A signature is a tuple C, P of a finite set C of constants and a finite set P of predicates. We
assume a set V of variables; the elements of C V are terms. An atom is of the form p(t1, . . . , tn)
where p P and t1, . . . , tn, are terms.4

A (datalog) rule r is an expression of the form

a ← b1, . . . , bk, not bk+1, . . . , not bm. (3)

where a, b1, . . . , bm are atoms and not is the negation as failure symbol (NAF). We denote with
Head(r) the head a of rule r and with Body(r) = b1, . . . , bk, not bk+1, . . . , not bm the body of r,
respectively. We allow that a is missing (constraint), viewing a as logical constant for falsity. A
(datalog) program P is a finite set of rules.

4Note that we do not use strong (“classical”) negation ¬p over atoms p, i.e. only positive literals appear in our rules.

6

←
∈

→

S

∈
|

()

| | ∈ | ⊂
| | |

∈ | ∈
∈ | |

| ∈
⊆

An atom (rule etc.) is ground, if no variables occur in it. A ground substitution σ for C, P is
any function σ : V C; the ground instance of an atom (rule, etc.) χ from σ, denoted χσ, is
obtained by replacing in χ each occurrence of variable v V with σ(v). A fact H is a ground rule
r with empty body (i.e., m = 0); we then omit . The grounding of a rule r, grnd(r), is the set of

all ground instances of r, and the grounding of a program P is grnd(P) = r∈P grnd(r).

2.2.2. Semantics

Given a program P, the (Herbrand) universe UP of P is the set of all constants occurring
in P and the (Herbrand) base BP of P is the set of all the ground atoms constructible from the
predicates in P and the constants in UP. An interpretation I BP is any subset of BP. An atom l
is true in I, denoted I = l, if l I.5

Given a rule r grnd(P), we say that Body(r) is true in I, denoted I = Body(r), if (i) I = b

for each atom b Body(r) and (ii) I = b for each atom not b Body(r). A rule r is satisfied in I,
denoted I = r, if either I = Head(r) or I = Body(r). An interpretation I is a model of P, denoted

I = P, if I = r for each r grnd(P); moreover, I is minimal, if IJ = P for each subset IJ I.
Given an interpretation I for P, the (Gelfond-Lifschitz) reduct of P w.r.t. I, denoted by GI(P),

is the set of rules obtained from grnd(P) by (i) removing every rule r such that I = l for some
not l Body(r); and (ii) removing the NAF part from the bodies of the remaining rules. Then I is
an answer set of P, if I is a minimal model of of GI(P); the minimal model is unique and exists iff
GI(P) has some model. Furthermore, the minimal model is obtainable by fixpoint iteration. The
following property is well-known.

Proposition 1. If M is an answer set for P, then M is a minimal model of P.

Using this interpretation for our programs, we say that an atom a ∈ BP is a consequence of P

and we write P |= a iff for every answer set M of P we have that M |= a.

3. Contextualized Knowledge Repositories with Defeasible Axioms

We now introduce CKRs and extend them with primitives to express defeasible axioms. We
first present the syntax and then define a model-based semantics for the interpretation of defeasible
inheritance from the upper contexts.

A Contextualized Knowledge Repository (CKR) is a two layered structure. The upper layer
consists of a knowledge base G, which describes two types of knowledge:

(i). the structure and the properties of contexts of the CKR (called meta-knowledge), and

(ii). the knowledge that is context independent, i.e., that holds in every context (called global

knowledge).

The lower layer is constituted by a set of (local) contexts; each contains (locally valid) facts
and can also refer to what holds in other contexts. In order to support knowledge reuse, the
knowledge of each context is organized in multiple knowledge modules that may be shared with
other contexts. To model this, an association between contexts and modules is represented in the

5The semantics can be easily extended to negative literals ¬p: interpretations I ⊆ BP are required to be consistent (i.e.,
not contain complementary literals p and ¬p, viewing ¬p as fresh predicate. This amounts to 3-valued interpretations, in
which an atom p can be true, false (¬p is true), and unknown (neither p nor ¬p is true).

7

± ±

Σ

∈ ×

L ∪ ∪ L

meta-knowledge via a binary relation (mod), which can be either explicitly asserted or inferred
from the meta-knowledge by reasoning; hence, each context can be associated with one or more
knowledge modules which define its contents, while a knowledge module can be shared by one
or more contexts. The mod association also allows the knowledge engineer to link modules to
classes of contexts, and thus to describe the general knowledge that is valid for all contexts of the
same kind. In principle, the knowledge in a CKR can be expressed using any DL language: we
thus provide in the following a parametric definition for any DL language and we successively

instantiate it to SROIQ-RL.

3.1. Syntax

Meta-Language. The meta-knowledge of a CKR is expressed in a DL language containing the
elements to define the contextual structure6.

Definition 1 (meta-vocabulary). A meta-vocabulary is a DL vocabulary Γ = NCΓ NRΓ NIΓ
that consists of sets NCΓ of atomic concepts, a set NRΓ of atomic roles, and a set NIΓ of individual

constants that are mutually disjoint and contain the following sets of symbols:

1. N ⊆ NIΓ of context names;

2. M ⊆ NIΓ of module names;

3. C ⊆ NCΓ of context classes, including Ctx7;

4. R ⊆ NRΓ of contextual relations.

We use the role mod NRΓ defined on N M to express associations between contexts and
modules. Intuitively, modules represent pieces of knowledge specific to a context or context
class.8

Definition 2 (meta-language). The meta-language LΓ of a CKR is a DL language over Γ with the

following syntactic conditions on the application of role restrictions: for every • ∈ {∀, ∃, ≤n, ≥n}
and concept C, if C = •mod.B, then B = {m} with m ∈ M.

Object Language. The knowledge in contexts of a CKR is expressed via a DL language called
object-language Σ over an object-vocabulary Σ = NCΣ NRΣ NIΣ akin to Γ. Expressions in Σ
will be evaluated locally at each context, i.e., each context can interpret each symbol independently.
However, sometimes one wants to constrain the meaning of a symbol in a context with the meaning
of a symbol in some other context. For instance, if John likes all Indian restaurants in Trento,
then the extension of the concept GoodRestaurant in the context of John preferences, contains the
extension of IndianRestaurant in the context of tourism in Trento. To access the interpretation of
expressions inside a specific context or context class, we extend the object language as follows.

Definition 3 (object language with eval). The language Le extends LΣ with eval expressions

eval(X, C), (4)

where X is a concept or role expression of LΣ and C is a concept expression of LΓ (with C ± Ctx).

6To ease readability, we use sans-serif typeface for elements of the meta-vocabulary.
7Intuitively, Ctx will be used to denote the class of all contexts.
8Compared to CKRs in [1], for simplicity we do not deal here explicitly with contextual attributes and values. A

possible way to reintroduce them would be to fix the interpretation of attribute values as sets of rigidly interpreted elements;
then, semantically constrain contextual attributes to range only over their fixed sets of values.

8

Σ

±

Σ

{ }

± ¬

L L L

L SROIQ

Σ

Σ

The DL language e extends Σ with the set of eval-expressions in Σ. Intuitively, the

expression eval(C, c) represents the extension of the concept C in the context c, and eval(C, C),
with C a context class, represents the union of the extensions of C in each context c of type C. For
eval(R, C) with R a role, this is similar.

Example 1. The example above can be formalized by adding the following axiom to the context

of John’s preferences: eval(IndianRestaurant, {trento tourism}) ± GoodRestaurant Q

We note that nested eval expressions are not allowed: every expression occurring inside an eval

must be an expression in Σ. Moreover, as for -RL the occurrence of eval expressions in
axioms and assertions will be syntactically restricted.

Defeasible Axioms. With respect to the initial definition of CKR in [1], we extend the types of
axioms that can appear in the global object knowledge with defeasible axioms.

Definition 4 (defeasible axiom). A defeasible axiom is any expression of the form D(α), where

α ∈ LΣ.

Intuitively, D(α) means that at the level of instantiations for individuals, α is inherited by local
contexts unless it generates a contradiction there. In other words, a local exception to α for some
individuals is tolerated.

Example 2. A defeasible global axiom D(Concert Expensive) might be used to express that

“in general concerts are expensive” and propagate this piece of knowledge to local contexts.

At such a context, this might be contradicted by local assertions Concert(f reeconcert2016),

¬Expensive(f reeconcert2016) which “override” the global axiom for f reeconcert2016. Q

Example 3. Note that we want that global defeasible axioms hold globally for all their local

instances, but they allow exceptional instances in local contexts. For example, let us say that in

the global context we assert that D(Horse Fly). However, in the local context greek myths of

Greek mythology, we can assert that this axiom does not hold for the particular instance of the

flying horse Pegasus: Horse(pegasus), Fly(pegasus). On the other hand, for any other instance

of Horse not explicitly violating the axiom, we want to be able to apply the global axiom: for

example, if we consider Pedasos, one of Achilles’ horses, and assert Horse(pedasos), we want to

be able to derive ¬Fly(pedasos). Q

Definition 5 (object language with defeasible axioms). The DL language LD extends LΣ with the

set of defeasible axioms in LΣ.

Equipped with the above languages, we are now ready to give our formal definition of
Contextualized Knowledge Repository with defeasible axioms.

Definition 6 (contextualized knowledge repository, CKR). A contextualized knowledge repository
(CKR) over a meta-vocabulary Γ and an object vocabulary Σ is a structure

K = (G, {Km}m∈M)
where:

– G is a DL knowledge base over LΓ ∪ LD, and

– every Km is a DL knowledge base over Le , for each module name m ∈ M.

9

SROIQ
SROIQ

± ∃ { } { } ± ∃ { }

п ∃

Furthermore, K is a -RL CKR, if G and all Km are knowledge bases over the extended

language of -RL where eval-expressions can occur only in left-concepts and contain only

left-concepts respectively roles.

In the following, we tacitly focus on SROIQ-RL CKRs.

Example 4. We introduce an example from the tourism recommendation domain.9 In this scenario,

we use a CKR to implement a knowledge base Ktour that, after being populated with touristic

events, locations, organizations, and tourist preferences and profiles, is capable of identifying

events that are interesting for a particular tourist (or for a generic tourist class) starting from their

preferences. A simplified version of the structure of Ktour and its contexts is shown in Figure 1.

For our example, we focus on sportive events and in particular on volleyball matches.

– Intuitively, in the global context G, every sport event and tourist is modelled with a context;

in the figure, these are depicted as black diamonds and we see some of the oflcial volley-

ball matches and a tourist. Contexts are grouped by types and organized in hierarchies by

means of context classes; in the figure, they are depicted as boxes and we see distinct context

class hierarchies for event types (e.g. SportiveEvent, VolleyMatch) and for tourists types (e.g.

SportiveTourist).

– The meta-knowledge in G associates to contexts and context classes sets of knowledge modules,

by axioms of the form Event mod. m event and modena trento mod. m match2 : in the

figure these associations are represented by dotted lines to the gray empty diamonds depicting

module name individuals.

– Knowledge bases associated with modules are depicted as the corresponding gray boxes in the

lower part of Figure 1: for example, in Kv match we have general axioms about the structure of

volleyball matches, while in modules for specific matches as Kmatch1 we store assertions about

the actual results of the match. Intuitively, the semantics will enforce a form of inheritance of
modules via context class hierarchy.

– Contextual relations across events and tourists are depicted as bold arrows in the figure: the

only relation hasParentEvent connects matches with the competition in which they occur.

Note that in some of the knowledge modules, we use eval expressions to define references across

contexts. For example, in Ksport ev we can state that “Winners of major volleyball matches are top

teams” with:

eval(Winner, TopMatch) ± TopTeam

where TopMatch = VolleyMatch hasParentEvent.VolleyA1Competition. Similarly, in Ksp tourist
we say that for each sportive tourist “top teams are preferred teams” with the reference axiom

eval(TopTeam, SportsEvent) ± PreferredTeam. Q

Example 5. We can extend this example with defeasible information: we can assert some general

preferences that can be locally overriden by tourist specific assertions. In particular, we want to

assert that, in general, all of the Cheap events are Interesting: we can do this using a defeasible

axiom in the global context. Furthermore, we propose local markets (market) and football matches

9This example is a simplified version of a real case scenario in which we apply CKR to a tourist event recommendation

system in Trentino (see https://dkm.fbk.eu/projects/toolisse).

10

G :

(
±

)

G = { CulturalEvent ± Event, SportsEvent ± Event,

Concert ± CulturalEvent, VolleyMatch ± SportsEvent,

VolleyA1Competition ± SportsEvent,

SportiveTourist ± Tourist, CulturalTourist ± Tourist,

VolleyMatch(trento cuneo), VolleyMatch(modena trento), VolleyMatch(trento latina),
VolleyA1Competition(A1 2012-13), hasParentEvent(modena trento, A1 2012-13),
hasParentEvent(trento latina, A1 2012-13), SportiveTourist(volley fan 01),

Event ± ∃mod.{m event}, SportsEvent ± ∃mod.{m sport ev},
VolleyMatch ± ∃mod.{m v match},
{trento cuneo} ± ∃mod.{m match1}, {modena trento} ± ∃mod.{m match2},

{trento latina} ± ∃mod.{m match3}, Tourist ± ∃mod.{m tourist},
SportiveTourist ± ∃mod.{m sp tourist}, {volley fan 01} ± ∃mod.{m tourist01} }

Figure 1: CKR knowledge base Ktour (TopMatch = VolleyMatch п ∃hasParentEvent.VolleyA1Competition))

(fbmatch) as examples of cheap events. However, we want to reflect that tourists interested in

cultural events are not interested in a sports event like a football match: we express this by

locally negating their interest in f bmatch. Thus, our example CKR Ktour can be extended with the

following axioms:

D(Cheap Interesting), Cheap(fbmatch), Cheap(market),

mod(cultural tourist, ctourist m)

Kctourist m : { ¬Interesting(fbmatch) }

Note that the negative assertion in the local context represents an exception to the defeasible
axiom: we want to recognize this “overriding” for the fbmatch instance, but still apply the

defeasible inclusion for market. Q

Example 6. Our next example shows how we can represent a form of defeasible propagation of

information across local contexts using eval expressions. We want to represent the information

Loser(andreoli_latina_volley), ...
Kmatch3

Winner(itas_trentino_volley), eval(TopTeam, SportsEvent) ⊑
Ksp_tourist PreferredTeam

Loser(itas_trentino_volley), ...
Kmatch2

Winner(casa_modena_volley), Ksport_ev eval(Winner, TopMatch) ⊑ TopTeam

G
m_event m_tourist

m_sport_ev
m_sp_tourist

m_v_match

volley_fan_01

trento_cuneo trento_latina A1_2012-13
m_tourist01

modena_trento

hasParentEvent
m_match1 m_match2 m_match3

Loser(itas_trentino_volley), ...
Kmatch1

Winner(bre_banca_cuneo_volley),

Winner ⊑Team, Loser ⊑Team, ...
Kv_match

HomeTeam ⊑Team, HostTeam ⊑Team,

VolleyA1

Competition
VolleyMatch Concert

CulturalTourist SportiveTourist

SportsEvent CulturalEvent

Tourist

Event

11

(
±
G :

()

K :em2016

m

¬

¬

¬

± ¬

() ∈ L

about an organization in a CKR, using contexts to represent its situation in different years. We

express the rule that every employee working the years before (WorkingBefore) also works in

the current year (WorkingNow) by a defeasible inclusion. In the module associated to 2015, we

say that alice, bob and charlie were working last year. In the module for 2016, we say (using

an eval expression) that all of the employees working in 2015 have to be considered in the set

of employees working in the past years; moreover, we say that charlie no longer works for the

organization. This can be encoded in the CKR Korg = (G, {Kem2015 m, Kem2016 m}), where

D(WorkingBefore WorkingNow),
mod(employees2015, em2015 m), mod(employees2016, em2016 m)

Kem2015 m : { WorkingNow(alice), WorkingNow(bob), WorkingNow(charlie) }

eval(WorkingNow, {employees2015}) ± WorkingBefore,

¬WorkingNow(charlie)

Intuitively, at the local context employees2016, where WorkingBefore(charlie) can be derived, the

negative assertion WorkingNow(charlie) should override the instance of the inclusion axiom in

the global context for charlie, as it would lead to the opposite, i.e., WorkingNow(charlie); on the

other hand, for alice and bob no overriding should happen and we can derive that they still work

for the organization. Q

In the previous example, the overriding of the defeasible axiom is uncontroversial and leads
to an intuitive set of conclusions. However, it may be the case that axioms lead to conflicting
conclusions; while this results for strict (classical) axioms in inconsistency, for defeasible axioms
we still may retain consistency but different sets of conclusions can be appealing, in line with a
conflict resolutions

Example 7 (cont’d). Consider an extension of the CKR in Example 6, where the global knowledge

contains a further defeasible axiom D(LotteryWinner WorkingNow) that states that who wins

in the lottery usually does no longer work, and the module Kem2016 m an additional assertion

LotteryWinner(alice). Then, at the local context employees2016, where WorkingBefore(alice) can

be derived, the defeasible axioms in G lead to the conflicting conclusions WorkingNow(alice)
and WorkingNow(alice); thus, at least one of the defeasible axiom instances for alice must be

overridden if consistency should be maintained. Q

The readers familiar with nonmonotonic logics and formalisms will recognize that the situation
emerging in the previous example amounts to the classic Nixon diamond scenario, which we
shall discuss in more detail in Section 7.4. Accordingly, a solution is to override one of the
two defeasible axioms such that we can conclude either WorkingNow(alice) or alternatively

WorkingNow(alice). The semantics of CKRs that we propose has this feature, where assumptions
about overriding in models must be reasonably justified; informally, we obtain in Example 7 two

classes of models for the CKR, in which WorkingNow(alice) resp. ¬WorkingNow(alice) is true.

3.2. Semantics

We now define a model-based semantics of CKRs with defeasible axioms, which extends
the semantics of CKRs [1] in order to reason with exceptions and their justifications. Intuitively,
we model local exceptions of axiom instances by pairs α, e of an axiom α Σ and a tuple e

of individuals in NIΣ (called clashing assumptions): in the evaluation of α at a local context, its
instantiation with e is not considered. However, such assumptions of exceptions must be justified:
the instance of α for e must be unsatisfiable at the local context. This is ensured if assertions can
be derived which prove this unsatisfiability; we call such assertions clashing sets.

)

12

(±)

[

∈
I

M

∀

Σ

Σ

∈ L
SROIQ

SROIQ
L

∀
∀

V V

Example 8. If we consider the concert scenario with the defeasible axiom

D(Concert ± Expensive),

our clashing assumptions on the local context should contain Concert Expensive, freeconcert2016 ;

this clashing assumption is in fact justified by the clashing set

{Concert(freeconcert2016), ¬Expensive(freeconcert2016)}

Models of a CKR will be then CKR interpretations extended with clashing assumptions that are

all justified. Q

We start with a formal definition of CKR interpretations.

Definition 7 (CKR interpretation). A CKR interpretation for (Γ, Σ) is a structure I = (M, I)

(i) M is a DL interpretation of Γ ∪ Σ such that cM ∈ CtxM, for every c ∈ N, and CM ⊆ CtxM,

for every C ∈ C;

(ii) for every x ∈ CtxM, I(x) is a DL interpretation over Σ s.t., ∆I(x) = ∆M and aI(x) = aM, for

every a ∈ NIΣ.

The interpretation of ordinary DL expressions on M and I(x) in I = (M, I) is as usual (e.g.
see Table A.13); eval expressions are interpreted as follows: for every x ∈ CtxM,

eval(X, C)I(x) =

e∈CM

XI(e)

According to the previous definition, a CKR interpretation is composed by an interpretation
for the “upper-layer” (which includes the global knowledge and the meta-knowledge) and
an interpretation (x) of the object language for each instance x of type context (i.e., for all

x CtxM), providing a semantics of the object-vocabulary in x.
We next aim to extend CKR interpretation with exceptions for defeasible axioms. To this end,

we need some further notions.

First-order translation. As well-known, -RL knowledge bases can be expressed in
first-order (FO) logic [26], where every axiom α Σ is translated into an equivalent FO sentence
x.φα(x) where x contains all free variables of φα depending on the type of the axiom (see below).
A reference translation is given in Appendix A.2; notably, the resulting formulas φα(x) amount
semantically to Horn formulas. In fact, each left-side concept C can be expressed by an existential
positive FO-formula, and every right-side concept D by a conjunction of Horn clauses.

To contextualize DL-axioms for CKR knowledge bases, the translation is extended with a
further argument xc for the context, such that the formula x.φα(x, xc) expresses the axiom α

within context xc; in particular, for any context name c the sentence x.φα(x, c) expressed α within
c. Furthermore this translation is easily extended to e such that the Horn property is maintained
for -RL, due to the restrictions on the form and occurrence of eval expressions; the
presence of eval expressions requires the contextualized form. We note the following property.

Lemma 1. For any DL knowledge base K over LΓ resp. Le , its FO-translation (resp. its

contextualized FO translation)

φK := α∈K ∀xφα(x) (resp. φK,xc := α∈K ∀xφα(x, xc)) (5)

is semantically equivalent to a conjunction of universal Horn clauses.

where

13

≈

()

∈ L ∀

SROIQ

(M I) ∈
(M I)

Notably this lemma remains valid under the SNA, as the axioms defining a congruence relation
are Horn clauses.

We now formally introduce the notion of instantiation of an axiom. This notion forms the
basis for defining exceptions to axioms in terms of clashing assumptions about violated instances,
which have to be evidenced by clashing sets that, in our formalization, are provable from the
knowledge base.

Definition 8 (axiom instantiation). Given an axiom α Σ with FO-translation x.φα(x), the

instantiation of α with a tuple e of individuals in NIΣ, written α(e), is the specialization of α to e,

i.e., φα(e), depending on the type of α.

In particular, e is (i) void for assertions α, (ii) a single element e for GCIs α, and (iii) a pair
e1, e2 of elements for role axioms α.

Definition 9 (clashing assumptions and sets). A clashing assumption is a pair (α, e) such that

α(e) is an axiom instantiation for an axiom α ∈ LΣ. A clashing set for a clashing assumption

(α, e) is a satisfiable set S of ABox assertions over LΣ such that S ∪ {α(e)} is unsatisfiable.

Intuitively, a clashing assumption α, e represents that α(e) is not (DL-)satisfiable, and a
clashing set S provides an assertional “justification” for the assumption of local overriding of α

on e.

Example 9. For example, the clashing assumption (A ± B, a) has {A(a), ¬B(a)} as a clashing set,

and (A п B ± C, a) has {A(a), B(a), ¬C(a)}. Furthermore, (A ± ∃R.{a}, b) has the clashing set

{A(b), ¬R(b, a)}, and (A ± ≤1R.B, a) has {A(a), R(a, a), R(a, b), B(a), B(b), ¬A(b)}, for instance.

In each case the clashing set S is minimal in that no proper subset S J ⊂ S is a clashing set;

multiple minimal clashing sets may exist (e.g., {A(a), R(a, a), R(a, b), B(a), B(b), C(a), ¬C(b)}
would be another minimal clashing set for (A ± ≤1R.B, a). Q

We remark that this notion of “assertional justification” is directly connected with the datalog
translation in Section 5: it corresponds to the provability of an assertional condition stating the
inconsistency of the inherited axiom. By the Horn nature of -RL, such a “constructive”
justification can always be found.

Proposition 2. Let (α, e) be a clashing assumption where α is a SROIQ-RL axiom. If α(e) is

not valid (i.e., ¬φα(e) is satisfiable), then a clashing set S for (α, e) exists and each concept

assertion in S is of the form A(a) resp. ¬A(a), and A ∈ NC. Furthermore, every non-redundant

(i.e. ⊆-minimal) such set S has size linear in the size of α.

3.2.1. CAS-models

We then extend CKR interpretations to CAS-interpretations that take clashing assumptions
into account as follows.

Definition 10 (CAS-interpretation). A CAS-interpretation is a structure ICAS = , , χ where

I = , is a CKR interpretation and χ maps every x ∆M to a set χ(x) of clashing assumptions
for x.

Intuitively, a CAS-interpretation pairs a usual CKR interpretation with an exception set for
each local context.

14

CAS

I
M

∀

α

I ()

± ∃ { }

∩ L ∪ L ∪ { | ∈ }

α Σ

α∈G∩LΣ D(α)∈G

What remains then is to define satisfaction of axioms on CKR- resp. CAS-interpretations, and
to single out appropriate models of a given CKR K. To achieve this, we extend the definition of
CKR models from [1] by introducing the condition to disregard “exceptional elements” asserted
by clashing assumptions in χ(x) in the local interpretation of their defeasible axioms, leading
to CAS-models. However, such models have arbitrary exceptions, while we are interested in
justifiable exceptions; this will be captured by the notion of justified CAS-models.

For convenience, we call two DL interpretations I1 and I2 (resp. CAS-interpretations Ii =

(Mi, Ii, χi), i ∈ {1, 2}) NI-congruent, if cI1 = cI2 (resp. cM1 = cM2) holds for every c ∈ NI.

Definition 11 (CAS-model). Given a CKR K = (G, {Km}m∈M), a CAS-interpretation ICAS =

(M, I, χ) is a CAS-model for K (denoted ICAS |= K), if the following holds:

(i) for every α ∈ LΣ ∪ LΓ in G, M |= α;

(ii) for every D(α) ∈ G (where α ∈ LΣ), M |= α;

(iii) for every (x, y) ∈ modM such that y = mM, I(x) |= Km;

(iv) for every α ∈ G ∩ LΣ and x ∈ CtxM, I(x) |= α, and

(v) for every D(α) ∈ G (where α ∈ LΣ), x ∈ CtxM, and |x|-tuple d of elements in NIΣ such that

d g {e | (α, e) ∈ χ(x)}, we have I(x) |= φα(d).

In the previous definition, conditions (i) and (ii) verify that the global interpretation satisfies
the (strict and defeasible) axioms in G. Condition (iii) states that each local interpretation (x)
satisfies all local modules Km that are associated with context x. Moreover, by condition (iv), all
strict axioms from global object knowledge in G need to be satisfied in local interpretations. The
local interpretation of defeasible axioms is defined by condition (v): for every global defeasible

axiom D(α) and instantiation α(d) of it, (x) must satisfy α(d) if α, d g χ(x), i.e., α(d) is not an
exceptional instantiation.

As for condition (iii), we note that contexts and module names are not necessarily interpreted
as the same objects, and that a module can be shared by more contexts: the fact that the piece
of knowledge identified by m should be included in the knowledge of context c is provided by
the truth of the role assertion mod(c, m). Thus, it is not the case that if a context c belongs to a
context class C then its modules belong to C too: on the other hand, if we write C mod. m ,
we can state that all contexts in C share the same module m (e.g. defining the common features of
elements in C).

We can express the CAS-models of a CKR K using an extended FO translation, in which
the clashing assumption χ is represented by predicates appα(x, xc) which informally state that in
context xc, the axiom α = x.φα(x) has for x not an exception, i.e., α applies on x (cf. Appendix).
More in detail, let us call

φCtx(x, xc) = Ctx(xc) → φα(x, xc), α ∈ LΣ (6)

φCAS(x, xc) = Ctx(xc) ∧ appα(x, xc) → φα(x, xc), α ∈ Le , (7)

the context-constraint resp. clashing-constraint translation of α; then the sentence

φ =

V
α∈GΣ,Γ ∀x.φα(x) ∧

V
m∈M ∀xc.

mod(xc, m) → φKm,xc (xc)

∧

(8)

K V
∀x .φCtx(x, x) ∧

V
∀x .φCAS(x, x)

where GΣ,Γ = G (Σ Γ) α D(α) G , expresses the CAS-models of K, i.e., those CAS-
interpretations which are CAS-models relative to the represented clashing assumption. Clearly, φK
amounts semantically to a Horn sentence.

c α c c α c

15

±

I |

I |

(M I)

(M I) I |

(M I)CAS
S

∈

[

[

Example 10. We can now provide an example of CAS model for the CKR KtourD from Example 5.

We can consider the model ICASt1 = (M, I, χt1) such that

χt1(cultural touristM) = {(Cheap ± Interesting, { f bmatch})}

In this case we have the intuitive interpretation where (cultural touristM) = Interesting(fbmatch).
However, it is not the only legitimate CAS model for KtourD: we can also consider the model

ICASt2 = (M, I, χt2) where:

χt2(cultural touristM) = {(Cheap ± Interesting, f bmatch), (Cheap ± Interesting, market)}

In this case, also the individual market is considered as exceptional and it holds that

(cultural touristM) = Interesting(market). We will see in the following how to limit the models
we consider only to the exceptional cases that are actually motivated by the contents of the CKR

at hand. Q

Justification. A clashing assumption allows us to dispense the application of an axiom in a context.
However, for this to happen, we should have a good reason; an exception should be made only

if needed. To reflect this, we say that a clashing assumption (α, e) ∈ χ(x) is justified for a CAS
model ICAS = (M, I, χ), if some clashing set S = S (α,e),x exists such that, for every CAS-model
IJ

CAS = J, J, χ of K that is NI-congruent with ICAS, it holds that J(x) = S (α,e),x. Informally,
justification requires that we have factual evidence that an instantiation of an axiom can not be
satisfied, and this evidence is provable. This leads us to justified CAS-models, from which we
obtain CKR-models of K by stripping off the clashing part.

Definition 12 (justified CAS model and CKR model). A CAS model I = , , χ of a CKR
K is justified, if every (α, e) ∈

x CtxM χ(x) is justified. An interpretation I = (M, I) is a CKR

model of K (in symbols, I |= K), if K has some justified CAS model ICAS = (M, I, χ).

Example 11. Let us reconsider the Ktour CKR of Example 4 and provide a formal interpretation

for it. Let I = , be the CKR model of Ktour directly induced by its assertions. Note that,

since Ktour does not include defeasible axioms, the model can be defined independently from the

choice of a clashing assumption map χ, as presented in the analogous example in [1]. By the

definition of the model, we can now find the knowledge base associated to each context: for

example, for the context of the match modena trento, we have that

I(modena trentoM) |= Kevent ∪ Ksport ev ∪ Kv match ∪ Kmatch2

and similarly for the other matches. In particular, we have that the local interpretation satisfies

the axiom eval(Winner, TopMatch) TopTeam, which is included in Ksport ev. The formal reading

of this axiom is as follows. We have that

eval(Winner, TopMatch)I(modena trento
M) =

e∈TopMatchM

WinnerI(e)

=

e∈{modena trento, trento latina}

WinnerI(e),

where the last line follows from the assertions in the ABox of G. Now, by assertions on Winner

inside Kmatch2 and Kmatch3, we obtain

{itas trentino, casa modena} ⊆ TopTeamI(modena trento
M)

16

∈

[

{ } ⊆

(M I)

For the context describing the tourist volley fan 01, we can reason similarly. We have that

I(volley fan 01M) |= Ktourist ∪ Ksp tourist ∪ Ktourist01

Thus, the interpretation satisfies eval(TopTeam, SportsEvent) ± PreferredTeam from Ksp tourist. As

in the case above, eval(TopTeam, SportsEvent)I(volley fan 01
M) is interpreted as

e Spo

[

rtsEventM

TopTeamI(e)=
e∈{trento cuneo, modena trento, trento latina}

TopTeamI(e),

by the assertions in G. Finally, from the reference axiom above, we obtain

{itas trentino, casa modena} ⊆ PreferredTeamI(volley fan 01
M

) Q

Example 12. We can now show an example of CKR models satisfying the CKRs presented

in Examples 5 and 6. In the case of KtourD, let us consider the model ICASt1 = , , χt1 of

Example 10. We note that this interpretation is justified as it is easy to check that

I(cultural touristM) |= {Cheap(fbmatch), ¬Interesting(fbmatch)}

that represents a clashing set for the defeasible axiom. On the other hand, the CAS model ICASt2

is not justified: indeed, in the case of the individual market we can not find a clashing set for the

respective clashing assumption, since I(cultural touristM) |= ¬Interesting(market).
In the case of Korg, we have that the model ICASorg = (M, I, χorg) with

χorg(employees2016M) = {(WorkingBefore ± WorkingNow, {charlie})}

is a CKR model for the example CKR. For the interpretation of eval expressions, in every

interpretation of Ktour we have that aliceI(x), bobI(x), charlieI(x) WorkingBeforeI(x), where
x = employees2016. Thus the justification of the model can be easily seen as

I(employees2016M) |= S for S = {WorkingBefore(charlie), ¬WorkingNow(charlie)}

which represents a clashing set for the defeasible axiom on charlie. Q

Different from arbitrary CAS-models, a characterization of justified CAS-models by a FO trans-
lation (even less into Horn formulas) is not straightforward; furthermore, no modular translation
can exist, due to the inherent non-monotonicity of exceptions (see below).

3.3. Semantic properties

It appears that CAS-models and in particular justified CAS-models (thus CKR-models), have
interesting properties.

Irrelevance of syntax. Straight from the definition is the property that the syntactic form of an
axiom with exceptions is not important. That is,

Proposition 3 (irrelevance of syntax). Suppose K = (G, {Km}m∈M) has in G a defeasible axiom

D(α). If β ∈ LΣ satisfies φα(x) ≡ φβ(x) (i.e., β is of the same genus and logically equivalent to α),

then K and KJ = ((G \ α) ∪ {β}, {Km}m∈M) have the same CKR-models.

Note that Proposition 3 does not hold for arbitrary CAS-models, as clashing assumptions are
syntactically defined; however, the sets of CAS-models correspond under exchange of α and β

there.

17

SROIQ

CAS

Nonmonotonicity. As expected, justified CAS-models behave nonmonotonically, in the following

sense. Let us write K ⊆ KJ for K = (G, {Km}m∈M) and KJ = (GJ, {Km
J }m∈M), if G ⊆ GJ and

Km
J ⊆ Km, for all m ∈ M.

Proposition 4 (non-monotonicity). Suppose ICAS = (M, I, χ) is a justified CAS-model of a CKR

KJ. Then ICAS is not necessarily a justified CAS-model of every K ⊆ KJ.

For example, if GJ consists of D(A(c)) and a context c with an associated module Km
J consisting

of ¬A(c), then ¬A(c) is true at c in the justified CAS-model of KJ, thanks to the justified clashing
assumption (A(c), s); if we remove ¬A(c), then ¬A(c) is false in the justified CAS-model of K, as
the clashing assumption (A(c), s) is no longer justified and must be dropped.

Context focus. A further simple property is that in CAS-models, only the clashing assumptions
for contexts matter. Formally,

Proposition 5 (context focus). Suppose ICAS = (M, I, χ) |= K for a CAS-interpretation of a
CKR K and that χJ coincides with χ on CtxM. Then IJ

CAS = (M, I, χJ) |= K. Furthermore, if ICAS

is justified, then also IJ
CAS is justified.

That is, if we consider a justified CAS model ICAS, any other CAS-interpretation IJ
CAS that

differs from CAS only on the clashing assumptions of elements not in CtxM (i.e. non-context
individuals) is also a justified model. Thus, clashing assumptions can be safely assumed to be
void for non-context individuals.

Minimality of justification. In case of justified CAS-models, the clashing assumptions associated
with the contexts are minimal in the sense that no assumption can be omitted. This follows from
the property that the clashing assumptions must be setwise incomparable.

Proposition 6 (minimality of justification). Suppose that ICAS = (M, I, χ) and IC
J

AS = (MJ, IJ, χJ)

are justified CAS-models of a CKR K that are NI-congruent. Then, CtxM = CtxMJ
and χJ(x) ⊆ χ(x)

for every x ∈ CtxM implies χ = χJ.

As a consequence, exceptions in CKR models are minimally justified in this sense; notably,
this minimality condition is intrinsic and not explicitly part of the definition.

Intersection property and least model. Another property is that CAS-models of a -RL
CKR enjoy an intersection property; this is due to the fact that the global and the local knowledge
bases of a CKR amount to Horn theories, which as it is well-known have the intersection property.

Formally, for two NI-congruent DL interpretations I1 and I2, we denote by I1 ∩ I2 the
NI-congruent interpretation such that CI1 ∩I2 = C1

I ∩ C2
I and RI1 ∩I2 = RI1 ∩ RI2 for all C ∈ NC

and R ∈ NR, respectively. Then:

Proposition 7 (intersection property). Let Ii = (Mi, Ii, χ), i ∈ {1, 2} be NI-congruent CAS-

models of a CKR K. Then ICAS = (M, I, χ) where M = M1 ∩ M2 and I = I1 ∩ I2 is the

intersection of the Mi resp. Ii, is also a CAS-model of K. Furthermore, ICAS is justified if some
i
CAS is justified, i ∈ {1, 2}.

An immediate consequence of this result is that a least (justified) CAS-model exists. Tech-
nically, let a name assignment be any interpretation ν : NI → ∆ of the individual constants

on the domain ∆ (respecting SNA); the name assignment of a DL interpretation I (resp. CAS-

interpretation ICAS = (M, I, χ)) is the one induced by NII (resp. NIM). We call a clashing

I

18

CAS

∈ ∈
∪ ∈ \ ∪

M I ()

()

∈

I

assumption CAS for a CKR K satisfiable (resp., justified) for a name assignment ν, if K has some
CAS-model (resp., justified CAS-model) ICAS with name assignment ν. Then:

Corollary 1 (least model property). If a clashing assumption χ for a CKR K is satisfiable for

name assignment ν, then K has a least (unique minimal) CAS-model ÎK(χ, ν) = (M̂ , Î, χ) w.r.t.

inclusion MJ ⊆ M and IJ ⊆ I for ν. Furthermore, ÎK(χ, ν) is justified if χ is justified.

Named model focus. An important property concerns the scope of an interpretation. For
SROIQ-RL DL knowledge bases K, and likewise for SROIQ-RL CKRs K, we can focus
on the named part of a DL interpretation I resp. a CAS-interpretation ICAS = (M, I, χ). We say
I is named relative to N ⊆ NI \ NIS , if CI ⊆ NI and RI ⊆ NI×NI for each C ∈ NC and R ∈ NR;
if in addition cI ≠ dI for any distinct c, d ∈ N and N includes all constants that occur in K, we

call I a pseudo Herbrand interpretation for K relative to N.10 The following lemma is then not
hard to establish. For convenience, let for any N ⊆ NI \ NIS be the N-restriction of I, denoted
by IN , the interpretation that results from I by restricting CI to NI for all C ∈ NC and RI to

NI×NI for every R ∈ NR.

Lemma 2. Suppose I is a model of a SROIQ-RL knowledge base K and N ⊆ NI \ NIS includes

all individuals occurring in K . Then the N-restriction IN is named w.r.t. N and a model of K .

In essence, we have model preservation under restriction to NI (technically, because of the
standard names we need to keep the whole domain).

This property extends to CAS-interpretations ICAS(M, I, χ) of CKRs K. Given that N includes
each individual constant that occurs in K, a CAS-interpretation IN results from ICAS by (i)
replacing and each (x) with its N-restriction, (ii) removing each clashing assumption α, d

from χ where d is not over N NM, and (iii) interpreting each constant symbol c NI (N NIS)

such that cM NM (resp. cI(x) NI(x)) its interpretation cM
N

(resp. cI(x)
N

) by some arbitrary

element not in NM.11 In particular, we write NK for N if the latter consists precisely of the
individual constants that occur in K. Then we obtain:

Theorem 1 (named model focus). Let ICAS be a CAS-model of K and suppose NK ⊆ N ⊆ NI\ NIS .
Then, also IN , and in particular INK , is a CAS-model for K. Furthermore, IN is justified if

CAS I CAS
N

 CAS

CAS is justified, and every clashing assumption α, e in ICAS is justified by some clashing set S

formulated with constants from N.

Based on this, we can restrict query answering, which we will turn to next, to named CKR-
models. This property is crucial for the datalog translation that we shall present in Section 5.

4. Reasoning and Complexity

In this section, we consider reasoning from CKRs: to this end, we first define entailment of
axioms from a CKR, and then we proceed to define conjunctive queries over a CKR. After that,
we characterize the computational complexity of elementary reasoning tasks and query answering
from CKRs.

10Conceptually, we obtain a traditional Herbrand interpretation if we identify each c N with the standard name cI and

dismiss all other standard names and restrict ∆I to NI. Technically, to stick with the infinitely many standard names NIS ,
we leave the domain in N unchanged.

11Alternatively, if we are allowed to change NI we could simply remove all such c.

19

Σ

(
K |= c : α for every c ∈ N, if α ∈ L ,

I |

() ∈

I | ¬ ¬ ∈ I | ()
I ⊆ I I | ∈ ˆ

4.1. CKR Entailment

Based on CKR-models, we define notions of context and global entailment of axioms from a
CKR as follows.

Definition 13 (c-entailment, global entailment). Assume a CKR K over (Γ, Σ) and c ∈ NK. An

axiom α ∈ Le is c-entailed by K, denoted K |= c : α, if I(cM) |= α for every CKR-model

I = (M, I) of K. Furthermore, an axiom α is (globally) entailed by K, denoted K |= α, if

e
Σ

M |= α for every CKR-model I = (M, I) of K, if α ∈ LΓ.

Example 13. Considering the CKR KtourD and the model ICASt1 from Example 12, we have that

KtourD |= cultural tourist : ¬Interesting(fbmatch)

On the other hand, for the definition of satisfiability under the assumptions in CAS t1, we obtain

that (cultural touristM) = Interesting(market).

For Korg and the model ICASorg , similarly, we have:

Korg |= employees2016 : ¬WorkingNow(charlie)

However, for the satisfiability under the assumptions in CASorg, we obtain that I(employeesM) |=

WorkingNow(alice) and I(employeesM) |= WorkingNow(bob). Q

In order to decide entailment of an axiom, it is helpful to know when a clashing assumption
is justified. The following theorem provides such a characterization, which resorts to the least

model ÎK(χ, ν) for a clashing assumption χ and a name assignment ν.

Theorem 2 (justified CAS characterization). Let χ be a satisfiable clashing assumption for CKR

K and name assignment ν. Then χ is justified iff α, e χ(x) implies some clashing set S = S (α,e),x
exists such that

(i) Î(x) |= β, for each positive β ∈ S , where ÎK(χ, ν) = (M̂ , Î, χ), and

(ii) no CAS-model ICAS = (M, I, χ) with name assignment ν exists such that I(x) |= β for some

¬β ∈ S .

Proof. Given that χ is a satisfiable clashing assumption for K and ν, by Corollary 1 the least

CAS-model ÎK(χ, ν) = (M̂ , Î, χ) w.r.t. inclusion MJ ⊆ M and IJ ⊆ I for ν exists.
(⇒) If χ is justified, then ÎK(χ, ν) is justified and hence by definition for every (α, e) ∈ χ(x) some
clashing set S = S (α,e),x exists such that for each CAS-model IJ

CAS = (MJ, IJ, χ) of K that is

NI-congruent with ÎK(χ, ν), i.e., with name assignment ν, it holds that IJ(x) |= S ; hence, (ii)
clearly holds. Furthermore, as IJ

CAS is NI-congruent with itself, also (i) holds.

(⇐) Suppose every (α, e) ∈ χ(x) has some clashing set S = S (α,e),x such that items (i) and (ii)
hold. Let IC

J
AS = (MJ, IJ, χ) be any CAS-model of K that is NI-congruent with ÎK(χ, ν). As

J, it follows from (i) that J(x) = β for each positive β S ; furthermore, from (ii) it follows
that J(x) = β for each β S . Hence, J(x) = S , and thus α, e is justified for ÎK(χ, ν).
Consequently, ÎK(χ, ν) is justified.

20

CAS

β,c

|

ˆ |
¬

∀ ∀
| |

≤ ≤
∧ · · · ∧

∃

|
→ I | M | ≤ ≤

As for testing (ii), we can add to K a module Kmβ = {β} and the global assertion mod(c, mβ)

where cÎ = x, and test whether the resulting CKR Kβ,c has no CAS-model IJ = (MJ, IJ, χ)
with naming ν; in other words, that the clashing assumption χ is not satisfiable for Kβ (equivalently,

that ÎK (χ, ν) does not exist).
With the characterization of justified clashing assumptions at hand, we can devise a refutation

algorithm for K = c : α resp. K = α that finds a justified CAS-model ICAS of K in which the query
does not hold. As the axiom α amounts to a universal sentence x.φα(x) resp. x.φα(x, c), it is
sufficient to consider named models relative to the individual constants in K and fresh (Skolem)
constants for the negated query. This naturally leads to a non-deterministic algorithm. As we
show in the next subsection, the refutation is feasible in nondeterministic polynomial time; this is
worst-case optimal, as the entailment problem is coNP-hard.

Specifically, for positive assertions α, Corollary 1 implies that entailment (resp. K = α)

is equivalent to truth of α at context c in (resp. at the global part of) the least model ÎK(χ, ν),
for every justifiable χ of K and name assignment ν. For negative assertions α = β entailment
K = c : α reduces similarly as in Theorem 2 to the nonexistence of the least model I(χ, ν) for Kβ,c,
for all justified χ and ν; for global entailment, this is analogous.

4.2. Conjunctive Queries

We can easily extend these results to manage conjunctive queries over different contexts.
Formally, a (general) conjunctive query (CQ) is a formula Q(x) = yγ(x, y) where x, y are
disjoint lists of different variables and γ(x, y) = γ1 γm is a conjunction of atoms γi of the
form ci : αi(ti) resp. αi(ti), 1 i m where ci is a context name and αi is either a concept name or
a role name from the object vocabulary Σ or the meta-vocabulary Γ, and ti is a tuple of variables

from x ∪ y and individual constants that matches the arity of αi. The CQ is Boolean, if x is empty.

Example 14. Given the knowledge base Korg in previous employees examples, a simple general

CQ is to retrieve all employees that are currently working and also worked in the past years:

Q1(x) = employees2016 : WorkingNow(x) ∧ employees2016 : WorkingBe f ore(x)

We can obtain a Boolean query by instantiating Q1 on one of the individuals in Korg, for example:

Q2 = employees2016 : WorkingNow(alice) ∧ employees2016 : WorkingBe f ore(alice)

Q

A CKR interpretation I = (M, I) satisfies a Boolean CQ Q, denoted I |= Q, if for some
substitution ϑ : y NIs it holds that (ci

I) = αi(tiϑ) resp. = αi(tiϑ) for all 1 i m. A CKR
K entails Q, denoted K = Q, if every CKR model of K satisfies Q. Based on this, the (certain)
answers for a general CQ Q(x) are defined as usual, i.e., as the tuples c of individual constants

such that K |= QJ where QJ is the boolean query Q(c).

Example 15. Considering the models for Korg introduced in previous examples, it clearly holds

that Korg |= Q2 since we have that:

Korg |= employees2016 : WorkingNow(alice),

Korg |= employees2016 : WorkingBe f ore(alice).

Moreover, the general query Q1 then has as certain answers c ∈ {alice, bob}, since we can verify

that Korg |= Q1(alice) = Q2 and Korg |= Q1(bob). Q

21

Σ

∈

K

|

|

|

{ | () ∈ } I ∪ { }

Conjunctive queries basically allow us to generalize the CKR-entailment to joins of one or
more atomic facts. As such, from the results presented on CKR-entailment and the definition of
CQ entailment, we directly obtain that also the evaluation of conjunctive queries can be restricted
to named CKR models. Moreover, since Boolean CQs are basically conjunctions of positive

atomic assertions, from Corollary 1 we have that for a Boolean conjunctive query Q, K |= Q iff
ÎK(χ, ν) |= Q, for every justifiable χ of K and name assignment ν.

4.3. Computational Complexity

We conduct in this section an analysis of the computational complexity of some major
reasoning tasks for CKRs. In particular, we consider model checking, the entailment problem and
conjunctive query answering. As for model checking, we assume throughout that interpretations
are named and that constants not mapped to the named part are omitted; thus the named part and
set the constants mapped to it are finite.

4.3.1. Model Checking

To begin with, we first note that satisfiability testing and model checking in (extended)

SROIQ-RL is tractable.

Lemma 3. Given a SROIQ-RL knowledge base K over LΣ or Le (resp. LΓ), one can decide

in polynomial time (i) whether a given DL interpretation I of Σ (resp., Γ) satisfies K, and (ii)

whether for a given CKR interpretation I = (M, I) and x ∈ CtxM, it holds that I(x) |= K (resp.

M |= K).

Indeed, for each concept expression E and role expression R, we can compute EI and S I, as

well as for any x CtxM also EI(x) and S I(x), inductively along its structure in polynomial time;
note that each EI is a unary relation, and each S I is a binary relation. Based on this, we can easily
check whether every axiom in is satisfied in polynomial time.

For model checking of CAS-semantics, we then obtain the following result.

Proposition 8. Given a CKR K = (G, {Km}m∈M) and a CAS-interpretation ICAS = (M, I, χ),
deciding whether ICAS |= K holds is feasible in polynomial time.

Proof. From Lemma 3, it is immediate that the items (i)–(iv) of ICAS = K in Definition 11
can be checked in polynomial time. As for item (v), we must test the axiom α for all tuples

d g e α, e χ(x) in (x). To this end, it is sufficient consider d over N c1, . . . , c|e| where

the ci are distinct standard names not in NM. There are polynomially many such d, and for each
the test is by Lemma 3), t feasible polynomial time. Overall, it follows that deciding ICAS = K is
feasible in polynomial time.

For justified CAS-model checking, in addition to ICAS = K we must verify that CAS is justified
for the name assignment given by ICAS. We can exploit Proposition 2 and Theorem 2, given the

fact that the least model ÎK(χ, ν) can be efficiently constructed.

Lemma 4. Given a CKR K, a clashing assumption χ for K and a name assignment ν,12 one can

compute ÎK(χ, ν) in polynomial time resp. recognize that ÎK(χ, ν) does not exist.

12Technically, we assume ν is restricted to a finite given set N, NK ⊆ N ⊆ NI \ NIS ,

22

⊥

¬

I |

()
¬

M I

{ } ∪

(M I)
¬

I | M
()

()
|

() ()

M I ()
∅ ∈ \

∈

∧ · · · ∧

({ }) (M I)

({ }) (M I)

Proof. (Sketch) This can be done by computing the least model of the Horn sentence φK in (8) for
χ and ν represented as facts (and tacitly including the congruence axioms), which is possible using
a standard fixpoint iteration of a one-step consequence operator TφK . To avoid an exponential

blowup of the naive translation, occurrences of disjunction C1 п C2 are eliminated using auxiliary
predicates PC1 пC2 (see Appendix). In each iteration, we must evaluate Horn implications of the
form (A.1) where the antecedent p1(x, xi, y1) pk(x, xi, yk) forms an acyclic conjunctive
query. Matching acyclic queries against a relational interpretation is well-known to be feasible
in polynomial time (cf. [37]). As all predicate arities are bounded by a constant, the number of

iterations is polynomially bounded. If is derived, then ÎK(χ, ν) does not exist, otherwise it is
easily extracted from the computed least fixpoint.

Proposition 9. Given a CKR K = G, Km m∈M and a CAS-interpretation ICAS = , , χ ,
deciding whether I is a justified CAS-model of K is feasible in polynomial time.

Proof. By Proposition 8, we can check whether ICAS = K in polynomial time. By Theorem 2,
it thus remains to check whether for every α, e , x such that the conditions (i) and (ii) of the
theorem are satisfied some clashing set S α,e ,x exists. To this end, we let S consist of (a) all
positive atomic assertions β such that ˆ (x) = β where ÎK(χ, ν) = (ˆ , Î, χ), and β is over N, where
N are the constants of the named part,13 and (b) all negative atomic assertions β over N such
that ÎKβ,c (χ, ν) does not exist (i.e., no CAS-model ICAS = J, J, χ with name assignment ν

exists such that J(x) = β).
It is easy to see that S is satisfiable, and it follows from the proof of Theorem 1 and Theorem 2

that S is moreover a clashing set for α, e iff some clashing set S (α,e) α, e exists, and that S

includes some irredundant (minimal) clashing set S J of size linear in the size of α; thus we can

restrict the candidates β resp. β for S J to axiom instances over a small (linear) extension of the
individual constants NK.

Testing whether φα(e) S J is unsatisfiable can be done in polynomial time. As for each
candidate β in (a) (resp. β in (b)) the test for inclusion in S is by Lemma 4 feasible in polynomial

time, S J can for each α, e , x be constructed in polynomial time; furthermore, the number of x is
linear in the input. Hence overall, the test is feasible in polynomial time.

As a corollary, we obtain that also CKR model checking is tractable.

Corollary 2. Given a CKR K = G, Km m∈M and a CKR-interpretation I = , , deciding
whether I is a CKR-model of K is feasible in polynomial time.

Proof. Indeed, we can by Proposition 5 and item (v) in Definition 11 construct a unique clashing
assumption χ in which we collect at each context x CtxM all instances of defeasible axioms

D(α) in G that are violated by I, and set χ(x) = for each x ∆M CtxM; then we test whether
ICAS(, , χ) is a justified CAS-model. By the form of φα(x), the number of instances α, e is
polynomial and by Lemma 3 each test is polynomial. Furthermore, the test for ICAS(, , χ) is
polynomial by Proposition 9; this proves the result.

4.3.2. Satisfiability

Based on the results above, we can characterize the complexity of satisfiability testing for
CKRs. In general, defeasible axioms can lead to inconsistency that leaves one with a choice for

13In fact, a subset N0 ⊆ N modulo equality would suffice.

23

¬

M I

({ })

(M I)

({ }) ⊆ L ∪ L

α

| |
({ })

\ | I |
(M I) ⊆ ⊆

∀ |
|

K m c α

exceptions; e.g., if we had D(A(a)) and D(A(a)) in the global knowledge. It is thus no surprise
that the problem is intractable in general.

Theorem 3. Given a CKR K = G, Km m∈M , deciding whether K has some justified CAS-model
resp. some CKR-model is NP-complete. The NP-hardness holds even if the module structure is
fixed and only the assertions in the modules Km vary (i.e., under data complexity).

Proof. (Sketch) As for membership in NP, we can guess a justified CAS-model ICAS = , , χ

over the (pseudo) Herbrand domain and verify ICAS in polynomial time by Proposition 9. The
hardness part is shown by a reduction from 3SAT: further details are provided in Appendix
A.4.

In the absence of defeasible axioms, satisfiability is tractable, as clashing assumptions play no
role.

Proposition 10. Given a CKR K = G, Km m∈M where G Γ Σ, deciding whether K has
some justified CAS-model resp. some CKR-model is feasible in polynomial time.

Proof. The reason is that the semantics of K over any CAS-interpretation ICAS(, , χ) is
independent of CAS; thus we can assume χ is void. We then can simplify φK to the sentence

φJ =
^

 ∀x.φα(x) ∧
^

∀xc.

mod(xc, m) → φK

,x (xc)

∧

^
 ∀xc.φCtx(x, xc).

As for satisfiability, we can as discussed in the proof of Lemma 4 eliminate disjunctions C1 п C2

from K in polynomial time to avoid an exponential blowup, and arrive at a formula φJ
K
J.

By a standard fixpoint-iteration, we can compute the least (pseudo) Herbrand model of φJ
K

J

for the universe NK in polynomially many steps (as only polynomially many ground atoms exist),
or find out that no model exists. The rule matching in each iteration is polynomial, as the Horn
clause bodies form acyclic conjunctive queries; thus the total computation is polynomial.

4.3.3. CKR Entailment

For context and global entailment from a CKR, the complexity is dual to the one of satisfiability,
as expected.

Theorem 4. Given a CKR K = G, Km m∈M , a context name c and an axiom α, deciding whether

K = c : α resp. K = α holds is coNP-complete, and coNP-hardness holds under data complexity
and assertional queries α.

Proof. (Sketch) As for membership of K = c : α in coNP, since evaluating α at context c amounts
to evaluating a universal FO sentence x, xc.φCAS(x, xc), in order to refute K = c : α we can by
Theorem 1 guess a CKR-interpretation I = , of K that is named relative to N, NK N

NI NIS , such that (a) I = K and (b) (cI) = α, where N includes all constants that occur in α.
The test (a) is feasible in polynomial time by Corollary 2, and the test (b) by Lemma 3.

The coNP-hardness under the given restrictions follows from the reduction of 3SAT to CKR-

model existence in the proof of Theorem 3: the 3SAT instance E is unsatisfiable iff K |= c : V(c1)

resp. K |= V(c1), say, as this is equivalent to K not having a CKR-model.

As in the case of satisfiability, entailment is tractable if no defeasible axioms are present.

Proposition 11. Given a CKR K = (G, {Km}m∈M) where G ⊆ LΓ ∪ LΣ, a context name c and an

axiom α, deciding whether K |= c : α resp. K |= α holds is feasible in polynomial time.

m∈M α∈GΣ,Γ α∈G∩LΣ

24

α ∀

≈

∧ ∧ · · · ∧ ∧ ¬

|

({ })

|∈

N

|

2

2

|

∀ ∃

CAS

CAS

Proof. Extending the argument in the proof of Proposition 10, to decide K |= c : α we can test
whether φJ

K
J |= ψα holds, or equivalently whether φK

JJ ∧ ¬ψα is unsatisfiable, where ψα is the Horn

variant of x.φCtx(x, c) that avoids exponential blowup. As ψα can be written as a conjunction
of (polynomially many and linear size) Horn clauses as in (A.1). this reduces to a polynomial
number of unsatisfiability tests for φi = φK

JJ p1(e1) pk(ek) p0(e0), where the e j are
fresh (Skolem) constants.

By a standard fixpoint-iteration, we can compute the least (pseudo) Herbrand model of φi

(where equality is replaced by congruence) respectively detect that no model exists. As the
bodies of the Horn implications are acyclic and all predicate arities are bounded by a constant, the
fixpoint iteration can be done in polynomial time (cf. proof of Lemma 4); as there are polynomially

many φi, the test φK
JJ |= ψα is feasible in polynomial time.

The proof for global entailment K |= α is similar; this proves the result.

We conclude with a remark that under suitably limited use of default axioms, satisfiability and
CKR entailment would still be tractable, depending on the structure of the knowledge base K. For
example, if the global knowledge base contains few defeasible assertions, and contexts do not
access other contexts, i.e., eval does not occur. A detailed complexity study is beyond the scope
of this paper, however.

4.3.4. Conjunctive Queries

From well-known results in database theory [38, 37], it follows that deciding given a CKR-
interpretation I and a conjunctive query Q, deciding whether I = Q is NP-complete. As a CKR

K can have multiple (even exponentially many) named CKR-models, as expected CQ answering
from CKRs is lifted to the second level of the polynomial hierarchy.

Theorem 5. Given a CKR K = G, Km m M and a Boolean CQ Q, deciding whether K = Q

is Πp-complete. The problem remains Πp-hard even if the module structure is fixed and only
2 2

the assertions in the modules Km vary. If in addition also the query Q is fixed (i.e., under data

complexity), then the problem is coNP-complete.

Proof. (Sketch) As for membership in Πp, to refute Q we can guess a justified CAS-model
N

2

ICAS = (M, I, χ) such that N = NK and IN = (M, I) |= Q. Indeed, if ICAS = (M, I, χ) is an

arbitrary justified CAS-model such that (M, I) |= Q, then by Theorem 1 its named restriction
can not satisfy Q either. We can verify that ICAS is a named justified CAS model in polynomial
time by Proposition 8, and check that IN = Q using an NP oracle in polynomial time; for fixed
Q, the latter test is feasible in polynomial time. The Πp-hardness is shown by a reduction from
evaluating quantified Boolean formulas (QBF) Φ of the form X YE (see Appendix A.4 for the
complete proof).

We note that Πp-hardness can also be shown if alternatively the module structure and the set
of assertions (the data) are fixed. Furthermore, the complexity drops to coNP for acyclic CQs, and
to NP for CKRs without defeasible axioms; the combined restrictions yield tractability. Indeed,
answering acyclic CQs over a relational database is feasible in polynomial time (cf. [37]), and
thus the check IN = Q in the refutation algorithm in the proof sketch is feasible in polynomial

time; this yields coNP membership. On the other hand, if the global knowledge G contains
no defeasible axioms, then the guess for a justified CAS-model IN in which the query Q has
no match in the proof sketch can be eliminated, and following the arguments in the proof of
Proposition 10 a single such candidate IN can be constructed in polynomial time. Clearly then,

25

K

CAS

({ })

SROIQ

SROIQ
⊥ ± ¬⊥

⊥

SROIQ SROIQ
∀ ∈

SROIQ п
SROIQ SROIQ

SROIQ

CAS CAS

CAS CAS

the combination of the restrictions yields a query refutation algorithm that runs in polynomial
time.

5. Datalog Translation for CKR in SROIQ-RL

In this section, we present a translation of reasoning from -RL CKRs with defeasible
axioms into Datalog. It extends a translation for CKRs without defeasible axioms into Datalog
presented in [1] with rules for the detection of axiom overriding (i.e., making exceptions) and
defeasible propagation of global knowledge; this requires the use of nonmonotonic negation.

In particular, we focus on positive instance queries under c- resp. global entailment (negative
instance queries can be handled as described at the end of Section 4.1), and on conjunctive queries.
For such queries, we provide an implementation considering a core fragment of -RL for ex-
pressing defeasible axioms that we call -RLD. Formally, we denote with -RLD
the fragment of -RL in which (i) D D can not appear as a right-side concept, and (ii)
each right-side concept R.D has D NC. We confine here to CKRs K in which defeasible
axioms are of the form D(α) where α is in -RLD, and denote by -RLD the class
of such . While this restriction is a slight limitation from the view of modeling, as we will
illustrate by Example 16 in the following, it allows us to formulate an easier characterization for
the datalog translation.

For developing a generic datalog encoding, we first introduce a useful normal form for the

axioms of SROIQ-RL. After that, we present the translation and argue about its correctness.

5.1. Normal form

In this section, we introduce a normal form for axioms that allows us to represent a CKR
K conveniently as facts of a datalog program, as it bounds the number of concept and role
constructors to a single application in each axiom.

Definition 14. A CKR K = G, Km m∈M is in normal form, if every non-defeasible axiom in G
and Km matches a form in Table 1, and every defeasible axiom in G is of the form D(α) where α

is of the form (I) in Table 1.

In Table 1 and elsewhere, we assume that in C resp. NCΣ the empty concept is available
(which is easily expressed by). In Table 2 we present a set of rules that can be used
to transform any -RLD CKR into an “equivalent” CKR in normal form. As in [20], we
assume that rule chain axioms in the input are already decomposed in binary role chains.

It can be seen that for named interpretations, i.e., of the form INK , every CKR can be rewritten
into an equivalent one in normal form (using new symbols).

Lemma 5. For every SROIQ-RLD CKR K = (G, {Km}m∈M) over meta and object vocabularies

(Γ, Σ), a CKR KJ = (GJ, {Km
J }m∈M) over extended vocabularies (ΓJ, ΣJ) can be computed such that

(a) all axioms in KJ are in normal form;

(b) the size of KJ is linear in the size of K;

(c) for every axiom α on Γ ∪ Σ:

(i). for every justified named CAS-model INK

for K such that INK

|= α, there exists some

justified CAS-model IJNK
 for KJ such that IJNK

 |= α;

26

Σ

CAS CAS

CAS CAS

{ ¬ }
(±)

SROIQ
∀

{ ¬ } { ¬ }
(± п)

Table 1: Normal form for G axioms from LΓ ∪ LΣ (I) and LΣ (II), and for Km axioms from LΣ (I) and Le \ LΣ (III)

(I) for A, B, C ∈ C (resp., ∈ NCΣ), R, S , T ∈ R (resp., ∈ NRΣ), a, b ∈ N (resp., ∈ NIΣ) :

A(a) R(a, b) ¬A(b) ¬R(a, b) a = b a ≠ b

A ± B {a} ± B A п B ± C

∃R.A ± B A ± ∃R.{a} A ± ∀R.B A ± ≤1R.T

R ± T R ◦ S ± T Dis(R, S) Inv(R, S) Irr(R)

(II) for C ∈ C, m ∈ M :
C ± ∃mod.{m}

(III) for A, B ∈ NCΣ, R, T ∈ NRΣ and C ∈ C:

eval(A, C) ± B eval(R, C) ± T

(ii). for every justified named CAS-model IJNK for KJ such that IJNK
 |= α, there exists

some justified CAS-model INK for K such that INK
 |= α.

In the following, we also refer with explicit negated assertions to any normal form ABox

assertions of the kind ¬A(b), ¬R(a, b), a ≠ b that explicitly appear in the input CKR K.

Example 16. We show how enabling the normal form translation to full SROIQ-RL (i.e. consid-

ering also right-hand D п D and ∀R.D with D g NC) can cause problems in the interpretation of

justifications. Consider the following CKR Kn f = (G, {Km}) where:

G : { D(A ± B1 п B2), mod(c, m) },

Km : { B1 п B2 ± ⊥, A(a) }.

Note that the clashing assumption A B1 B2, a admits two minimal clashing sets S 1 =

A(a), B1(a) and S 2 = A(a), B2(a) . However, neither of them can be proved in Kn f , thus no

justified model exists. On the other hand, if we normalize the right-hand conjunction defeasible
axiom with the simple rule:

D(A ± D1 п D2) ›→ {D(A ± X), X ± D1, X ± D2}

we obtain the CKR KJ
n f = (GJ, {Km}) where:

G : { D(A ± X), X ± B1, X ± B2, mod(c, m) },

Km : { B1 п B2 ± ⊥, A(a) }.

In this case, the only clashing assumption would be A X, a , which admits only one clashing

set S 1 = A(a), X(a) . Differently from the non-normalized case, S 1 can be proved from Kn f ,

thus a justified model exists.

Similarly, this can be shown for right-hand R.D with D g NC: that is, the simple translation

provided for strict -RL axioms can not be applied naively to such defeasible axioms as it

might not preserve their justification. Q

27

SROIQ
K K

SROEL п ×

 Table 2: Normal form transformation (⊥ is the empty concept)

(1) strict axioms:

D(a) ›→ {X(a), X ± D}
C ± D ›→ {C ± X, X ± D}
A ± T ›→ ∅

⊥ ± A ›→ ∅

∃R.C ± A ›→ {C ± X, ∃R.X ± A}
A ± ∀R.D ›→ {A ± ∀R.X, X ± D}
A ± ≤0R.T ›→ {A ± ∀R.⊥}

A ± ¬C ›→ {A п C ± ⊥}

C п A ± B ›→ {C ± X, X п A ± B}
A ± D1 п D2 ›→ {A ± D1, A ± D2}
C1 п C2 ± B ›→ {C1 ± B, C2 ± B}

Sym(P) ›→ {P ± W, Inv(P, W)}
Trans(P) ›→ {P ◦ P ± P}

Asym(P) ›→ {Dis(P, W), Inv(P, W)}

eval(C1, C) ± B ∈ Km ›→ {eval(X, Y) ± B ∈ Km,

C1 ± X∈Kmx, C± Y∈G, Y ± ∃mod.{mx} ∈ G}
eval(R, C) ± T ∈ Km ›→ {eval(R, Y) ± T ∈ Km, C ± Y ∈ G}

∃eval(R, C).A ± B ∈ Km ›→ {∃W.A ± B ∈ Km, eval(R, C) ± W ∈ Km}
eval(R, C) ◦ S ± T ∈ Km ›→ {eval(R, C) ± W ∈ Km, W ◦ S ± T ∈ Km}
Dis(eval(R, C), S) ∈ Km ›→ {eval(R, C) ± W ∈ Km, Dis(W, S) ∈ Km}

(2) defeasible axioms:

D(C(a)) ›→ {X(a), D(X ± C)}
D(C1 ± C2) ›→ {C1 ± X, D(X ± C2)}
D(A ± ¬C) ›→ {D(A п C ± ⊥)}

D(A ± ≤0R.T) ›→ {D(A ± ∀R.⊥)}

D(Sym(P)) ›→ {P ± W, D(Inv(P, W))}
D(Trans(P)) ›→ {D(P ◦ P ± P)}
D(Asym(P)) ›→ {D(Dis(P, W)), Inv(P, W)}

a ∈ NI, A, B ∈ NC, R, S , T, P ∈ NR, X, Y ∈ NC are fresh concept names, W ∈ NR is a fresh role name, mx is a fresh

module name and Kmx its associated knowledge base, C, Ci, D, Di, C are (possibly complex) concept expressions.

5.2. Translation overview

We are now prepared to present our translation of entailment reasoning into Datalog with
non-monotonic negation. To ease the development, we adopt for it the unique name assumption in
any interpretation; this allows us to omit dealing with equality in models, which else can be done
by emulating a congruence relation via a standard guess-and-check approach.

As mentioned above, it extends a translation of CKR without defeasible axioms into Datalog
presented in [1]. That translation was inspired by the materialization calculus Kinst of Krötzsch
[20] for instance checking in the description logic (,) (in essence, OWL-EL). Briefly,
Krötzsch showed that a calculus for that problem can be encoded in a Datalog program, where the
rules mimick inference rules. Furthermore, he presented – exploiting a normal form of axioms
– a fixed datalog program that gives a universal encoding of the proof systems associated with
concrete DL knowledge bases , where and the instance query are represented by a set of
facts. This technique was carried over to -RL and extended for CKRs in [1].

In the sequel, we present an extension of this translation for CKRs with defeasible axioms.
This extension is non-trivial, as (i) it requires us to deal with exceptions for axioms, via clashing
assumptions, which requires the use of non-monotonic negation; and in connection with this, (ii)
it requires us to deal with strong negation, as provable falsity of atoms (resp. assertions) is crucial
for clashing sets. As for (i), we can take advantage of a mechanism for inheritance axioms from

28

∈

∈

S S

п ¬ ± ¬

± ›→ { }

п ± п ¬ ± ¬
¬ п ¬ ¬ ¬

п ± ¬

· · · · · ·

SROIQ SROIQ

[39], while for (ii), we extend the materialization calculus to conclude negative literals. However,
the latter requires us to deal with negative disjunctive information; e.g. from A B C and C(a)
we can infer (A B)(a), but neither A(a) nor B(a); this can not be readily expressed with
datalog rules, even in the presence of strong negation; viewing A B C as A C B,
B C A and mimicking respective inference rules as datalog rules would not work, as the
calculus would be incomplete. For this reason, we encode inference of negative literals through
individual proofs by contradiction, which will be indicated by presence of a designated atom
unsat() for the literal in the answer set; notably, from the absence of unsat() we can

conclude that the literal is not derivable. Overall, this leads to a linear number of contradiction
tests for the literals, which are encoded using designated test rules.14

The whole translation is rather involved and contains a number of rules and facts that serve
different purposes. From a high level structural perspective, the translation has three components:

(1) the input translations Iglob, Iloc, ID, Irl, where given an axiom or signature symbol α and c N,
each I(α, c) is a (possibly empty) set of datalog facts or rules: intuitively, they encode the
contents of the global and the local DL knowledge bases as datalog facts and rules. These
input translations I are extended to knowledge bases (sets of axioms) S with their signature Σ,

by I(S , c) = α∈S I(α, c) ∪ s∈Σ I(s, c).

(2) the deduction rules Ploc, PD, Prl, which are sets of datalog rules: they represent the inference
rules for the instance-level reasoning over the translated axioms; and

(3) the output translation O, where given an axiom α and c N, O(α, c) is either empty or a
single datalog fact: O encodes the ABox assertion α that we want to prove to be entailed by
the input CKR (in the context c) as a datalog fact.

We will describe next these components, the translation process as such and we will then
consider an example.

5.2.1. Translation rule sets

The components of the translation comprise in turn groups of rules that serve different
purposes: we show here some example rules for each group, while the complete rule sets are
given in Tables 3–8 below.

(i). -RL input translation: Rules in Irl(S , c) translate to datalog facts -RL
axioms and signature (in a context c). E.g., we translate atomic concept inclusions with the
rule A B subClass(A, B, c) . Note that, for instance level predicates, we distinguish
between the asserted (i.e. insta, triplea) and derived (i.e. instd, tripled) atoms:
this distinction is needed in the rules for the (defeasible) propagation of knowledge, where
we want to recognize which facts are part of the asserted “content” of the global context
that might be propagated to lower contexts.

(ii). SROIQ-RL deduction rules: The rules in Prl are the deduction rules corresponding to
axioms in SROIQ-RL: e.g., for atomic concept inclusions, we have

instd(x, z, c, t) ← subClass(y, z, c), instd(x, y, c, t).

14 While the set of all positive literals entailed by a propositional Horn formula is computable in linear time, to the best

of our knowledge it is unknown whether this holds for all negative literals; common algorithms run in quadratic time.

29

±

←

¬

¬ { ¬ } (±)

The rules of Irl and Prl are listed in Table 3. Note that the translation produces purely
positive programs: possible derived inconsistencies are represented by the unsat predicate
and constrained by the rule (prl-sat). The last argument in the instance level predicates
(instd, tripled, eq) keeps track of the hypothesis used in the proofs for contradiction for
negative literals (as mentioned in the translation overview): in the translation of instance
level assertions in Irl, this parameter is initialized to the constant main. The predicate
unsat(t) denotes that the proof relative to the hypothesis t leads to an inconsistency: as
noted above, in the case of main this is limited by the constraint (prl-sat). As we adopted
the unique name assumption, reasoning on equality can be omitted; an explicit equality
assertion raises an inconsistency by the rule (prl-eq), while inequality assertions – assuming
that assertions a ≠ a are not admissible – are simply discarded.

(iii). Global and local translations: Global input rules of Iglob encode the interpretation of Ctx in
the global context (i.e. conditions from Definition 7). Similarly, local input rules Iloc and
local deduction rules Ploc provide the translation and rules for elements of the local object
language. In particular for eval expressions in concept inclusions, we have the input rule

eval(A, C) ± B ›→ {subEval(A, C, B, c)} and the corresponding positive deduction rule:

instd(x, b, c, t) ← subEval(a, c1, b, c, t), instd(cJ, c1, gm, t), instd(x, a, cJ, t).

The rules of Iglob, Iloc and Ploc are presented in Table 4.

(iv). Defeasible axioms input translation: Input rules in ID provide the translation of defeasible
axioms D(α) in the global context: ID(D(α), gk) adds to the program (in the module gk for
the global object knowledge) an atom specifying that the asserted axiom is defeasible. For

example, D(A ± B) translates to def subclass(A, B).

(v). Overriding rules: The inheritance and overriding of defeasible axioms is encoded by
different sets of deduction rules in PD, inspired by [39]. Overriding rules provide rules
defining when an axiom of a certain form is locally overridden. Intuitively, such rules
encode the proof of existence for a clashing set for an instance of such axiom. For example,
for axioms of the form D(A B), the following overriding rule is added to the local
programs:

ovr(subClass, x, y, z, c) def subclass(y, z), prec(c, g), instd(x, y, c, main),
not test fails(nlit(x, z, c)).

Intuitively, this rule states that, if y = A is included in z = B by a defeasible global
axiom (def subclass(y, z)) and in context c we can prove for x = e that A(e) (i.e.,
instd(x, y, c, main)) but B(e) (not test fails(nlit(x, z, c))), then there is an overrid-
ing for this axiom with respect to e in context c (ovr(subClass, x, y, z, c)). Here prec(c, g)
expresses that context c is more specific than context g, which represents the global context.
The condition on the negative part B(e) of the clashing set A(e), B(e) for A B, e is
verified, exploiting Theorem 2 and the remark after it, by a proof by contradiction: if this
“test” does not fail,15 i.e., after adding the positive version of the literal (in the example
B(e)) inconsistency can be derived, then the clashing assumption is justified and we can
derive the overriding. In the example rule above, such proof is performed on the term

nlit(x, z, c), which represents the negative literal ¬instd(x, z, c, main). The complete list

15Note that we use a double negation in order to avoid cyclic dependencies across overriding and test rules.

30

←
←

←
←
←
←

Table 3: SROIQ-RL input and deduction rules

SROIQ-RL input translation Irl(S , c)
(irl-nom) a ∈ NI ›→ {nom(a, c)}

(irl-cls) A ∈ NC ›→ {cls(A, c)}

(irl-rol) R ∈ NR ›→ {rol(R, c)}

(irl-inst1) A(a) ›→ {insta(a, A, c, main)}
(irl-inst2) ¬A(a) ›→ {ninsta(a, A, c)}
(irl-triple) R(a, b) ›→ {triplea(a, R, b, c, main)}
(irl-ntriple) ¬R(a, b) ›→ {ntriplea(a, R, b, c)}
(irl-eq) a = b ›→ {eq(a, b, c, main)}
(irl-neq) a ≠ b ›→ ∅
(irl-inst3) {a} ± B ›→ {insta(a, B, c, main)}
(irl-subc) A ± B ›→ {subClass(A, B, c)}
(irl-top) T(a) ›→ {insta(a, top, c)}

(irl-bot) ⊥(a) ›→ {insta(a, bot, c)}

SROIQ-RL deduction rules Prl

(irl-subcnj) A1 п A2 ± B ›→ {subConj(A1, A2, B, c)}

(irl-subex) ∃R.A ± B ›→ {subEx(R, A, B, c)}

(irl-supex) A ± ∃R.{a} ›→ {supEx(A, R, a, c)}

(irl-forall) A ± ∀R.B ›→ {supForall(A, R, B, c)}

(irl-leqone) A ± ≤1R.T ›→ {supLeqOne(A, R, c)}

(irl-subr) R ± S ›→ {subRole(R, S , c)}

(irl-subrc) R◦S ± T ›→ {subRChain(R, S , T, c)}
(irl-dis) Dis(R, S) ›→ {dis(R, S , c)}
(irl-inv) Inv(R, S) ›→ {inv(R, S , c)}

(irl-irr) Irr(R) ›→ {irr(R, c)}

(prl-instd) instd(x, z, c, t) ← insta(x, z, c, t).

(prl-tripled) tripled(x, r, y, c, t) ← triplea(x, r, y, c, t).

(prl-ninstd) unsat(t) ← ninsta(x, z, c), instd(x, z, c, t).

(prl-ntripled) unsat(t) ← ntriplea(x, r, y, c), tripled(x, r, y, c, t).

(prl-eq) unsat(t) ← eq(x, y, c, t).

(prl-top) instd(x, top, c, main) ← nom(x, c).

(prl-bot) unsat(t) ← instd(x, bot, c, t).

(prl-subc) instd(x, z, c, t) subClass(y, z, c), instd(x, y, c, t).
(prl-subcnj) instd(x, z, c, t) subConj(y1, y2, z, c), instd(x, y1, c, t), instd(x, y2, c, t).

(prl-subex) instd(x, z, c, t) subEx(v, y, z, c), tripled(x, v, xJ, c, t), instd(xJ, y, c, t).

(prl-supex) tripled(x, r, xJ, c, t) supEx(y, r, xJ, c), instd(x, y, c, t).

(prl-supforall) instd(y, zJ, c, t) supForall(z, r, zJ, c), instd(x, z, c, t), tripled(x, r, y, c, t).
(prl-leqone) unsat(t) supLeqOne(z, r, c), instd(x, z, c, t),

tripled(x, r, x1, c, t), tripled(x, r, x2, c, t).

(prl-subr) tripled(x, w, xJ, c, t) ← subRole(v, w, c), tripled(x, v, xJ, c, t).

(prl-subrc) tripled(x, w, z, c, t) ← subRChain(u, v, w, c), tripled(x, u, y, c, t), tripled(y, v, z, c, t).

(prl-dis) unsat(t) ← dis(u, v, c), tripled(x, u, y, c, t), tripled(x, v, y, c, t).

(prl-inv1) tripled(y, v, x, c, t) ← inv(u, v, c), tripled(x, u, y, c, t).

(prl-inv2) tripled(y, u, x, c, t) ← inv(u, v, c), tripled(x, v, y, c, t).

(prl-irr) unsat(t) ← irr(u, c), tripled(x, u, x, c, t).

(prl-sat) ← unsat(main).

31

←

Global input rules Iglob(G)

Table 4: Global, local and output rules

(igl-subctx1) C ∈ C ›→ {subClass(C, Ctx, gm)}

(igl-subctx2) c ∈ N ›→ {insta(c, Ctx, gm, main)}

Local input rules Iloc(Km, c)

(ilc-subevalat) eval(A, C) ± B ›→ {subEval(A, C, B, c)}

(ilc-subevalr) eval(R, C) ± T ›→ {subEvalR(R, C, T, c)}

Local deduction rules Ploc

(plc-subevalat) instd(x, b, c, t) ← subEval(a, c1, b, c), instd(cJ, c1, gm, t), instd(x, a, cJ, t).

(plc-subevalr) tripled(x, s, y, c, t) ← subEvalR(r, c1, s, c), instd(cJ, c1, gm, t), tripled(x, r, y, cJ, t).

Output translation O(α, c)

(o-concept) A(a) ›→ {instd(a, A, c, main)}

(o-role) R(a, b) ›→ {tripled(a, R, b, c, main)}

Table 5: Input rules ID(S) for defeasible axioms

(id-inst) D(A(a)) ›→ { def insta(A, a). }

(id-triple) D(R(a, b)) ›→ { def triplea(R, a, b). }

(id-forall) D(A ± ∀R.B) ›→ { def supforall(A, R, B). }
(id-leqone) D(A ± ≤1R.T) ›→ { def supleqone(A, R). }

(id-ninst) D(¬A(a)) ›→ { def ninsta(A, a). }

(id-subr) D(R ± S) ›→ { (R S) }

 (id-ntriple) D(¬R(a, b)) ›→ { def ntriplea(R, a, b). } def subr , .
 (id-subc) D(A ± B) ›→ { def subclass(A, B). }

(id-subcnj) D(A1 п A2 ± B) ›→ { def subcnj(A1, A2, B). }

(id-subex) D(∃R.A ± B) ›→ { def subex(R, A, B). }

(id-supex) D(A ± ∃R.{a}) ›→ { def supex(A, R, a). }

(id-subrc) D(R ◦ S ± T) ›→ { def subrc(A1, A2, B). }
(id-dis) D(Dis(R, S)) ›→ { def dis(R, S). }
(id-inv) D(Inv(R, S)) ›→ { def inv(R, S). }

(id-irr) D(Irr(R)) ›→ { def irr(R). }

of overriding rules in PD is shown in Table 6; they incorporate sufficient clashing sets for
the clashing assumptions that are made in overriding (cf. Table A.17 in the Appendix).

(vi). Inheritance rules: PD provides the rules for defeasible inheritance of axioms from the
global context to the local contexts. E.g., the following rule propagates an atomic concept
inclusion axiom: if the (possibly defeasible) axiom is in the program of the global context
and applicable to a local instance, it is applied unless the latter is recognized as an exception.

instd(x, z, c, t) subClass(y, z, g), instd(x, y, c, t),
prec(c, g), not ovr(subClass, x, y, z, c).

The inheritance rules in PD are shown in Table 7. Similar as for the rules Prl above, the
predicate unsat is used to indicate inconsistency. Note that such rules are applied both to
the defeasible and strict axioms: in the latter case, the axioms are always inherited by the
lower contexts, as no exception can arise.

(vii). Test rules: the last kind of rules in PD are the test rules, which are used to instantiate and
define the “environments” for the tests for negative literals in overriding rules. Intuitively,
the asserted instance knowledge from the input CKR is stated to belong to the main test
environment (note, e.g., the input translation rules for A(b) and R(a, b)). Additional test
environments are generated when a proof for contradiction of a negative literal is needed

32

←

←

←

←

←

←

←

←

←

←

←

Table 6: Deduction rules PD for defeasible axioms: overriding rules

(ovr-inst) ovr(insta, x, y, c) ← def insta(x, y), prec(c, g), not test fails(nlit(x, y, c)).

(ovr-triple) ovr(triplea, x, r, y, c) ← def triplea(x, r, y), prec(c, g), not test fails(nrel(x, r, y, c)).

(ovr-ninst) ovr(ninsta, x, y, c) ← def ninsta(x, y), prec(c, g), instd(x, z, c, main).

(ovr-ntriple) ovr(ntriplea, x, r, y, c) ← def ntriplea(x, r, y), prec(c, g), tripled(x, r, y, c, main).

(ovr-subc) ovr(subClass, x, y, z, c) def subclass(y, z), prec(c, g), instd(x, y, c, main),

not test fails(nlit(x, z, c)).

(ovr-cnj) ovr(subConj, x, y1, y2, z, c) def subcnj(y1, y2, z), prec(c, g), instd(x, y1, c, main),
instd(x, y2, c, main), not test fails(nlit(x, z, c)).

(ovr-subex) ovr(subEx, x, r, y, z, c) def subex(r, y, z), prec(c, g), tripled(x, r, w, c, main),

instd(w, y, c, main), not test fails(nlit(x, z, c)).

(ovr-supex) ovr(supEx, x, y, r, w, c) def supex(y, r, w), prec(c, g),

instd(x, y, c, main), not test fails(nrel(x, r, w, c)).

(ovr-forall) ovr(supForall, x, y, z, r, w, c) def supforall(z, r, w), prec(c, g), instd(x, z, c, main),

tripled(x, r, y, c, main), not test fails(nlit(y, w, c)).

(ovr-leqone) ovr(supLeqOne, x, x1, x2, z, r, c) def supleqone(z, r), prec(c, g), instd(x, z, c, main),

tripled(x, r, x1, c, main), tripled(x, r, x2, c, main),

(ovr-subr) ovr(subRole, x, y, r, s, c) def subr(r, s), prec(c, g), tripled(x, r, y, c, main),

not test fails(nrel(x, s, y, c)).

(ovr-subrc) ovr(subRChain, x, y, z, r, s, t, c) def subrc(r, s, t), prec(c, g), tripled(x, r, y, c, main),

tripled(y, s, z, c, main), not test fails(nrel(x, t, z, c)).

(ovr-dis) ovr(dis, x, y, r, s, c) def dis(r, s), prec(c, g), tripled(x, r, y, c, main),

tripled(x, s, y, c, main).

(ovr-inv1) ovr(inv, x, y, r, s, c) def inv(r, s), prec(c, g), tripled(x, r, y, c, main),

not test fails(nrel(x, s, y, c)).

(ovr-inv2) ovr(inv, x, y, r, s, c) def inv(r, s), prec(c, g), tripled(y, s, x, c, main),

not test fails(nrel(x, r, y, c)).

(ovr-irr) ovr(irr, x, R, c) ← def irr(r), prec(c, g), tripled(x, r, x, c, main).

(cf. nlit(x, z, c) in the previous overriding rule example): the environment consists of a
copy of the original program to which a positive version of the literal is added to the context
in which the overriding is tested. If an inconsistency is found, then the test is successful,
otherwise the test fails.

A first set of rules is used to instantiate the tests on the base of the form of defeasible
axioms. For example, for atomic inclusions, the rule reads as:

test(nlit(x, z, c)) ← def subclass(y, z), instd(x, y, c, main), prec(c, g).

Similarly, a set of constraints makes sure that, if the test fails, no overriding can take place.
For example, for the subClass overriding, we have:

← test fails(nlit(x, z, c)), ovr(subClass, x, y, z, c).

A test fails if no clashes (i.e. instances of the predicate unsat) can be found. This is
expressed by the rule:

test fails(nlit(x, z, c)) ← instd(x, z, c, nlit(x, z, c)), not unsat(nlit(x, z, c)).

33

←

←

←

←

←

←

←

←

←

←

←

←

←

›→ { }

Table 7: Deduction rules PD for defeasible axioms: inheritance rules

(prop-inst) instd(x, z, c, t) ← insta(x, z, g, t), prec(c, g), not ovr(insta, x, z, c).

(prop-triple) tripled(x, r, y, c, t) ← triplea(x, r, y, g, t), prec(c, g), not ovr(triplea, x, r, y, c).

(prop-ninst) unsat(t) ninsta(x, z, g, t), instd(x, z, c, t),
prec(c, g), not ovr(ninsta, x, z, c).

(prop-ntriple) unsat(t) ntriplea(x, r, y, g, t), tripled(x, r, y, c, t),

prec(c, g), not ovr(ntriplea, x, r, y, c).

(prop-subc) instd(x, z, c, t) subClass(y, z, g), instd(x, y, c, t),
prec(c, g), not ovr(subClass, x, y, z, c).

(prop-cnj) instd(x, z, c, t) subConj(y1, y2, z, g), instd(x, y1, c, t), instd(x, y2, c, t),

prec(c, g), not ovr(subConj, x, y1, y2, z, c).

(prop-subex) instd(x, z, c, t) subEx(v, y, z, g), tripled(x, v, xJ, c, t), instd(xJ, y, c, t),

prec(c, g), not ovr(subEx, x, v, y, z, c).

(prop-supex) tripled(x, r, xJ, c, t) supEx(y, r, xJ, g), instd(x, y, c, t),

prec(c, g), not ovr(supEx, x, y, r, xJ, c).

(prop-forall) instd(y, zJ, c, t) supForall(z, r, zJ, g), instd(x, z, c, t), tripled(x, r, y, c, t),

prec(c, g), not ovr(supForall, x, y, z, r, zJ, c).

tripled(x, r, x1, c, t), tripled(x, r, x2, c, t),

prec(c, g), not ovr(supLeqOne, x, x1, x2, z, r, c).

(prop-subr) tripled(x, w, xJ, c, t) subRole(v, w, g), tripled(x, v, xJ, c, t),

prec(c, g), not ovr(subRole, x, y, v, w, c).

(prop-subrc) tripled(x, w, z, c, t) subRChain(u, v, w, g), tripled(x, u, y, c, t), tripled(y, v, z, c, t),

prec(c, g), not ovr(subRChain, x, y, z, u, v, w, c).

(prop-dis) unsat(t) dis(u, v, g), tripled(x, u, y, c, t), tripled(x, v, y, c, t),

prec(c, g), not ovr(dis, x, y, u, v, c).

(prop-inv1) tripled(y, v, x, c, t) inv(u, v, g), tripled(x, u, y, c, t),

prec(c, g), not ovr(inv, x, y, u, v, c).

(prop-inv2) tripled(x, u, y, c, t) inv(u, v, g), tripled(y, v, x, c, t),

prec(c, g), not ovr(inv, x, y, u, v, c).

(prop-irr) unsat(t) irr(u, g), tripled(x, u, x, c, t),
prec(c, g), not ovr(irr, x, u, c).

Finally, a set of rules generates the test environment by copying the instance knowledge
from main and adding the complement of the tested literal. E.g., the following two rules
copy all the (class assertion) instance data from main and add the complement for nlit:

instd(x1, y1, c, t) ← instd(x1, y1, c, main), test(t).

instd(x, z, c, nlit(x, z, c)) ← test(nlit(x, z, c)).

The set of test rules in PD is shown in Table 8.

(viii). Output rules: Finally, the rules in O(α, c) translate ABox assertions that can be verified to
hold in context c by applying the rules of the final program. For example, assertions A(a)
in a given context c are translated by A(a) instd(a, A, c, main) . The rules in O are
listed in Table 4.

34

←

←

←

←

Table 8: Deduction rules PD for defeasible axioms: test rules

(test-inst) test(nlit(x, y, c)) ← def insta(x, y), prec(c, g).

(constr-inst) ← test fails(nlit(x, y, c)), ovr(insta, x, y, c).

(test-triple) test(nrel(x, r, y, c)) ← def triplea(x, r, y), prec(c, g).

(constr-triple) ← test fails(nrel(x, r, y, c)), ovr(triplea, x, r, y, c).

(test-subc) test(nlit(x, z, c)) ← def subclass(y, z), instd(x, y, c, main), prec(c, g).

(constr-subc) ← test fails(nlit(x, z, c)), ovr(subClass, x, y, z, c).

(test-subcnj) test(nlit(x, z, c)) def subcnj(y1, y2, z), instd(x, y1, c, main),

instd(x, y2, c, main), prec(c, g).

(constr-subcnj) ← test fails(nlit(x, z, c)), ovr(subConj, x, y1, y2, z, c).

(test-subex) test(nlit(x, z, c)) def subex(r, y, z), tripled(x, r, w, c, main),

instd(w, y, c, main), prec(c, g).

(constr-subex) ← test fails(nlit(x, z, c)), ovr(subEx, x, r, y, z, c).

(test-supex) test(nrel(x, r, w, c)) ← def supex(y, r, w), instd(x, y, c, main), prec(c, g).

(constr-supex) ← test fails(nrel(x, r, w, c)), ovr(supEx, x, r, y, w, c).

(test-supforall) test(nlit(y, w, c)) def supforall(z, r, w), instd(x, z, c, main),

tripled(x, r, y, c, main), prec(c, g).

(constr-supforall) ← test fails(nlit(y, w, c)), ovr(supForall, x, y, z, r, w, c).

(test-subr) test(nrel(x, s, y, c)) ← def subr(r, s), tripled(x, r, y, c, main), prec(c, g).

(constr-subr) ← test fails(nrel(x, s, y, c)), ovr(subRole, x, r, y, s, c).

(test-subrc) test(nrel(x, t, z, c)) def subrc(r, s, t), tripled(x, r, y, c, main),

tripled(y, s, z, c, main), prec(c, g).

(constr-subrc) ← test fails(nrel(x, t, z, c)), ovr(subRChain, x, y, z, r, s, t, c).

(test-inv1) test(nrel(x, s, y, c)) ← def inv(r, s), tripled(x, r, y, c, main), prec(c, g).

(test-inv2) test(nrel(y, r, x, c)) ← def inv(r, s), tripled(x, s, y, c, main), prec(c, g).

(constr-inv1) ← not test fails(nrel(x, s, y, c)), ovr(inv, x, y, r, s, c).

(constr-inv2) ← not test fails(nrel(y, r, x, c)), ovr(inv, x, y, r, s, c).

(test-fails1) test fails(nlit(x, z, c)) ← instd(x, z, c, nlit(x, z, c)), not unsat(nlit(x, z, c)).

(test-fails2) test fails(nrel(x, r, y, c)) ← tripled(x, r, y, c, nrel(x, r, y, c)), not unsat(nrel(x, r, y, c)).

(test-add1) instd(x, z, c, nlit(x, z, c)) ← test(nlit(x, z, c)).

(test-add2) tripled(x, r, y, c, nrel(x, r, y, c)) ← test(nrel(x, r, y, c)).

(test-copy1) instd(x1, y1, c, t) ← instd(x1, y1, c, main), test(t).

(test-copy2) tripled(x1, r, y1, c, t) ← tripled(x1, r, y1, c, main), test(t).

35

Σ

({ }) SROIQ

S

SROIQ

17
Σ

Σ Σ

We remark that the translation parts as presented above include all rules that are structurally
expected. Logical optimization by eliminating some rules or constraints is possible (e.g. (constr-
subc) can be omitted as (ovr-subc) is the single rule defining subclass overriding), but we refrain
from this here.

5.2.2. Translation process

We describe in the following the “translation process” to produce, given a CKR K =

G, Km m∈M in -RLD normal form, a program PK(K) that encodes query answering
from the CKR-models of K:

1. the global program for G is constructed as (where gm, gk are new context names):

PG(G) = Prl ∪ Iglob(GΓ) ∪ ID(GΣ) ∪ Irl(GΓ, gm) ∪ Irl(GΣ ∪ GD, gk)

where GΓ = G ∩ LΓ, GΣ = G ∩ LD and GD = {α ∈ LΣ | D(α) ∈ GΣ}. Intuitively, PG(G)
encodes all metaknowledge information in facts with a context parameter gm, and it encodes
the global knowledge (including defeasible axioms)16 in facts with a parameter gk. Notably,
PG(G) is a datalog program without negation, and hence it has a unique answer set (which is
its least model), if it has a model.

2. We define the set of contexts NG as

NG = {c ∈ N | PG(G) |= instd(c, Ctx, gm, main)},

and for every c ∈ NG its associated knowledge base Kc as

Kc =
[

{Km ∈ K | PG(G) |= tripled(c, mod, m, gm, main)}.

3. We define for each c ∈ NG the each local program PC(c, K) as

PC(c, K) := Prl ∪ Ploc ∪ PD ∪ Iloc(Kc, c) ∪ Irl(Kc, c) ∪ {prec(c, gk)};

that is, local programs encode the object knowledge in all modules associated with the context
c as datalog facts and include -RL deduction rules Prl, local deduction rules Ploc and
propagation rules PD for defeasible axioms.

4. Finally, the CKR program PK(K) is defined as follow:

PK(K) = PG(G) ∪ c∈NG
PC(c, K) (9)

Intuitively, the knowledge from the global program PG(G), which is Horn, is passed on to the
local programs PC(c, K). The contexts in NG are those relevant for CKR-inference, and we can

focus on them.17 At the local contexts c, clashing assumptions (α, e) are reflected by literals

16Note that defeasible axioms are added both in their translation ID and as any other global knowledge axiom by

Irl(GD, gk).
Technically, we could move Step 2 (construction of NG) into the program PK(K) itself, and use a generic local program

P(x) where the concrete contexts c and modules Km for Kc are singled out using atoms instd(x, Ctx, gm, main) and
tripled(x, mod, m, gm, main) that act as guards in rules. The present construction is more readable.

36

|
|

¬

←

¬

∈ ∈

ovr(α, e, c), where α is represented in a reified form; the answer set semantics ensures that these

literals must be derived from rules whose bodies resemble clashing sets S c,(α,e) for (α, e). In turn,
the positive literals in S c,(α,e) must be derived via the materialization calculus, and the negative
literals via contradiction proofs defined by the test mechanism mentioned at the beginning of
Section 5.2 and previously detailed. In all these derivations, the materialization rules for defeasible
axiom must respect the ovr-assumptions.

Query answering K = c:α is then achieved by testing whether the query, translated into its
datalog rendering O(α, c), is a consequence of PK(K), i.e., whether PK(K) = O(α, c) holds; for
global entailment and conjunctive queries, this is analogous.

Example 17. We consider the translation of KtourD from Example 5 into its CKR program

PK(KtourD). In Step 1, the content of the global context G is translated to the global program

PG(G). In particular, this program contains the structure of the metaknowledge represented as

facts, e.g. insta(cultural tourist, Ctx, gm, main) and triplea(cultural tourist, mod, ctourist m, gm, main).

By the rules in ID, PG(G) contains the translation of the defeasible axioms in G. E.g. for

D(Cheap ± Interesting), it includes the atom

def subclass(Cheap, Interesting).

Note that the rules in Irl also add to PG(G) the “non-defeasible” translation of this axiom:

subClass(Cheap, Interesting, gk). Furthermore, PG(G) also contains the translation of the

global assertions Cheap(fbmatch) and Cheap(market):

insta(fbmatch, Cheap, gk) insta(market, Cheap, gk).

In Step 2 of the translation process, the relevant contexts and their associations to the

modules are determined. In particular, from the facts above and the rules prl-instd and prl-
tripled, we obtain that cultural tourist NG and that Kctourist m Kcultural tourist. Then, the local

programs PC(c, KtourD) for all contexts c are computed: in the case of context cultural tourist,

note that PC(cultural tourist, KtourD) contains the fact Interesting(fbmatch), which is represented

as ninsta(fbmatch, Interesting, cultural tourist). In the translation of local programs, we also

add the defeasibility deduction rules of PD, defining the rules for overriding and defeasible

propagation of the global knowledge: in particular, the following rule ovr-subc provides the

condition for overriding of atomic inclusion axioms like the one considered in our example:

ovr(subClass, x, y, z, c) def subclass(y, z), prec(c, g), instd(x, y, c, main),
not test fails(nlit(x, z, c)).

Propagation of defeasible atomic inclusion axioms is defined by the rule prop-subc:

instd(x, z, c, t) ← subClass(y, z, g), instd(x, y, c, t), prec(c, g), not ovr(subClass, x, y, z, c).

In Step 3 of the translation, the final program PK(KtourD) results as the union of PG(G) and all

the local programs, including PC(cultural tourist, KtourD).

Let us now consider what can be inferred from PK(KtourD). From the contents of G and the

context cultural tourist, it is easy to verify that by the rules

PK(KtourD) |= ovr(subClass, f bmatch, Cheap, Interesting, cultural tourist).

This holds because the test (instantiated by the overriding rule on f bmatch) for negative literal

nlit(f bmatch, Interesting, cultural tourist) succeeds: Interesting(fbmatch) holds locally and

Interesting(fbmatch) is added in the test environment, thus a contradiction is found. Hence the

inheritance rule prop-subc is not applicable and PK(KtourD) |= instd(f bmatch, Interesting,

37

|

SROIQ

∈

(M I)

(M I) M

M
M

M M ˆ ˆ

cultural tourist, main). On the other hand, since PK(KtourD) = ovr(subClass, market, Cheap,

Interesting, cultural tourist), rule prop-subc can be applied and

PK(KtourD) |= instd(market, Interesting, cultural tourist, main).

These results coincide with the semantic interpretation of overridings given in Example 12. Q

5.3. Correctness

The presented rules and translation provide a sound and complete materialization calcu-
lus for instance checking (with respect to c-entailment) and conjunctive query answering on

-RLD CKRs in normal form. This can be shown by establishing a correspondence be-
tween minimal justified CKR-models of K and answer sets of PK(K). Having considered UNA
and named models in the definition of our translation, we can concentrate on showing the result
on Herbrand models: thus, naming ν in the definition of least CAS-models ÎK(χ, ν) is irrelevant
and we will simplify the denotation of such models as ÎK(χ).

Let ICAS be a justified named CAS-model. We define the set of corresponding overriding
assumptions:

OVR(ICAS) = { ovr(p(e)) | (α, e) ∈ χ(c), Irl(α, c) = p }.

Intuitively, given a CAS-interpretation ICAS = , , χ , we can define a corresponding
Herbrand interpretation I(ICAS) of the program PK(K) by including the following atoms in it (see
the Appendix for a formal definition):

– all facts of PK(K);

– instd(a, A, c, main), if I(c) |= A(a);

– tripled(a, R, b, c, main), if I(c) |= R(a, b);

– each ovr-literal from OVR(ICAS);

– each literal l with environment t ≠ main, if test(t) ∈ I(ICAS) and l is in the head of a rule

r ∈ grnd(PK(K)) with Body(r) ⊆ I(ICAS);

– test(t), if test fails(t) appears in the body of an overriding rule r in grnd(PK(K)) and the
head of r is an ovr literal in OVR(ICAS);

– unsat(t) I(ICAS), if adding the literal corresponding to t to the local interpretation of its
context c violates some axiom of the local knowledge Kc;

– test fails(t), if unsat(t) g I(ICAS).

Note that unsat(main) is not included in I(ICAS). We can establish the following property, which
informally says that the least models of the global context is represented in the least justified
named CAS-models.

Proposition 12. Let K = (G, {Km}m∈M) be a CKR in SROIQ-RLD normal form. Then for every

least justified CAS-model ÎK(χ) = ˆ , ˆ , χ , it holds that ̂
Herbrand model of G.

= MG, where MG is the least

This result follows from the intersection property of CAS-models (Proposition 7): it is easy to
verify that the CAS-interpretation IC

J
AS = (M̂ ∩ MG, Î, χ) is also a CAS-model of the CKR K; as

IK(χ) is a least CAS-model, G = must hold.
The next proposition shows that the least Herbrand model G of G is reflected in the answer

set of the global program PG(G). Let I(G) denoted the Herbrand interpretation for PG(G) that
is defined analogously to I(ICAS) above for PK(K).

38

∧ · · · ∧

∧ · · · ∧
∃ ∧ · · · ∧

|
| ∧ · · · ∧

п ±

Proposition 13. Let K = (G, {Km}m∈M) be a CKR in SROIQ-RLD normal form. If G is satisfiable,

then I(MG) is the unique answer set of PG(G); otherwise, PG(G) has no answer sets.

The main result on the correctness of the translation is achieved by showing that the answer
sets of the final program PK(K) correspond with the least justified models of K as follows:

Lemma 6. Let K be a CKR in SROIQ-RLD normal form. Then

(i). for every (named) justified clashing assumption χ, the interpretation S = I(Î(χ)) is an

answer set of PK(K);

(ii). every answer set S of PK(K) is of the form S = I(Î(χ)) where χ is a (named) justified

clashing assumption for K.

The correctness result for instance checking of atomic concepts and roles is then an easy
consequence of Lemma 6 and Corollary 1 (cf. the discussion at the end of Section 4.1; negative
instance checking can be reduced to unsatisfiability).

Theorem 6. Let K be a CKR in SROIQ-RLD normal form, and let α and c such that O(α, c) is

defined. Then K |= c : α iff PK(K) |= O(α, c).

Similarly, we obtain the correctness for conjunctive query answering from the correspondence
of Lemma 6. Given a logic program P and a conjunction q(t) = p1(t1) pm(tm) of atoms
pi(ti) in its language, where all variables in ti occur in t, we say that P entails q(t), denoted
P = q(t), if for every answer set I some ground instance q(c) = p1(c1) pm(cm) of q(t) exists
such that I = q(c).

Now for a Boolean CQ Q = yγ(y) on K, where γ(y) = γ1 γm and γi = ci : αi(ti), let
O(Q) = O(αi(t1), c1) O(αi(tm), cm) denote its translation into the corresponding conjunction
of atoms of a logic program, where variables are treated like special constants. Then we obtain:

Theorem 7. Let K be a CKR in SROIQ-RLD normal form, and let Q = ∃yγ(y) be a Boolean

CQ on K. Then K |= Q iff PK(K) |= O(Q).

As above, this result is a consequence of Lemma 6 and Corollary 1. Furthermore, it naturally
generalizes to the certain answers of general conjunctive queries.

5.4. Discussion: justification safeness

Test environments are needed to check the derivation of negative literals in the clashing sets
and thus to assure completeness of justifications. Still, this proof-by-contradiction encoding is less
natural than a direct encoding of negative reasoning, where strong negation is used to represent
negative instance-level literals and rules are used to conclude negative facts by modus ponens.

However, such a direct encoding involves reasoning on disjunctive knowledge which is not
easy to represent using ASP interpretation of disjunctive rules [27]. For example, consider the
negative version of rule (prl-subcnj) to reason on negative instances of A1 A2 B. Using
disjunction in the head of rules, one could write the rule as:

¬instd(x, y1, c) ∨ ¬instd(x, y2, c) ← subConj(y1, y2, z, c), ¬instd(x, z, c).

39

¬
¬ ¬

¬ ¬

¬ ¬ ¬

п ± ¬

п ± ¬ ± п

As noted in the example in Section 5.2, this would lead to a calculus that is incomplete with
respect to negative reasoning. For example, from A B C, C(a), D A B we can classically
infer D(a), but neither A(a) nor B(a): however, the interpretation of the rule above would
lead to two distinct answer sets, one in which A(a) holds and one where B(a) holds, but in
neither of them D(a) is inferred.

One possible solution is to require a notion of justification safeness for the input knowledge
base. Intuitively, this condition guarantees that whenever an axiom gives rise to reasoning on
negative disjunctive cases, one of the disjuncts is provable from the knowledge base. Then, proofs
for justifications do not depend on non-deterministic choices. For instance, in the example above,
a knowledge base K containing A B C would be justification safe if, whenever C(a) is
derivable, either A(a) or B(a) can be derived from K. If the input CKR is justification safe,
the translation can be modified by omitting the test environment mechanism and using direct
reasoning on negative instance-level literals (sample deduction rules for this setting are shown in
Table A.18).

Furthermore, in such a modified program we could also recognize violations of safeness by

reasoning inside the program (namely, on the least justified CAS-models Î(χ)). In the case of

A п B ± C, a violation of safety can be recognized with the following rule:

unsafe ← subConj(y1, y2, z, c), ¬instd(x, z, c), not ¬instd(x, y1, c), not ¬instd(x, y2, c).

By adding rules of this kind, if unsafe is derived we recognize that the input CKR was not
justification safe and thus it might happen that some of the justifications are not established in an
answer set. Justification safeness, however, ensures completeness of justification in each answer
set. Furthermore, the direct encoding of negative reasoning would also be complete for both
positive and negative instance queries.

6. CKRew: CKR datalog Rewriter Prototype

The datalog translation from above has been implemented in a prototype called CKRew

(CKR datalog Rewriter). After a brief description of its structure and implementation details, we
will report on an experimental evaluation with respect to performance and different degrees of
defeasibility.

6.1. Prototype description

CKRew has been implemented as a Java-based command line application. It accepts as input
global and local modules of the initial CKR represented as RDF files (either as distinct N3 RDF
files or as a single TRIG file) that contain OWL-RL axioms in normal form and produces as output
a single .dlv text file that contains the complete datalog rewriting for the input CKR. The newly
added contextual primitives have been defined in an RDF vocabulary (imported in the translation);
in particular, axiom defeasibility assertions have been encoded as OWL axiom annotations
hasAxiomType having the value defeasible. The conceptual system architecture is depicted
in Figure 2. The prototype takes advantage of the DL-to-datalog rewriter DReW [40], which
is used in the translation of global and local OWL axioms into their datalog counterparts. The
loading of OWL-RL RDF files is managed using the OWL API 3.4.18 The CKR system structure

18http://owlcs.github.io/owlapi/

http://owlcs.github.io/owlapi/

40

SROIQ

Figure 2: CKRew architecture and dynamic translation process

is managed by the prototype; external calls to the DLV solver19 by means of the DLVWrapper

Java library [41] are used to determine the set of contexts and their module associations, which
are extracted from the computed answer set(s) of the global program PG(G).

The translation process, which is depicted in Figure 2, follows the strategy in Section 5. After
checking that the CKR represented in the input files is in the required -RLD normal form,
the system proceeds to produce the rewriting. First of all, the global module is translated (step
🕔), basically using translation rules from Iglob and Irl; if an axiom is recognized as defeasible, the
corresponding defeasible declaration in ID is added to the program. The global program PG(G) is
completed by adding the deduction rules from Prl. The set of contexts and their association to
local modules are then computed by submitting the global program to DLV and retrieving the
instances of Context concept and hasModule role in the resulting answer sets (step ➁). Using
this information, the prototype computes local knowledge bases for all contexts and applies the
rewriting process to compute the local program PC(c, K) for each of them using rules in Iloc and
Irl (step ③). The resulting program is completed with deduction rules Ploc and PD and saved in a
file (step №). The final program PK(K) is then evaluated using the DLV solver, resorting to the

syntax defined by the output translation O (step ➄). Note that DLV supports query answering, and
also allows the evaluation of non-ground conjunctive queries on the produced CKR program.

A demo of the prototype, together with RDF files implementing the examples in [2, 1], can be
found at http://ckrew.fbk.eu/.

6.2. Experimental evaluation

In this section, we describe an experimental evaluation that we have conducted to measure
the performance of the prototype, which is similar in spirit to the evaluation of the RDF based
implementation of non-defeasible CKRs in [42]. In particular, we want to study the behavior
of the translation and the resulting program in presence of different dimensions of the input
CKR or degrees of defeasibility. We note, however, that scalability of the approach is inherently

19http://www.dlvsystem.com/dlv/

Global
context

OWL

Knowledge
modules

OWL

Translate
PG(G)

PG𝖼hasMod(x,y)?

Translate
every

PC(c,K)

Merge
PG + PC

output.dlv

DLV system

PK 𝖼 c: A(a)?

http://ckrew.fbk.eu/
http://www.dlvsystem.com/dlv/

41

2

SROIQ

SROIQ
SROIQ

limited by the coNP-completeness of the reasoning problems (reaching Πp-completeness in case
of conjunctive queries).

6.2.1. Generation of synthetic testsets

To create our test sets, we developed a simple generator that can output synthetically generated
CKRs with certain features. For each generated CKR, the generator takes as input:

– the number n of contexts (i.e. local named graphs) to be generated;

– the dimensions of the signature to be declared (number m of base classes, l of properties and k

of individuals);

– the number of axioms for the global and local modules (number of global TBox, ABox and
RBox axioms and number of TBox, ABox and RBox axioms per context);

– optionally, the number of additional local eval axioms and the number of individuals to be

propagated across contexts.

– optionally, the percentage of axioms in the global context to be declared as defeasible and the
percentage of local overriding instances of such axioms.

Intuitively, the generation of a CKR proceeds as follows:

1. The contexts (named : c0, . . . , : cn) are declared in the global context named graph and are
linked to a different module name (: m0, . . . , : mn), corresponding to the named graph containing
their local knowledge.

2. Base classes (named : A0, . . . , : Am), object properties (: R0, . . . , : Rl) and individuals (: a0, . . . ,

: ak) are added to the global graph: these symbols are used in the generation of global and
local axioms.

3. Then generation of global axioms takes place. We chose to generate axioms as follows, in
order to create realistic instances of knowledge bases:

– Classes and properties names are taken from the base signature using random selection
criteria in the form of (the positive part of) a Gaussian curve centered in 0: intuitively,
classes equal or near to : A0 are more probable in axioms than : Am.

– Individuals are randomly selected using a uniform distribution.

– TBox, ABox and RBox axioms in -RL are added in the requested number to the
global context module following the percentages shown in Table 9 (note that the reported
axioms are normal form -RL axioms). Such percentages have been manually
selected in order to simulate the common distribution in the use of the -RL constructs
in real knowledge bases.

The rationale behind such choices for the generation is to produce knowledge bases with a
reasonable knowledge structure. Moreover, we want to guarantee that all of the constructs in
the language are represented in every generated knowledge base and used in a non-random
and rational way; our goal is to avoid unfair behaviors in the experiments due to the lack or
over-use of some language constructs.

4. The same generation criteria are then applied in the case of local graphs representing the local
knowledge of contexts.

42

±

¬
±

TBox axiom %

A ± B

A п B ± ⊥
A ± ∃R.{a}
A п B ± C

∃R.A ± B

A ± ∀R.B
A ±≤ 1R.B

50%
20%
10%
5%
5%
5%
5%

ABox axiom %

A(a) 50%
R(a, b) 40%

¬R(a, b) 10%

RBox axiom %

R ± T
Inv(R, S)

50%
25%

R ◦ S ± T
Dis(R, S)

10%
10%

Irr(R) 5%

Table 9: Percentages of generated axioms

5. If specified, the requested number for eval axioms of the form eval(A, C) B and a set of
individuals in the scope of the eval operator (i.e. as local members of A) are added to local

contexts graphs.

6. If specified, the requested percentage of global axioms is generated (using the same criteria
as above) which are declared defeasible: in particular, in order to control the number of local
overridings, the defeasible axioms are generated using “fresh” symbols (i.e. not occurring in
the signature of other strict global or local axioms).

7. If defeasible axioms have been generated, a fixed number of instances is added to randomly
chosen contexts. For example, for D(A B), in case of a positive instance A(a) is added
locally, while in case of a negative (exceptional) instance A(a), B(a) is added. The percentage
of such instances that represent overridings (i.e. clashing sets) is specified by the user.

6.2.2. Evaluation setup

Evaluation experiments were carried out on a 4 core Dual Intel Xeon Processor machine with
32GB 1866MHz DDR3 RAM, standard S-ATA (7.200RPM) HDD, running a Linux RedHat 6.5
distribution. We allocated 10Gb of memory to the JVM running the prototype command line
application and the utility scripts managing the upload, profiling and reporting of test instances.
The datalog engine that we used to test the computation of the answer sets of the translated
programs (and in the computation of the global context structure) is the latest DLV solver.20

Using the profiling methods, we could measure the time needed (1) to translate the whole
CKR program, (2) to interact with DLV in computing the global model and (3) to compute the
answer sets for the final program via DLV. We will use these values to evaluate our reasoning
method with respect to different dimensions of input CKR and different levels of defeasibility.

6.2.3. TS1: Scalability evaluation

The first experiments served to determine the (average) translation and model computation
time depending on the number of contexts and their contents. In other words, we wanted to answer
the following question:

What is the effect on the amount of time requested for rewriting and model computa-

tion with respect to the number and size of contexts of a CKR?

20http://www.dlvsystem.com/dlv/, build 2012-12-17

http://www.dlvsystem.com/dlv/

43

Using the CKR generator described above, we generated a suite of CKRs whose profiles are
shown in Table 10. We will refer to this suite as TS1: this test set (basically corresponding to an
extension of TS1 from [42]) contains sets of CKRs with an increasing number of contexts, in
which CKRs have an increasing number of axioms; no eval-axioms or defeasible axioms were
added during the generation.

We have tested the rewriting and answer set computation over 3 random generations of the TS1
profile and 5 independent test runs: the different generation instances of TS1 are necessary in order
to reduce the impact of special cases in the random generation. The results of the experiments on
TS1 are reported in Table 11. In the table, for each of the generated CKRs (referred by number
of contexts and number of base classes in the first two columns), we show their number of total
effective input axioms in column Statements (averaged on the 3 versions of TS1). The column
Prog. size reports the corresponding dimensions of the output program in terms of program
statements. The rewriting time is listed in the following two columns: Gl. time lists the (average)
time in milliseconds for rewriting and computing the answer sets for the global context, and RW

time lists the (average) time for the rewriting of the complete CKR program. The column DLV

time lists the (average) time in milliseconds needed for computing the answer sets of the output
program. A dash indicates a timeout, which was set to 20 minutes (1.200.000 ms).

In order to analyze the results, the behaviour of the rewriting and answer sets computation
has been plotted to graphs, shown in Figure 3. Each of the series represents a set with a fixed
number of contexts (1 to 100) and each point a CKR. The x axis represents the number of asserted
statements, while the y axis shows the time in milliseconds. To better visualize the behaviour of
the series, we plotted a trend line for each of the series: the lines represent an approximation of
the data trend calculated by polynomial regression.21

Some conclusions can be drawn from these data and graphs. In particular, we note that
the expected behaviour of the rewriting process and answer set computation is reflected by
these results. About the rewriting, it is clear that the dimension of the output program (and the
corresponding rewriting time) is basically linear in the dimension of the input CKR. In fact, the
size of the output program can be determined quite precisely given the applied rules and the
translation process: some variability may occur due to the translation of the local signatures,
which is determined randomly in the axiom generation. The size of the output program can be
estimated by considering how each of its components is built. The global program contains a
fixed number of statements to represent CKR primitives and deduction rules; its variable part
depends on the size of the signature, the number of global axioms and finally a fixed number
of statement for each context (for context declaration, declaration of the associated module and
module association). For each of the contexts, every local program needs a fixed number of
statements for the declaration of CKR primitives and the local prec statement; then its size
depends on the local signature declaration and the number of local axioms.

On the other hand, DLV answer sets computation for the final program is clearly not linearly
dependent from the size of the program, and the computational hardness of the materialization
solution is evident in the graphs growth. From the results, it is evident that the feasibility of the
reasoning is affected by the number of contexts of the CKR: for example, this can be seen in
Figure 3.b by comparing the case of 1 context and 1000 classes (having 7014 statements, with
DLV time 33469 ms.) with the cases of 5 contexts and 350 classes (having 7396 statements,
with DLV time 14554 ms.) and 50 contexts and 35 classes (having 6655 statements, with DLV

21Average R2 value across all approximations is ≥ 0, 996.

44

Table 10: Test set TS1.

 Global KB Local KBs

Contexts Classes Roles Indiv. TBox RBox ABox TBox RBox ABox Total ax.

1 10 10 20 10 5 20 10 5 20 70
1 35 35 70 35 18 70 35 18 70 245
1 50 50 100 50 25 100 50 25 100 350
1 75 75 150 75 38 150 75 38 150 525
1 100 100 200 100 50 200 100 50 200 700
1 350 350 700 350 175 700 350 175 700 2.450
1 500 500 1000 500 250 1000 500 250 1000 3.500
1 750 750 1500 750 375 1500 750 375 1500 5.250
1 1000 1000 2000 1000 500 2000 1000 500 2000 7.000
5 10 10 20 10 5 20 10 5 20 210
5 35 35 70 35 18 70 35 18 70 735
5 50 50 100 50 25 100 50 25 100 1.050
5 75 75 150 75 38 150 75 38 150 1.575
5 100 100 200 100 50 200 100 50 200 2.100
5 350 350 700 350 175 700 350 175 700 7.350
5 500 500 1000 500 250 1000 500 250 1000 10.500
5 750 750 1500 750 375 1500 750 375 1500 15.750
5 1000 1000 2000 1000 500 2000 1000 500 2000 21.000

10 10 10 20 10 5 20 10 5 20 385
10 35 35 70 35 18 70 35 18 70 1.348
10 50 50 100 50 25 100 50 25 100 1.925
10 75 75 150 75 38 150 75 38 150 2.888
10 100 100 200 100 50 200 100 50 200 3.850
10 350 350 700 350 175 700 350 175 700 13.475
10 500 500 1000 500 250 1000 500 250 1000 19.250
10 750 750 1500 750 375 1500 750 375 1500 28.875
10 1000 1000 2000 1000 500 2000 1000 500 2000 38.500
50 10 10 20 10 5 20 10 5 20 1.785
50 35 35 70 35 18 70 35 18 70 6.248
50 50 50 100 50 25 100 50 25 100 8.925
50 75 75 150 75 38 150 75 38 150 13.388
50 100 100 200 100 50 200 100 50 200 17.850
50 350 350 700 350 175 700 350 175 700 62.475
50 500 500 1000 500 250 1000 500 250 1000 89.250
50 750 750 1500 750 375 1500 750 375 1500 133.875

50 1000 1000 2000 1000 500 2000 1000 500 2000 178.500
100 10 10 20 10 5 20 10 5 20 3.535
100 35 35 70 35 18 70 35 18 70 12.373
100 50 50 100 50 25 100 50 25 100 17.675
100 75 75 150 75 38 150 75 38 150 26.513
100 100 100 200 100 50 200 100 50 200 35.350
100 350 350 700 350 175 700 350 175 700 123.725
100 500 500 1000 500 250 1000 500 250 1000 176.750
100 750 750 1500 750 375 1500 750 375 1500 265.125

100 1000 1000 2000 1000 500 2000 1000 500 2000 353.500

45

Table 11: Scalability results for test set TS1.

Ctx. Cls. Statements Prog. size Gl. time RW time DLV time

1 10 84 278 6 7 12
1 35 258 672 18 21 45
1 50 364 909 23 27 61
1 75 539 1318 27 34 104
1 100 714 1716 45 57 134
1 350 2463 5724 131 161 1082
1 500 3514 8145 190 225 5845
1 750 5264 12157 250 298 22268

1 1000 7014 16169 379 444 33469
5 10 259 669 21 39 59
5 35 779 1874 18 28 151
5 50 1096 2586 22 37 297
5 75 1620 3785 30 48 646
5 100 2147 5000 42 67 987
5 350 7396 17029 136 218 14554
5 500 10548 24167 178 276 65133
5 750 15798 36322 279 410 155483

5 1000 21049 48299 348 535 255716
10 10 477 1189 17 34 77
10 35 1433 3367 36 67 343
10 50 2017 4705 39 67 668
10 75 2971 6891 66 134 1731
10 100 3941 9105 66 112 2890
10 350 13566 31164 116 224 37719
10 500 19343 44445 211 377 101350
10 750 28964 66390 339 591 277843
10 1000 38589 88373 475 798 598679
50 10 2217 5180 58 170 894
50 35 6655 15391 47 119 4803
50 50 9361 21547 55 152 12611
50 75 13797 31717 54 175 26564
50 100 18280 41961 67 215 52935
50 350 62908 144208 176 661 758959
50 500 89679 205503 229 860 —
50 750 134304 307741 380 1257 —
50 1000 178934 409724 493 1871 —

100 10 4392 10217 62 131 2661
100 35 13175 30304 77 211 17677
100 50 18534 42621 70 235 35234
100 75 27321 62633 98 340 90377
100 100 36206 83084 92 386 165006
100 350 124585 285522 177 1114 —
100 500 177609 406964 251 1424 —
100 750 265971 609292 262 1943 —
100 1000 354359 811666 362 2734 —

46

1

5

10

50

100

1

5

10

50

100

10000

1000

100

10

10 100 1000 10000 100000 1000000

input statements

a) Rewriting time

1000000

100000

10000

1000

100

10

10 100 1000 10000 100000 1000000

input statements

b) DLV time

Figure 3: Scalability graphs for TS1.

ti
m

e
 (

m
s
.)

ti
m

e
 (

m
s
.)

47

time 4803 ms.). This suggest that the modularization of knowledge provided by contextual
sub-programs may allow to limit local reasoning and manage larger numbers of local axioms. On
the other hand, it is evident that while the rewriting is applicable to large datasets, as expected, the
current materialization based translation does not allow to scale to very large number of (complex)
statements and contextual structures.

6.2.4. TS2: Defeasibility evaluation

The second set of experiments over the CKR prototype served to determine the impact of
defeasible axioms. Basically they were modelled inspired by the defeasibility evaluation of Casini
et. al in [43]. The question is as follows.

Which effect does the percentage of global defeasible axioms and their overridings

have on the time for rewriting and model computation?

Using the CKR generator, we generated a second suite TS2 of CKRs. We fixed the number of
contexts to 5 and number of global axioms to 175: basically, this amounts in size and form to the
case of 5 contexts and 50 classes in TS1; this setting was chosen to fix a reasonable number of
contexts and axioms to a case that was proved to be easily treatable from the tests on TS1. We
generated 9 groups of CKRs with a percentage of global axioms declared as defeasible varying
from 10% to 100%. Each group has 10 CKRs with different percentage of overridings (from 10%
to 100%, with an increase of 10% across CKRs). No random local axioms have been generated;
instead, 10 local instances of each (strict or defeasible) global axiom scheme have been generated.
In case of defeasible axioms, these instances are negative (i.e. clashing sets) and their number
yields the specified overriding percentage, while the other instances are positive. In this way,
we keep the number of instances fixed. Intuitively, this allows us to verify the behaviour of the
prototype in CKRs with equal size but different ratios of defeasibility and overridings.

We tested computing the rewriting and the answer sets over 5 instances of the TS2 profile
and 5 independent test runs for each instance. Results of the experiments on TS2 are reported in
Table 12, where the first two columns show the percentages of defeasible axioms and overridings,
respectively. The following columns (number of statements, output program size, global and total
rewriting time, and DLV computation time) are as in Table 11, where DLV time is for computing
one answer set. Finally, last column reports the number of test instances (of the nlit kind) in
the computed model.

For a representative selection of the data, Figure 4 shows histograms for the output program
size, the rewriting time and the DLV time. The y-axis represents the number of statements for
program size and time in ms. for rewriting and DLV time respectively, while on the x-axis the bars
are ordered by percentage of overridings (from 10% to 100%). Each series represents a di fferent
percentage of defeasibility (from 10% to 100%), i.e. a CKR group in Table 12.

As we can see from the data and the graphs, the program size grows linearly with number
of defeasible axioms and overridings. As in the case of scalability, we can precisely count the
number of added rules and statements in the output program by considering the translation process.
As we specified above, in this experiment the numbers of global and local axioms, contexts and
signature size are fixed. For each defeasible global axiom, one corresponding defeasibility atom
(e.g. def subclass) has to be added to the global program. The evident growth in the number of
statements w.r.t. the number of overridings is also justified by the larger number of axioms that
is needed in general to represent the negative instances of axioms. For example, in the case of

an atomic subsumption A ± B, its positive instance is a single assertion axiom A(a), while the

48

Def.% Ovr.% Stat. Prog. Gl.t. RW DLV test
10 10 1115 2926 21 27 22113 41
10 20 1203 3092 20 27 21435 40
10 30 1151 2976 24 31 24874 45
10 40 1212 3110 21 27 29706 40
10 50 1288 3274 23 31 27518 47
10 60 1279 3257 20 27 33411 57
10 70 1287 3262 21 27 31699 55
10 80 1293 3259 19 27 32744 65
10 90 1331 3365 20 27 28046 64
10 100 1366 3415 23 31 42126 68
20 10 1193 3154 19 27 35921 78
20 20 1178 3154 21 29 58356 65
20 30 1239 3268 22 31 68159 81
20 40 1325 3489 19 27 55163 88
20 50 1369 3545 21 29 74582 96
20 60 1415 3604 19 28 81698 93
20 70 1429 3665 22 30 120530 103
20 80 1504 3763 21 28 79927 123
20 90 1561 3841 21 30 134042 126
20 100 1573 3905 20 28 110618 132
30 10 1160 3165 19 25 70188 96
30 20 1252 3394 20 27 68560 127
30 30 1351 3613 23 33 107571 130
30 40 1369 3624 19 26 91741 132
30 50 1459 3795 22 32 87452 142
30 60 1559 4020 19 27 131856 144
30 70 1595 4057 19 28 111634 164
30 80 1647 4142 19 27 111544 167
30 90 1755 4317 19 30 149951 204
30 100 1774 4373 22 31 176888 195
40 10 1223 3353 24 34 84649 143
40 20 1354 3715 20 30 108808 155
40 30 1379 3768 23 32 155393 157
40 40 1510 4032 20 31 152683 170
40 50 1650 4285 21 31 187733 202
40 60 1708 4392 22 35 192295 214
40 70 1823 4542 26 40 241755 226
40 80 1931 4777 23 35 255782 214
40 90 1969 4851 19 31 266191 251
40 100 2040 4943 21 32 305133 262
50 10 1224 3481 22 31 102882 158
50 20 1355 3754 21 32 159336 196
50 30 1506 4093 28 40 157123 211
50 40 1610 4294 23 34 184372 225
50 50 1687 4444 20 30 172795 236
50 60 1845 4783 21 32 238078 263
50 70 1977 4992 23 35 257234 271
50 80 2116 5210 20 33 315922 312
50 90 2179 5333 26 39 434312 332
50 100 2269 5482 23 35 349145 325

Def.% Ovr.% Stat. Prog. Gl.t. RW DLV test
60 10 1297 3703 22 31 176656 226
60 20 1419 3951 21 29 180581 257
60 30 1561 4256 21 30 234177 272
60 40 1699 4567 21 32 273768 291
60 50 1886 4927 21 32 328445 312
60 60 1976 5075 23 36 330168 314
60 70 2125 5348 22 35 321582 351
60 80 2208 5487 21 35 410883 344
60 90 2419 5842 21 36 499053 382
60 100 2460 5906 20 32 430448 388
70 10 1274 3730 22 30 202731 232
70 20 1481 4198 24 33 286869 294
70 30 1659 4582 20 30 327092 278
70 40 1790 4815 21 31 343136 314
70 50 1978 5213 21 32 396284 356
70 60 2130 5497 25 38 428827 370
70 70 2247 5688 25 40 385229 396
70 80 2397 5968 23 36 548701 411
70 90 2613 6295 21 37 563161 442
70 100 2764 6570 22 38 699516 486
80 10 1302 3854 21 31 241660 277
80 20 1544 4399 22 32 311755 287
80 30 1706 4759 23 33 310633 333
80 40 1923 5216 19 28 448689 361
80 50 2058 5447 21 32 494499 399
80 60 2269 5871 22 36 635089 407
80 70 2442 6168 23 39 601622 453
80 80 2573 6373 22 40 659166 454
80 90 2861 6848 23 42 694975 519
80 100 2941 7006 21 36 753493 536
90 10 1303 3923 23 30 258290 321
90 20 1576 4560 24 34 368366 334
90 30 1750 4905 20 29 436950 359
90 40 2067 5538 22 36 571478 433
90 50 2279 5947 20 32 631558 435
90 60 2374 6129 22 37 658675 454
90 70 2673 6645 22 37 786983 512
90 80 2827 6923 22 37 763897 535
90 90 2988 7195 23 42 723663 582
90 100 3232 7603 24 43 841494 608

100 10 1396 4206 24 36 404289 375
100 20 1659 4799 25 38 529286 417
100 30 1901 5284 22 33 597376 435
100 40 2130 5796 21 33 605912 474
100 50 2344 6175 23 38 736464 519
100 60 2519 6527 25 47 827167 524
100 70 2724 6866 23 43 1039709 558
100 80 3035 7384 24 44 1099509 598
100 90 3234 7762 23 42 1097829 636
100 100 3414 8053 30 54 1196079 667

Table 12: Experiments results for test set TS2.

49

a) Program size

b) Rewriting time

c) DLV time

Figure 4: Experiments graphs for TS2.

9000

8000

7000

6000 10%

5000 30%

50%
4000

70%

3000
100%

2000

1000

0

10 20 30 40 50 60 70 80 90 100

Overridings %

60

50

40 10%

30%

30 50%

70%

20
100%

10

0

10 20 30 40 50 60 70 80 90 100

Overridings %

1400000

1200000

1000000

10%

800000 30%

50%

600000
70%

400000
100%

200000

0

10 20 30 40 50 60 70 80 90 100

Overridings %

D
LV

 t
im

e
 (m

s.
)

P
ro

gr
a

m
 s

iz
e

R

W
 t

im
e

 (
m

s.
)

50

{ п ± ⊥ }

→
⊆

set expressing its negative assertion (that is, its clashing set), is A(a), A B , B(a) . Also,
negative instances need the declaration of a larger set of auxiliary signature elements.

In the rewriting time histogram, the growth is less evident given the quite limited size of the
reference CKRs.22

As expected, the number of defeasible axioms and overridings clearly influences the time
needed for the model computation by DLV. In particular, if we fix the percentage of overridings,
DLV computing time grows polynomially in the percentage of defeasible axioms. 23 Moreover, by
fixing the percentage of defeasible axioms (i.e. each sub-table in Table 12), model computation
also grows polynomially in the percentage of overridings.24

This behaviour can also be justified by the growth in the number of test environments needed
to verify the conditions for overriding of such defeasible axioms: in particular, by definition
of the rules, a test literal is added to the model for each instance (exceptional or not) of a
defeasible axiom. Note that, by definition of test rules, each instantiation of a test environment
(corresponding to a different instance of a test literal) leads to a copy of the instance knowledge
derived from the main environment. This intuition is reflected by the results in last column
of Table 12, representing the number of test literals in the computed model: as expected (cf.
introduction of Section 5.2), this value is linearly dependent on the percentage of defeasible
axioms in the input CKR.

7. Related Work

In this section, we relate and compare our proposal with other approaches for including
notions of defeasibility contextual systems and in description logics. In particular, we compare it
to non-monotonic multi-context systems (MCS) [9], multi-context systems under argumentation
semantics [29], typicality in DLs [30], and nonmonotonic description logics [31]. We will briefly
present these approaches and aim to give an intuition about analogies and differences in our
representation of defeasible inheritance (also by means of some representative examples).

7.1. Non-monotonic Multi-Context Systems

The idea of multi-context systems (MCS) is to align knowledge from different contexts in
a single system using special bridge rules, dating back to [7]. We consider here the expressive
concept of non-monotonic MCS in [9], in which contexts may be based on possibly different
monotonic and non-monotonic logic, and bridge rules can be non-monotonic. The semantics of
nonmonotonic MCS is defined in terms of equilibria: intuitively, an equilibrium is a collection of
one belief set (local model) per context that verifies the knowledge content of contexts and the
knowledge propagated through bridge rules.

Formally, in this approach a logic is abstractly defined as a triple L = (KBL, BSL, ACCL),
where KBL is the set of well-formed KBs of L, which are sets of formulas; BSL 2BL is the set
of possible belief sets of the logic, where BL is base set of beliefs; and ACCL : KBL 2BSL is
the set of accepted belief sets, i.e., the set of belief sets associated with a KB kb (thus providing

22Fluctuations in graphs are due to the random nature of the dataset and may be polished by averaging the results over a
larger number of dataset instances.

23The trend can be approximated with an average R2 value ≥ 0.994.
24Approximation with an average R2 value ≥ 0.953.

51

≤ ≤ ≤
∈ ∈

∈ { } ∈

∈ ∪ { | ∈ }
∈

∈

k i

i i i i

the “semantics” of L). Propagation of knowledge across knowledge bases in different logics can
be defined using bridge rules: given a set of logics L1, . . . , Ln, a bridge rule for Li has the form:

(i : s) ← (r1 : p1), . . . , (rk : pk), not(rk+1 : pk+1), . . . , not(rm : pm) (10)

where rk 1, . . . , n , pk BLk , and s is a formula of Li. A nonmonotonic MCS is then a collection
M = (C1, . . . , Cn) of contexts Ci = (Li, kbi, bri), where Li = (KBi, BSi, ACCi) is the logic of the
context, kbi KBi is a knowledge base and bri is a set of bridge rules for Li over logics L1, . . . , Ln.
An equilibrium of M is a collection S = (S 1, . . . , S n) of belief sets S i BSi for the context Ci

such that S i ACCi(kbi) head(r) r app(bri, S) , where head(r) = (i : s) for any bridge
rule r of form (10), and app(bri, S) consists of all bridge rules r bri such that (i) pj S j, for

1 j k and (ii) p j g S j, for k < j n.
The idea of CKRs with defeasible inheritance based on justifiable assumptions may also be

realized within the nonmonotonic MCS framework of [9], where contexts Ci with local semantics
(acceptable belief sets over a local knowledge base kbi) can add via bridge rules formulas to their
kbi depending on the local belief sets of the contexts. Adopting open bridge rules, i.e. bridge
rules with variables that are instantiated over a given domain (using standard names in case,
similar as in [44]), we may encode the global context G as an MCS context g and associate each
element x of the domain with a context name in the MCS. We then may mimic satisfaction relative
to assumptions as in CAS-interpretations with bridge rules that access G to determine whether

axioms resp. axiom instances must be evaluated at x (if x ∈ CtxM). In particular, defeasible axioms

α of the kind D(C ± D) can be encoded using auxiliary concept names Aα and bridge rules:

x : C п Aα ± D ← g : Ctx(x) x : Aα(y) ← g : Ctx(x), not(x : ¬Aα(y))

and for defeasible concept assertions D(A(c)) bridge rules

x : A(c) ← g : Ctx(x), not(x : ¬A(c)).

Intuitively, Aα serves as guard for the inclusion which by default is true for an individual, and
thus the inclusion axiom applies to it; likewise, a concept assertion is true by default. The guard
is blocked if a violation of the inclusion (an exception) is provable. The equilibria of the so
constructed MCS are then akin to CKR-models. However, while this or a similar MCS approach
is elegant, we need to extend the language and basically encode the problem in a framework that
is very expressive and propositional in nature. Furthermore, currently only limited computational
support is available for MCS. Above we aim at a formalization from first principles (giving a
model-based semantics) that is suitable for realization in a well-supported host formalism.

7.2. MCS under Argumentation Semantics

A different non-monotonic semantics for MCS, based on argumentation, was proposed in [29].
The authors aimed at reasoning in presence of “imperfect” knowledge in ambient intelligence
where knowledge is distributed across different contexts.

In this formulation, a MCS is a collection C = (C1, . . . , Cm) of contexts of the form Ci =
(Vi, Ri, Ti) where Vi is the vocabulary (i.e. propositional literals) of Ci, Ri is the set of rules of the
context, and Ti is a local preference ordering over all contexts. Rules can be either local rules,
corresponding to local knowledge of Ci, or mapping rules, which basically amount to bridge rules

across different contexts. Local rules are either strict, denoted rl: a1, . . . , an−1 → an, or defeasible,
denoted rd: b1, . . . , bn−1 ⇒ bn, where all a j and b j are from Vi; they represent strict and “soft”

i i i i i i m 1 n−1 n

knowledge in the local theories, respectively. Mapping rules, denoted ri : ak1
, . . . , akn−1

⇒ ai with

every aj
j
∈ Vkj where k j ∈ {1, . . . , m} and an ∈ Vi, are regarded as defeasible and serve to “import”

52

∈
∈

∈

∈

⇒

∼ ∼

∼ ∈

∈ { }

{ } ±
± →
⇒

±

knowledge from other contexts into Ci. Finally, the local preference ordering Ti = [Ck1 , . . . , Ckm],
k j 1, . . . , m , on contexts expresses confidence in the knowledge imported from the other
contexts by mapping rules.

The argumentation semantics for these MCS is based on the common argumentation semantics
of Defeasible Logic (cf. [45]) extended with distribution of knowledge and preferences across
contexts. A support relation for the MCS C is a set S RC of triples (Ci, PTpi , pi) where Ci C,
pi Vi, and PTpi is a proof tree for pi using the local and mapping rules in Ri (we omit further
details); any such triple is an argument for pi. The set ARGSCi of arguments for all pi Vi

represents all possible logical consequences in Ci that are derivable using local or mapping rules.
If consequences are derived using “external” knowledge by mapping rules, conflicts over a

literal pi are resolved using the local context preference Ti, where clashes across arguments are
considered. Intuitively, an argument A attacks another argument B if (i) A has a literal pi in its
consequences, (ii) B has the complementary literal pi in its consequences, and (iii) pi is a
consequence of some defeasible local rule. An argument A defeats B at pi if pi has lower rank
than the complementary pi in B, where the rank of a literal pi in Ci is 0 if pi Vi and is the
rank of C j in Ti if pi Vj ≠ Vi. In case of conflicting literals in mapping rules, an argumentation

line AL for a literal pi can be formed as a sequence of arguments, possibly from different contexts,
where attacks are extended to sequences. Based on attacks and defeats across arguments resp.
argumentation lines, each literal in a MCS is either found justified, i.e. proved by a non-defeatable
argument, or rejected, i.e. it can not overcome attacks from stronger arguments.

Compared to our CKR, we first note the different setting of defeasible MCS as in [29]: every
context is seen as an independent agent having its own knowledge and preferences (ordering) on
contexts. A CKR instead has a global structure of contexts and it only represents one level of
“preference”, namely the precedence of G w.r.t. local contexts. Viewing a CKR as a defeasible
MCS (with preferences), the local preference ordering of each context ci may thus be defined

as Ti = [ci, G]. Local and global axioms of a CKR can be translated to local rules and mapping
rules, where similar as for nonmonotonic MCS in Section 7.1 schematic (open) rules are used
that are instantiated over a concrete domain. In particular, global default axioms can be here
introduced as local defeasible rules: e.g., D(A B) can be represented (in every context ci) as the
defeasible rule Ai(x) Bi(x). Global subsumptions can be propagated to each context as strict
local rules: e.g. if C D is in G, then every context ci contains the strict rule Ci(x) Di(x). We
can relate eval expressions to mapping rules: e.g. eval(A, c1) C in context c2 is expressible
by the mapping rule A1(x) C2(x). Note, however, that eval expressions are strict inclusions
and may contain complex context expressions; thus a proper encoding of eval-expression using
defeasible and strict rules is more involved.

Our notion of overriding of a defeasible axiom compares to a “conflict” among two arguments
for conflicting literals in [29]. In a CKR, conflicts occur only among arguments of the global
and the local contexts. Using the above preference ordering, local arguments are preferred over
global arguments and thus relate to clashing sets; as in our semantics, they serve to justify the
local conclusions. To this extent, the clashing assumptions χ(x) for context x are akin to the

rejected global arguments of x. However, the emerging semantics differs from our CKR-models

in an important respect: while defeasible MCS resolve conflicts deterministically using local
preferences, CKRs incorporate reasoning by cases; this manifests in tractable inference of literal
queries from defeasible MCs, while literal queries on all CKR-models are intractable in general.

As for valuation, [46] showed how to translate defeasible MCSs into single theories of
Defeasible Logic, where the idea is to include strict and defeasible (mapping) rules in such a
theory and to express the local preference ordering on contexts by rule priorities. Our translation of

53

ALC

п ¬

ALC
ALC

ALC
¬ ¬

{ ∈ | ∈ }

(I) ALC
ALC (I)

{ ∈ | ∀ ∈ → ∈ }

CKRs into datalog programs is analogous in this respect, and shows how a fragmented knowledge
base can be compiled in a way such that available efficient tools can be utilized for reasoning.

7.3. Normality in Description Logics

In the area of Description Logics, a number of different proposals have been made to incorpo-
rate non-monotonic features, dating back at least to terminological default logic [47]. We refer
for a more extensive bibliography and classification to [48], where preferential approaches (e.g.
[49, 50]), circumscription-based approaches (e.g. [51, 52]) and others (e.g., [53]) are distinguished.
We concentrate here on some recent proposals that aim at supporting defeasible subsumption
respectively entailment, viz. [30, 54, 31, 51, 52], and we omit here works that aim at establishing
semantic properties of entailment relations (such as rational closure [50, 55, 56]) or consider a finer
grained notion of defeasibility depending on the nature of the relationship between elements of the
vocabulary (cf. [48]). This is because our interest stands, at this point, with a basic mechanism for
a formalism with explicit hierarchical structure, which is usually not reflected in nonmonotonic
entailment relations.

7.3.1. Typicality in DLs

Default assumptions about properties of the members in a class C and the properties of
prototypical elements of C, as defined in [30, 54], are closely related notions. Giordano et al.
[30] formalize in their logic +Tmin the intuition that a prototypical element of a concept
C is a “generic element” of C. This definition stands on the possibility to organize objects in a
generic-specific hierarchy, formally a partial order <, where y < x means that object y is more
generic (less specific) than object x. For instance, if x is a red Ferrari car and y is a yellow one,
x < y models that a Ferrari is more typically red than yellow.

T

Formally, the language of the description logic ALC is extended with the typicality operator
: each (possibly complex) concept C in the language is associated with an extended concept

T(C) representing its “typical” instances. In knowledge bases, extended concepts can appear on
the left-hand sides of concept inclusions in the TBox and as concepts of assertions in the ABox.

The semantics of the typicality operator is obtained by extending DL interpretations with

a preference relation on the domain. Thus, a +T interpretation is a structure ∆I, , <

where ∆I, is a usual interpretation and < is irreflexive and transitive relation over
∆I. The relation has to satisfy a smoothness condition, which eliminates infinitely decreasing
chains: for each subset S ⊆ ∆I, for every x ∈ S , either x ∈ min<(S) or some y ∈ min<(S)
exists such that y < x, where min<(S) = x S $y S .y < x are the minimal elements

of S under <. The interpretation of the extended concept T(C)I corresponds then to min< CI.
As noted by Giordano et al., this can be seen as a modal expression w.r.t. <: by defining

(QC)I = x ∆I y ∆I.y < x y CI , the typical elements of a concept C are described
by (C Q C)I.

While this models typicality, it does not yet enforce that elements of a concept C must belong
to its typical subconcept T(C), unless known otherwise. Basically, this corresponds to introducing
non-monotonicity in the logic +T. This is achieved by restricting the models to those
which minimize the set of exceptional instances of concepts; the resulting logic is +Tmin.
By exploiting the modal definition of typical concepts, exception minimization is effected by

considering the models in which (Q C)I is minimized, for each C with typicality, in parallel;
respective minimal models are called preferred models. Query entailment in +Tmin is then
defined via entailment from all preferred models.

54

SROIQ

SROEL п ×

2

±

EL EL

DL DL

SROIQ
EL

K S ∪ D S D DL
± DL DL DL

DL DL

Compared to our approach, the main analogy of the approach by Giordano et al. is that
membership of an element in a concept must be blocked. However, the way this is achieved is
fundamentally different: Giordano et al. use semantic model minimization, where the blocking
results for minimal subsets of non-specific elements of C (i.e., the set QC); intuitively, every
element of C is regarded as prototypical unless this is infeasible. Our approach instead is syntactic
and consequence-based, as exceptions have to be justified in terms of a semantic consequence.
Notably, different from preferred models there is no notion of minimality in the definition of our
CKR-models, even though it comes as a property (Proposition 6). Furthermore, we deal with
explicit modular structure of a knowledge base and cross-references, which Giordano et al. do not
consider. We note that, similarly to our approach, the authors recently proposed in [57] a datalog
translation for reasoning with a typicality extension of (,).

Our approach is geared towards syntactically guided exception handling in query answering,
and not conceived as a logic of typicality of individuals per se. Nonetheless, prototypical concepts
may be mimicked in our formalism using an extra concept for each concept C, say CT , for the
typical elements of C, and by the axioms

CT ± C D(C ± CT)

which state that prototypical C’s are C’s and that C’s are prototypical unless the contrary is entailed;
CT is then used for the prototypical concept. A deeper formal analysis of the correspondence
between the two approaches will require some adaptation of the approach in [30] to -RL,
and is beyond the present paper.

7.3.2. Normality via Circumscription

Besides [30], another approach to express typicality or “normality” via model-based minimiza-
tion is to exploit McCarthy’s circumscription principle [58]. This has been adopted for DLs e.g. in

[51] and [52], where in particular DL-LiteR and resp. ⊥ were considered, which are related
to the OWL profiles OWL QL and OWL EL, respectively. From a semantical perspective, similar
considerations as for the approach of Giordano et al. apply at a general level. Computationally,

instance checking is in circumscribed DL-LiteR Πp-complete and in ⊥ ExpTime-hard; while
circumscription of -RL has to the best of our knowledge not been studied, results in [59]
and Section 3 suggest that instance checking should be coNP-complete, and thus have the same
complexity under CKR-model semantics.

7.4. Nonmonotonic description logic DLN

A recent approach to overriding in description logics was presented by Bonatti et al. [31],
which aims at a natural representation of exceptional classes of elements in a DL and retaining its
tractability; in this way, applicability to large size knowledge bases should be secured.

A family N of non monotonic DLs is defined by extending a generic base DL with an
operator NC for normality concepts, which are the prototypical “normal” instances of type C, and
with defeasible inclusions (DIs) C n D between concepts, which can be interpreted as “normally,
instances of C are instances of D, unless stated otherwise.”

Formally, for each concept C in , a normality concept name NC is added to N ;
defeasible inclusions C n D require that C is from and D from N . a N knowledge
base has the form = , where and are disjoint finite sets of N axioms and
defeasible inclusions, respectively.

In any DLN interpretation I, the inclusion NC ± C must hold for each NC. The semantics
of a defeasible inclusion C ±n D w.r.t. normal individuals is defined by resorting to the set

55

∈ ∪ ∈ D
DL I | ∈ S

I I
∈ D ≺ \ ⊆ Ç

Ç Ç | S ∈ ∅
I ∈

S | ± S | /± ≺
± ≺ ±

≺
≺

I
± { | ∀ ∈ ∨ ∈ }

i

S
D

DL K S ∪ D
DL

i (i−1) i i

satI(C n D) = NE x NEI, x g CI x DI , which are the normal concepts satisfied by
the DI in ; the idea is that normality concepts NE can not satisfy all DIs, and thus some DIs may
be in conflict on NE. To decide which DIs then should be overridden, a priority relation δ1 δ2
is used expressing that δ1 has higher priority and is preferred over δ2. While could be any strict
partial order, Bonatti et al. mainly concentrated on specificity, i.e., (C1 n D1) (C2 n D2) iff

= C1 C2 and = C2 C1.25 Using satI and , the semantics of overriding is recursively
defined by a function ovd: a DI δ is overridden in NC for interpretation (denoted NC ovdI(δ)),
if no interpretation exists such that: (i) = ; (ii) NC satÇ (δ); (iii) NCÇ ≠ ; and (iv)

for any other δJ s.t. δJ δ, it holds that satI(δJ) ovdI(δJ) satÇ (δJ), i.e. satisfies
all non-overridden higher priority DIs that are satisfied in . Based on this, an interpretation
satisfies a N axiom α, , if = α for α , and if for every normality concept NC, it holds

that NC satI(α) ovdI(α) if α .
To decide satisfaction in the presence of defeasible inclusions, Bonatti et al. provided a

translation that compiles defeasible inclusions away. Intuitively, it proceeds as follows. First a set
Σ of relevant normality concepts NC has to be fixed, which must include the normality concepts

occurring in the initial KB. Given a linearization δ1, . . . , δn of (D, ≺), the KB KΣ is built from
K = S ∪ D by augmenting S along the linearization while omitting overridden DIs, as follows:

1. set K0 = S ∪ {NC ± C | NC ∈ Σ};
2. for i = 1, . . . , n: let Ki = K(i−1) and consider δi = Di ±n Ei; add to Ki every δNC = (NC п Di ±

E), NC ∈ Σ, s.t. K
i

\ {δNC | δ ⊀ δ } ∪ {δNC} $ NC ± ⊥;

3. finally, let KΣ = Kn.

Intuitively, in each step the KB is enriched with an axiom δNC if it does not cause an inconsistency
in NC; otherwise, the DI is omitted, corresponding to an overriding w.r.t. NC.

Compared to our approach, the overall idea of individual exceptions and axiom overriding is
similar in spirit. A notable difference is the extended notion of precedence between defeasible
axioms in N . In our formalism, precedence is via the CKR structure, viz. from the global
context to the local contexts. Accordingly, we can simulate a N knowledge base =
with void preference by representing the defeasible inclusions of as defeasible axioms in the
global context G and the strong axioms as a single local context.

Another relevant difference is that our formalism has no notion of “normal” concepts: every

individual is “normal” w.r.t. all axioms, but can be exceptional w.r.t. given defeasible axioms.
Thus while our formalism is not capable of reasoning about classes of “normal” and “exceptional”
individuals, it can deal with property inheritance at the instance level; we illustrate this on the
situs inversus example.

Example 18 ([31], rephrased). While normally humans have their heart oriented to the left part

of their chest, in the exceptional case of situs inversus the heart is positioned towards the right

part. We want to represent this fact while ensuring that the other anatomical features of such

humans are not overridden. We can represent this scenario as a CKR Ksi = (G, {Km1}) where

25Note that specificity can be related to similar ordering in [30].

56

± ∃ { }

±

{ ¬ }
{(± ∃ { } })

G = (d2) D(Human hasNosePosition. face-center), ,
 (m1) mod(c1, m1)

(i2) SitusInversus NotHasHeartPosition. chest-left ,

(i3) Dis(hasHeartPosition, NotHasHeartPosition),

(d2) D(Republican Pacifist), ,
 (m1) mod(c1, m1)

K = .

(d1) D(Human ± ∃hasHeartPosition.{chest-left}),

(i1) SitusInversus ± ∃hasHeartPosition.{chest-right},
m1

(i4) SitusInversus Human,

(a1) SitusInversus(bob)

In this case, it is easy to verify that Ksi has a CKR model I in which d1 is overridden, as it has a

justified CAS-model with χ(c1) = Human hasHeartPosition. chest-left , bob and clashing

set S = Human(bob), hasHeartPosition(bob, chest-left) for the clashing assumption. On the

other hand, d2 is naturally inherited even by the exceptional individual: that is, we have that

I(c1M) |= hasNosePosition(bob, f ace-center). Q

As for the case of clashing inheritance, let us consider as in [31] a classic example.

Example 19 (Nixon diamond). We can easily represent the classical Nixon diamond, considered

in [31, Example 9], also in our formalism as a CKR Knd = (G, {Km1}), where

(d1) D(Quaker ± Pacifist),

Km1 : { Quaker(nixon), Republican(nixon) }.

This CKR has two CKR models corresponding to the two possible overridings of the defeasible ax-

ioms (with the same priority). In particular, we have a CKR model I1 s.t. I1(c1) |= Pacifist(nixon)
with χ1(c1) = {(Republican ± ¬Pacifist, nixon)} and the clashing set S

= {Republican(nixon), Pacifist(nixon)}, and symmetrically a CKR model I2 s.t. I2(c1)
|= ¬Pacifist(nixon) with χ2(c1) = {(Quaker ± Pacifist, nixon)} and clashing set S =

{Quaker(nixon), ¬Pacifist(nixon)}. Thus it holds that Knd $ c : Pacifist(nixon) and

Knd $ c : ¬Pacifist(nixon); similarly, neither Pacifist(nixon) nor ¬Pacifist(nixon) is concluded

by the approach of Bonatti et al. However, if we change d2 to D(Republican ± Hawk) and add in

G the axioms Dis(Hawk, Pacifist), Hawk ± Activist, Pacifist ± Activist, then for the modifed CKR
KJ

nd we obtain Kn
J

d ► c : Activist(nixon) in our approach, while one can not infer Activist(nixon)
from the corresponding knowledge base using Bonatti et al.’s approach; this demonstrates that
the latter is not geared towards reasoning by cases if conflicts surface. Q

A distinctive feature of our approach over [31] and others is of course the possibility to define
a complex contextual structure of the knowledge base, allowing contextual reasoning inside each
module. Moreover, our definition of defeasibility allows for an extension of the materialization
calculus that was developed for the monotonic case and its implementation in the datalog rewriter,
where the rewriting is not data dependent and can be done without solving reasoning problems on
the knowledge base.

Regarding implementation and test results, we note that the defeasibility tests are similar:
both study the effect of varying the degree of defeasible axioms and their overridings (which in
turn is similar to the tests carried out by Casini et al. in [43]). However, the results are hard to

compare, as they have been carried out on ontologies in EL, which is a DL language of different
characteristics than SROIQ-RL.

± ¬

± ∃ { }

G :

57

SROIQ

SROIQ

8. Conclusion

We have considered the description logic-based Contextualized Knowledge Repository (CKR)
framework [12, 16, 17, 2], which serves to represent and reason about information in contexts
that model individual views within a global environment. Notably, the description of the global
part of a CKR comprises both general information and knowledge about the structure of the
contexts, which can be interrelated through extensional access among each other. To address
inconsistency due to inheritance of global information to contexts, we have presented an extension
of CKRs with defeasible axioms whose instances can be overridden, viewing them as exceptions
that are justified by provable evidence. We have discussed some semantic properties of this
approach for CKRs based on -RL (a description logic underlying the OWL RL profile)
and we have introduced and studied the computational complexity of major reasoning tasks for
CKRs. As for realization, we have developed reasoning on CKRs as a translation into datalog
under stable models semantics: such encoding, that matches the intrinsic complexity, follows a
materialization calculus approach as in [20, 60, 1]. We then described a prototype implementation
for such translation (called CKRew), as well as experimental results. Finally, we have compared
the approach with related proposals for contextual reasoning and defeasibility in description
logics. Notably, reasoning by cases as it emerges in the well-known Nixon Diamond scenario, for
instance, can be properly handled by it.

Our work contributes to a general program of providing extensions for formalisms based
on description logics, where the use of database technology such as SQL and datalog play a
prominent role, based on the fact that a rich body of work in this area is available, with ongoing
improvements of which the reasoning systems on top can take advantage. Nonetheless, however,
future work is suggestive to address issues both on the computational and the modeling side.

As regards computation, in order to increase the practical applicability of the defeasible
CKRs to larger sets of data, the translation described in this paper and its implementation need
optimization. One possible direction for this regards the study of alternative datalog translations
that limit the need for materialization; furthermore, engines other than DLV supporting non-
ground query answering, such as the recent s(ASP) solver26, could be explored. As discussed
in Section 5.4, one possibility is to limit the use of tests environments only to CKRs that are
not “safe” with respect to a direct reasoning on negative facts. Orthogonal to this is to use,
instead of a uniform (factual) CKR encoding, one where datalog rules are generated ad-hoc:
this could offer the possibility to take advantage of internal optimizations of the used datalog
engine. Another possibility is to study different approaches, like e.g. abstraction refinement
methods [61]. Moreover, such alternative translations might open the possibility to treat different
or more expressive description logics (e.g. non-Horn fragments of). This also includes
the challenge to identify and study fragments of the CKR formalism in which reasoning is highly
efficiently realizable; this includes, for instance, syntactic criteria which ensure justification
safeness. On the other hand, approximation of query results may be considered: the well-founded
semantics can be readily applied to our datalog translation to be used as a tractable approximation.

On the modeling side, a natural continuation of our work is to allow defeasible axioms across
local contexts, possibly along an explicit hierarchical relation between contexts (as the coverage

relation [12]), or across knowledge modules, so as to allow for overriding in specific instances of
context classes that are associated with such modules. In this respect, a notion of priority across

26https://sourceforge.net/projects/sasp-system/

58

defeasible axioms in local contexts should be defined to resolve the clashes among instances of
such axioms at different contexts (cf. [31]); naturally, a respective priority order could be defined
exactly as (or compatible to) the hierarchical order defined by the contexts coverage relation.

Another way to allow defeasible axioms in local contexts is to interpret them only inside the
local context interpretation (i.e. CKRs become structures of locally defeasible knowledge bases):
in this case, different interpretations of defeasibility can be adopted and compared (as, e.g., the
semantics described in Section 7) and we may study the interaction of such “local defeasibility”
with the interpretation of the current “global defeasible” axioms and its inheritance across local
contexts. Another direction would be to extend the current CKR definition and allow multiple
global contexts: in particular, this may require a preference order among these global contexts, in
order to decide clashes in the inheritance of defeasible axioms in local contexts.

Allowing defeasible axioms in local contexts also opens the discussion on how the eval

operator should be interpreted when used as a local defeasible axiom, thus allowing a notion of
“defeasible propagation” of knowledge along local contexts (cf. mapping rules in [29]). Further-
more, for interactions across contexts, currently the knowledge of the CKR is consistent: another
direction would be to allow local inconsistencies in contexts, similarly to defeasible MCS [29].

Acknowledgments

We would like to thank the reviewers for their careful reading of the manuscript and for
their constructive comments to improve this article. This work has been supported in part by the
Austrian Science Fund (FWF) via the projects P24090 and P27730 and by the FBK Mobility
program.

59

K
SROIQ

Σ

∈ L ∪ L

SROIQ L ∀
SROIQ

Concept constructors Syntax Semantics

atomic concept
top concept
bottom concept
complement
intersection
union

existential restriction

A

T
⊥
¬C

C п D

C п D

∃R.C

AI

∆I

∅
I I

∆ \ C
CI ∩ DI
CI ∪ DI .)
(

x ∈ ∆I
.
∃y. (x, y) ∈ RI

y ∈ CI n
x ∈ ∆I .

.

(x,

∧

∈ RI
}

x)
(

x ∈ ∆I
.
∀y. (x, y) ∈ RI

)

→ y ∈ CI
(

x ∈ ∆I
.

p{y | (x, y) ∈ RI
)

∧ y ∈ CI} ≥ n
(

x ∈ ∆I
.

p{y | (x, y) ∈ RI
)

∧ y ∈ CI} ≤ n
(

x ∈ ∆I
.

p{y | (x, y) ∈ RI
)

y ∈ CI} = n

.
aI

>
. ∧

self restriction∗ ∃R.Self

universal restriction ∀R.C

min. card. restriction∗ ≥nR.C

max. card. restriction ≤nR.C

cardinality restriction∗ = nR.C

nominal {a}

Role constructors Syntax Semantics

atomic role

inverse role

role composition

R

R−

S ◦Q

RI
I }

(y, x) . (x, y) ∈ R

n
(x, z)

.

. (x, y) ∈ S I , (y, z) ∈ QI
}

Axioms Syntax Semantics

concept inclusion
concept definition
role inclusion

role disjointness∗
reflexivity assertion∗

irreflexivity assertion∗
symmetry assertion

asymmetry assertion∗
transitivity assertion

concept assertion

role assertion

negated role assertion

equality assertion

inequality assertion

C ± D

C ≡ D

S ± R
Dis(P, R)
Ref(R)
Irr(R)
Sym(R)
Asym(R)
Tra(R)

C(a)

R(a, b)

¬R(a, b)
a = b

a ≠ b

CI ⊆ DI
CI = DI
S I ⊆ RI
PI ∩ RI = ∅
{(x, x) | x ∈ ∆I} ⊆ RI

RI ∩ {(x, x) | x ∈ ∆I} = ∅
(x, y) ∈ RI ⇒ (y, x) ∈ RI
(x, y) ∈ RI ⇒ (y, x) g RI
{(x, y), (y, z)} ⊆ RI ⇒ (x, z) ∈ RI

aI ∈ CI
D
aI , bI

E
∈ RI

D
aI , bI

E
g RI

aI = bI
aI ≠ bI

Table A.13: Syntax and Semantics of , where A is any atomic concept, C and D are any concepts, P and R are any

atomic roles (and for ∗ simple in the context of a knowledge base , cf. Section 2.1), S and Q are any (possibly complex)
roles, a and b are any individual constants, and n stands for any positive integer.

Appendix A. Further Details

Appendix A.1. SROIQ syntax and semantics

Table A.13 shows the syntax and semantics of SROIQ.

Appendix A.2. FO-translation for SROIQ-RL

In Table A.14, we present a FO-translation for contextualized -RL axioms: given a
-RL axiom α in e , the formula x.φα(x, xc), where x = x1, x2, . . . xn is a list of variables

and xc is expresses α in the context xc.
The translation rules are recursively defined using additional set of rules for left-side and right-

side expressions: translations βE(x, xc) and γE(x, xc) for left-side and right-side expressions E are
defined in Table A.15 and A.16, respectively. Note that the translation of eval-expressions, i.e.,
βeval(A,C)(x, xc) and βeval(R,C)(x, xc), omits the context argument xc in βC(yc); this context-free form

serves to represent the global knowledge base G. Thus, a concept A is represented for contexts
by the binary predicate A(x, xc), while in the global knowledge base by the unary predicate A(x);
similar for roles etc.

More generally, the context-free form φα(x) (resp., βE(x), γE(x)) of φα(x, xc) (resp., βE(x, xc),
γE(x, xc)) is obtained by omitting the context argument xc; it is applicable to axioms α Γ Σ,
i.e., of the global knowledge base G (and expressions E occurring in them).

Then, more formally Lemma 1 can be established.

Proof of Lemma 1. We show the claim for the contextualized FO-translation φK,xc in (5); the
result for the ordinary translation φK is then obvious.

60

Σ

Σ

Σ

∀

i=1

Table A.14: Translation φα(x, xc), x = x1, . . . , xn, of SROIQ-RL axioms α in Le in context xc to first-order logic.

D(a) ›→ γD(a, xc)
R(a, b) ›→ R(a, b, xc)

¬R(a, b) ›→ ¬R(a, b, xc)

a = b ›→ = (a, b, xc)

a ≠ b ›→ ≠ (a, b, xc)
C ± D ›→ β (x , x) →γ (x , x)

Sym(R) ›→ R(x1, x2, xc) → R(x2, x1, xc)
Trans(R) ›→ R(x1, x2, xc) ∧ R(x2, x3, xc) → R(x1, x3, xc)

Asym(R) ›→ R(x1, x2, xc) →¬R(x2, x1, xc)

Dis(R, S) ›→ (R(x1, x2, xc) →¬S (x1, x2, xc)) ∧

(S (x1, x2, xc) →¬R(x1, x2, xc))
Inv(R, S) ›→ (R(x1, x2, xc) → S (x2, x1, xc)) ∧

C 1 c D 1 c (S (x1, x2, xc) → R(x2, x1, xc))

R ± T ›→ R(x1, x2, xc) → T (x1, x2, xc) Irr(R) ›→ ¬R(x1, x1, xc)

R◦S ± T ›→ (R(x1, x2, xc) ∧ S (x2, x3, xc)) → T (x1, x3, xc)

Table A.15: Translation βE(x, xc), x = x1, . . . , xn, of SROIQ-RL (left-side) expressions E in Le to first-order logic

A ›→ A(x , x) ∃R.C1 ›→ R(x1, x2, xc) ∧ βC2 (x1, xc)
1 c ∃R.{a} ›→ R(x1, a, xc)

{a} ›→ = (x1, a, xc)
C1 п C2 ›→ βC1 (x1, xc) ∧ βC2 (x1, xc)

∃R.T ›→ R(x1, x2, xc)
eval(A, C) ›→ ∃y .β (y) ∧ β (x , y)

C1 п C2 ›→ βC1 (x1, xc) ∨ βC2 (x1, xc) eval(R C) c C c () A 1 c x x y)
, ›→ ∃yc.βC yc ∧ R(1, 2, c

Table A.16: Translation γE(x, xc), x = x1, . . . , xn, of SROIQ-RL (right-side) expressions E in Le to first-order logic

A ›→ A(x1, xc)
¬C1 ›→ ¬βC (x1, xc)

∃R.{a} ›→ R(x1, a, xc)
∀R.D1 ›→ R(x1, x2, xc) →γD1 (x2, xc)

D1 п D2 ›→ γ

1

D1 (x1 , xc) ∧ γD2 (x1, xc)
≤ 0R.T ›→ ¬R(x1, x2, xc)

≤ 1R.T ›→ (R(x1, x2, xc) ∧ R(x1, x3, xc)) →= (x2, x3, xc)

To prove the result, we need to show that each axiom α in K can be written as a universal
Horn sentence xφα(x, xc), where x = x1, . . . , xn is a list of free variables in φα(x, xc) depending
on the type of the axiom α as follows:

– if α is an assertion, then n = 0 (and x is omitted);

– if α is a concept inclusion axiom, then n = 1; and

– if α is a role inclusion axiom or a role constraint, then n = 2.

More in detail we argue that φα(x, xc) can be written as φα(x, xc) =
V4 ∀xiγi(x, xi, xc), where

each γi is a Horn clause of the form

γi(x, xi, xc) = p1(x, xi,1, y1) ∧ · · · ∧ pk(x, xi,k, yk) → p0(x, xi,0, xc) (A.1)

where

1. each pi is a concept name, a role name, or equality ≈;

2. p0 = ⊥ (falsum) is possible;

3. each variable in x, xi, j occurs in the antecedent (safety), and xi = xi,0, . . . , xi,k;

4. each yi is either xc or a variable from xi, and then some pj(x, xi, j, y j) is of the form Ctx(yj).

61

i=1

α

α ∧ →
∈ L →

п ± п ±
п п п ±

∀
I
M I ()

∧ → · · · ∨
→ → · · ·

∃ ∀
¬

→ ⊥ ¬ · · · ¬ · · · ¬≈
± ¬

α

i=1

⊆

≡

(M I) (M I)

For the non-contextualized form, we analogously have φα(x) =
V4 ∀xiγi(x, xi), where

γi(x, xi) = p1(x, xi,1) ∧ · · · ∧ pk(x, xi,k) → p0(x, xi,0) (A.2)

This form can be obtained by applying the contextualized FO-translation described in Table A.14,
and is immediate for all axioms except concept inclusions C D (writing R(a, b, xc) as
R(a, b, xc) , and moving R(), S (), and (a, b, xc) from the consequent to the
antecedent). Regarding the latter negation βC1 (X1, xc) is moved from the consequent to the an-
tecedent of the respective implication, yc in the antecedent is turned into yc (after standardizing
apart) and pulled to the front; nested implications α (β) are rewritten as conjunctions
α β ; eventually, disjunction in the antecedent resp. conjunction on the consequent is
split into two clauses.

Furthermore, the context-constraint translation of α Σ is φCtx(x, xc) := Ctx(xc)
φα(x, xc), and the clashing-constraint translation is φCAS(x, xc) := Ctx(xc) appα(x, xc)
φα(x, xc), where appα is a predicate that informally represents that in context xc the axiom α
is applicable for x. That is, appα represents the complement of the clashing assumptions in a
CAS-interpretation I = (, , χ) and contains all tuples e, c over NIΣ such that α, e is not in
χ(c). If the interpretation is named relative to N, we can restrict to tuples over N.

In abuse of notation, we also denote with x.φα(x, xc) such a Horn rewriting. Note that
in the presence of disjunction , the natural rewriting (which treats (C1 C2) C3 D as
C1 C3 D, C2 C3 D) may have exponential size; otherwise, it is of polynomial size.
The blowup can be avoided by normalizing axioms using auxiliary concepts, or at the level

of translation, auxiliary predicates PC1 пC2 (x1, xc) for C1 п C2 that are defined by Horn clauses
∀x1.βCi (x1, xc) → PC1 пC2 (x1, xc), for i = 1, 2. Ctx

Furthermore, also the context-free translation φα(x), the context-constraint translation φα (x, xc),

and the context-constraint translation φCAS(x, xc) can be easily rewritten to conjunctions of Horn
clauses of the form (A.1), where now in the antecedent Ctx and appα may occur; again we shall
assume in abuse of notation that they are of this form.

Proof of Proposition 2. The FO-translation ∀x.φα(x) of any SROIQ-RL axiom α can be rewrit-

ten as a conjunction
V4 ∀xiγi(x, xi) of Horn clauses with γi is in (A.2). If φα(e) is not valid, then

for some clause γi a substitution θ : xi → NI must exist such that the assertion set

S θ = {p1(e, xi,1θ), . . . pk(e, xi,kθ), ¬p0(e, x0,kθ)}

is satisfiable; as S θ ∪ {φα(e)} is unsatisfiable, S θ is a clashing set. On the other hand, each
clashing set S for (α, e) must violate some ground instance of some clause γi, and thus modulo
equality among constants (as determined by all CAS-models IJ

CAS that are NI-congruent with
some justified CAS-model ICAS, we must have S θ S for some θ; the size of γi is linear in the
size of γi(e, xiθ) and thus of α, and likewise is the size of S θ.

Appendix A.3. CKR models: semantic properties

Proof of Proposition 3. If α β holds, then φα(x) and φβ(x) are logically equivalent. Thus items
(ii) and (v) in the definition of CAS-model hold for α iff they hold for β replacing α (in particular
also in χ(x)). Furthermore, S ∪ {φα(e)} and S ∪ {φβ(e)} are equi-satisfiable for all sets of formulas
S ; hence, the clashing assumptions (α, e) and (β, e) have the same clashing sets. It follows that a
CAS-model ICAS = , , χ for K is justified iff the CAS-model IJ

CAS = , , χJ in which β

replaces α in χ is justified for KJ. Hence the CKR-models of K and KJ coincide.

62

I ∪ { } () ∪ { }
I

CAS

∀

(M ∩M I ∩I)

CAS

CAS I

∈ () ∈

i=1

≥

CAS

∈ ∈
() ∈ I

() ∈

1

I →

Proof of Proposition 5. We proceed by contraposition. Suppose that IJ
CAS$K. Hence, item (v) of

a CAS-model must be violated for some D(α) ∈ G and x ∈ CtxM; the same pair also violates (v)
for ICAS. For the second part, assume that IJ

CAS is not justified. Hence, some (α, e) ∈ χJ(x) for
some x ∈ CtxM is not justified. That is, no clashing set S for (α, e) ∈ χ(x) exists such that IJ

C
J
AS►S

for every CAS-model IJ
C
J
AS = (MJJ, IJJ, χJ) that is NI-congruent with IC

J
AS. As every such IJ

C
J
AS is

also NI-congruent with ICAS and χ(x) = χJ(x), no clashing set S for (α, e) ∈ χ(x) either can exist
to witness that (α, e) ∈ χ(x) is justified wrt. ICAS; hence ICAS is not justified.

Proof of Proposition 6. Towards a contradiction, suppose that some x ∈ CtxM exists such that
χJ(x) Ç χ(x), i.e., some (α, e) ∈ χ(x) \ χJ(x) exists. As IJ

CAS►K it follows that (a) IJ(x)►φα(e).

Furthermore, as ICAS = (M, I, χ) is justified for K, there exists a clashing set S = S (α)e,x such
that IC

JJ
AS►S for every CAS-model IJ

C
J
AS = (MJJ, IJJ, χ) of K that is NI-congruent with ICAS. Now

let IC
JJ

A
J

S = (MJ, IJ, χ). As ICAS►K and χJ(x) ⊆ χ(x), it follows that IC
JJ

A
J

S►K as well (item (v) is
monotonic in enlarging clashing assumptions). Furthermore, by construction IJ

C
J
A
J

S is NI-congruent
with IC

J
AS and thus also with ICAS. Thus it follows that (b) J(x)►S . From (a) and (b) follows

J(x)►S α(e) . This however contradicts that S is a clashing set for α, e , as S α(e) would
be satisfiable. This proves the result.

Proof of Proposition 7. The sentence φK defined in (8) characterizes the CAS-models of a
SROIQ-RL CKR K; as it amounts to a Horn sentence, its models relative to an interpreta-

tion of the constants symbols NI are closed under intersections. As Ii = (Mi, Ii, χ), i ∈ {1, 2},
are CAS-models of K, it follows that ICAS = 1 2, 1 2, χ is a CAS-model of K as well.
(Alternatively, this can be assessed straight from the definition of CAS-model (Definition 11), as α
resp. x.φα(x) and Km resp. φKm amount to Horn sentences, and their models wrt. an interpretation
of NI are closed under intersection.)

For the second part, assume without loss of generality that I1 is justified. That is, (α, e) ∈
χ(x) for x ∈ CtxM1

implies that some clashing set S = S for (α, e) exists such that IJ ►S
 for every CAS-model

IJ

CAS
(α,e),x of K that is NI-congruent with I1

. As CtxM ⊆ CtxM1
 and

CAS
CAS

is NI-congruent with ICAS, it follows that if x CtxM then α, e χ(x) has the witnessing clashing
set S relative to ICAS. Consequently, ICAS is justified for K as well.

Proof of Lemma 2. By Lemma 1 the sentence φK captures K; these sentences amount to a

conjunction
V4 ∀xiγi(x, xi) where γi(x, xi) is the Horn clause (A.2). By construction, the

interpretation N is named relative to N; Furthermore for each assignment θ : xi NIs the
antecedens of γiθ evaluates to false in IN , if for some pi, i 1, we have θ(x) g N for some variable
x in xi: any concept or role is false outside NI , and equality atoms in the antecendent are of the

form x j ≈ c where c ∈ N. Thus it follows that I, θ►γi(e, xi) implies that IN , θ►γi(e, xi) holds.

Hence, it follows that I►φK implies IN ►φK which proves the claim.
Proof of Theorem 1. Suppose that ICAS►K, where ICAS = (M, I, χ). Then it follows from
Lemma 2 that for any IN = (MN , IN , χN) the items (i), (ii) and (iv) of Definition 11 hold.
Item (iii) holds by an extension of the argument in Lemma 2 to the contextualized form of Horn
clauses in (A.1), which respects eval expressions: if x, y modMN

such that y = mMN

, then
x, y modM and y = mM, and thus it follows from Lemma 1 we have that (x)►φKm,xc (x).

Furthermore, we have x NM; if for some axiom α Km an assignment θ to x, xi, y1, . . . yk

in (A.1) maps some variable outside NI , then some pj(x, xi, y j) evaluates to false under θJ =

θ ∪ {xc ›→ x}, and hence IN (x), θJ►γi(x, xi, xc); otherwise, as IN (x) and I(x) coincide on θJ and

63

α

CAS

() ∈

CAS

CAS

i=1

j=1 j=1

{ }

I(x), θJ►γi(x, xi, xc), we again have IN (x), θJ►γi(x, xi, xc). Hence, it follows IN (x)►φα(x), and

consequently IN (x)►φKm
,xc

(x).

Finally, by construction of χN also item (v) holds: let d g {e | (α, e) ∈ χN (x)} for D(α) ∈ G
and x ∈ CtxMN

. If d is over N ∪ NI, then d g {e | (α, e) ∈ χ(x)}, and hence I(x)►φ (d) holds;
similar as in Lemma 2, we then conclude that IN (x)►φα(d) holds. Otherwise, if d is not over
N ∪ NM, then in the Horn rewriting of φα(d), in each clause γi(d, xi) in (A.2) some constant
d g N ∪ NI occurs in the antecedent; hence, γi(d, xi) evaluates to false under any assignment to xi.

We next show that IN is justified if ICAS is justified. Towards a contradiction, suppose IN
CAS

is not justified. Then some (α, e) ∈ χN
CAS

(x) is not justified, i.e., for every clashing set S = S (α,e),x

for (α, e), there exists some CAS-model IJ

CASN = (MN J, IN J, χN) of K that is NI-congruent to

ICAS and IN J(x)$S . In particular, this must hold for the S witnessing that (α, e) is justified wrt.
ICAS; without loss of generality, in S no constants from NI \ (NIS ∪ N) occur. Consider then the CAS-
interpretation IJ

CAS = (MJ, IJ, χ) that results from ICAS by changing the interpretations of

concept and role names in M resp. I to those in MN J resp. IN J. It holds that IJ
CAS►K and IJ

CAS is

NI-congruent with ICAS (as no c ∈ NI \ N occurs in K and χN ⊆ χ), but IJ(x)$S ; this contradicts
that (α, e) is justified at x w.r.t. ICAS. Hence, IN is justified.

It remains to show that each α, e χ(x) is justified by some clashing set S = S (α,e),x with
constants from N. By Proposition 2, without loss of generality S amounts to a ground instance of
some clause γi(e, xi) in (A.2). As IN ►S holds, by construction we must have that cM

N

∈ NM
N

holds for each constant c that occurs in pj(e, xi, jθ), j > 0; thus, we can replace each c in S with

some d ∈ N such that cM
N

= dM
N

. By safety of (A.2), this turns S into an equivalent clashing set
w.r.t. the name assignment given by ICAS resp. IN .

Appendix A.4. Proofs of Section on Reasoning and Complexity

Proof of Theorem 3 (continued). The hardness part is shown by a reduction from 3SAT, and in

fact for a fixed set of inclusion axioms, that is, under data complexity. Let E =
Vm γi be an

instance of 3SAT over propositional atoms X = x1, . . . , xn . Without loss of generality, each clause γi in E is either positive or negative. Then we construct K as follows, where V, F, T, A are
concepts, P1, P2, P3, N1, N2, N3 are roles, and x1, . . . , xn, c1, . . . , cm are individual constants.

– the global knowledge G contains defeasible axioms D(V ± T) and D(V ± F) and a module
association mod.{m}(c);

– a single module Km that contains the inclusion axioms:

T п F ± ⊥, T ± A, F ± A,
.3

 ∃N j.(T п A) ± ⊥, and
.3

 ∃Pj.(F п A) ± ⊥,

where ⊥ stands for A п ¬A. Furthermore, Km contains assertions

– V(xh), h = 1, . . . , n, and

– Pj(ci, xij) for i = 1, . . . , m and j = 1, 2, 3 such that the clause γi is of form xi1 ∨ xi2 ∨ xi3 ,

– Nj(ci, xij) for i = 1, . . . , m and j = 1, 2, 3 such that the clause γi is of form ¬xi1 ∨ ¬xi2 ∨ ¬xi3 .

Intuitively, we must at context c make for xh an exception to either V ± F or V ± T ; the respective
single minimal clashing set is {V(xh), ¬F(xh)} resp. {V(xh), ¬T (xh)}. Keeping V ± T (resp. V ± F)
justifies ¬F(xh) (resp. ¬T (xh)) via the axiom T п F ± ⊥. Every truth assignment σ to X thus
gives rise to a natural clashing assumption CASσ that at c includes (V ± F, xh) if σ(xh) = true and

64

2

M I

M I

(±)

(±) ∈

M I (±)

i=1

∈ { }×{ }

± ¬ ¬ п ± ⊥
{ ¬ } { ¬ } ±

± ±

± ∃ { } ± ∃ { }
(±) (±)

∨ ∨ { } { }

i=1 j=1

V T, xh if σ(xh) = false; if σ satisfies E, then in a Herbrand interpretation all axioms in Km

are satisfied, if all A(xh) are true. Formally, we can construct a justified named CAS-model of K.
Conversely, if K has some justified CAS-model ICAS(, , χ), without loss of generally we

assume it is named, and moreover that it is a pseudo Herbrand model (as no equality occurs in

G and Km). Due to T п F ± ⊥, we have that χ(c) must contain at least one of (V ± F, xh) and
(V ± T, xh); on the other hand, it can not contain both: indeed, in this case I(c)►¬T (xh) and

I(c)►¬F(xh); we then can modify I(c) to IJ(c) by switching T (xh) true and A(xh) to false. The
resulting CAS-interpretation IC

J
AS(, J, χ) satisfies K; this however implies that V T, xh is

not justified, and thus ICAS(, , χ) is not a justified, which is a contradiction.
It is then easy to check that the natural truth assignment σ to X represented by χ(c), viz.

σ(xh) = true if V F, xh χ(c) and σ(xh) = false otherwise, satisfies the formula E, as
for each ci at least one of T (xi1), T (xi2), T (xi3) resp. of F(xi1), F(xi2), F(xi3) must be false, and
thus the clause γi evaluates under σ to true. As K is easily constructed from E, this proves the NP-
hardness.

Proof of Theorem 5 (continued). To show Πp hardness under the stated restriction, consider

evaluating a QBF Φ of the form ∀X∃Y E, where E =
Vk γi is a conjunction of clauses

γi = 4i,1 4i,2 4i,3 over atoms X = x1, . . . , xn and Y = y1, . . . , ym . We construct K as follows, where V, F, T, X are concepts, val, opp, l1, l2, l3 are roles, and
0, 1, . . . , 7, c1, . . . , cn, are individual constants.

– the global knowledge G contains defeasible axioms D(X ± T) and D(X ± F) and a module
association mod.{m}(c);

– a single module Km that contains the inclusion axioms:

– T п F ± ⊥, F ± ∃val.{0}, T ± ∃val.{1},

(where ⊥ stands for falsity) and the assertions

– X(c1), . . . , X(cn),

– opp(0, 1), opp(1, 0),

– asi(v, w) where (v, w) 0, 1 1, . . . , 7 such that v is the i-th bit of the integer w in binary,
i = 1, 2, 3. Informally, v is the projection of an assignment w to the variables z1, z2, z3 that

satisfies the clause z1 ∨ z2 ∨ z3 to the i-th component.

Intuitively, we must at context c make for ci an exception to either V F or V T , for each i;
the respective single minimal clashing set is V(ci), F(ci) resp. V(ci), T (ci) . Keeping V T

(resp. V F) justifies F(ci) (resp. T (ci)) via the axiom T F . Every truth assignment
σ to x1, . . . , xn thus gives rise to a natural justified clashing assumption χσ that for c includes
V F, ci if σ(xi) = true and V T, ci if σ(xi) = false; furthermore, we obtain from the axiom
T val. 1 (resp. T val. 0) the conclusion val(ci, 1) (resp., val(ci, 0)).

The Boolean query that we construct is

n k

Q = ∃y
^

c : val(ci, xi) ∧
^

(τ(4 j,1, j) ∧ τ(4 j,2, 2) ∧ τ(4 j,3, 3)),

65

2

∃

2

∈
∨

∈

∈

i=1

i m i i+1 ≤ V

where for every literal 4 over X ∪ Y and j ∈ {1, 2, 3},

c : asj(v, wj), if 4 = v ∈ X ∪ Y,

c : as j(v̄, w j) ∧ c : opp(v̄, v), if 4 = ¬v, v ∈ X ∪ Y .

Informally, the first part of the query must match each variable xi to the value that has been chosen
for it by the defeasible axioms; the second part must match all yi variables then to either 0 or
1, such that each clause γ j is satisfied: the assignment to the variables of 4 j,1, 4 j,2 and 4 j,3 must
be such that w j represents a satisfying assignment to γ j that is via “opp” renamed to a positive
clause.

It is then not difficult to verify that for the least CAS-model for χσ w.r.t. identity ν, denoted

Iσ = Î(χσ, ν), we have that Iσ►Q, iff the formula Y Eσ evaluates to true, i.e., after applying
σ on E, the resulting CNF Eσ is satisfiable. Hence, K ►Q iff the QBF Φ evaluates to true.
Furthermore, the module structure in K is fixed and only the assertions in the modules Km vary in
order to encode Φ. This proves Πp-hardness under the stated restriction.

Remark. To establish the result for constant-free queries, we can easily remove in Q above
the constants c by introducing in K assertions R(c , c), 1 i < n, where R is a fresh role,

replacing each ci in Q with a fresh variable zi and adding n−1 c : R(zi, zi+1) (assuming n ≥ 2).

We can alternatively establish Πp-hardness of CQ answering under the restriction that the set
of assertions (the data) is fixed by a reduction from CERT3COL [62], which is a generalization of
graph 3-colorability: given a graph G = (V, E) where each edge e E is labeled with a disjunction
δe = 4e,1 4e,2 of literals 4e, j over propositional variables x1, . . . , xm, decide whether each graph
Gσ = (V, Eσ) where Eσ contains all edges e E such that ϑ(δe) evaluates to true, is 3-colorable.
Note that the graph 3-colorability problem results if 4e,1 and 4e,2 are always opposite literals, i.e.,
δe is a tautology and then e is always selected.

Our reduction is inspired by a well-known reduction from deciding graph 3-colorability to
CQ answering over a relational database, cf. [63], where the database holds tuples that state
admissible color combinations of adjacent nodes, and the query describes the graph; the query
answers correspond then to the legal 3-colorings of the graph.

We construct K as follows, where V, Fxi , Txi , Ce are concepts and R, Ee are roles, for all e E

and xi, and where a, r, g, b are individual constants:

– the global knowledge G contains defeasible axioms D(V ± Txi) and D(V ± Fxi), 1 ≤ i ≤ m and

a module association mod.{m}(c);

– a single module Km that contains the inclusion axioms:

– Txi п Fxi ± ⊥,

(where ⊥ stands for falsity) and for all e ∈ E and c ∈ {r, g, b}:

– Λ(4e,2) п Λ(4e,2) ± ∃R.({c} п Ce), where Λ(xi) = Fxi and Λ(¬xi) = Txi for each atom xi, and

– Ce ± ∃Ee.{c},

and assertions

– V(a), and

– Ee(r, g), Ee(r, b), Ee(g, r), Ee(b, r), Ee(b, g), Ee(g, b).

τ(4, j) =

(

66

∈ { }
∃ { } п

± ± ¬ ¬

(±) (±)

(±) (±)

± ± ¬ ¬ п ± ⊥
{ ¬ } { ¬ }

± ±

^

2

∈ { }

Table A.17: (Minimal) clashing sets for normal form SROIQ-RL clashing assumptions.

(A(a), a) : {¬A(a)}

(¬A(a), a) : {A(a)}
(R(a, b), (a, b)) : {¬R(a, b)}

(¬R(a, b), (a, b)) : {R(a, b)}
({a} ± B, a) : {¬B(a)}
(A ± B, e) : {A(e), ¬B(e)}

(A1 п A2 ± B, e) : {A1(e), A2(e), ¬B(e)}
(∃R.A ± B, e) : {R(e, f), A(f), ¬B(e)}

(A ± ∃R.{a}, e) : {A(e), ¬R(e, a)}

(a = b,) : {a ≠ b}

(a ≠ b,) : {a = b}
(A ± ∀R.B, e) : {A(e), R(e, f), ¬B(f)}

(A ± ≤1R.T, e) : {A(e), R(e, f1), R(e, f2), f1 ≠ f2}
(R ± T, (e1, e2)) : {R(e1, e2), ¬T (e1.e2)}

(R◦S ± T, (e1, e2)) : {R(e1, f), S (f , e2), ¬T (e1, e2)}
(Dis(R, S), (e1, e2)) : {R(e1, e2), S (e1, e2)}
(Inv(R, S), (e1, e2)) : {R(e1, e2), ¬S (e1, e2)},

{¬R(e1, e2), S (e2, e1)}

 (Irr(R), e) : {R(e, e)}

Intuitively, we must at context c make for a an exception to either V Fxi or V Txi , for each
i; the respective single minimal clashing set is V(a), Fxi (a) resp. V(a), Txi (a) . Keeping
V Txi (resp. V Fxi) justifies Fxi (a) (resp. Txi (a)) via the axiom Txi Fxi . Every truth
assignment σ to x1, . . . , xm thus gives rise to a natural justified clashing assumption χσ that for
c includes V Fxi , a if σ(xi) = true and V Txi , a if σ(xi) = false. Furthermore, if σ does
not satisfy the disjunct δe, then R.(c Ce) for a is concluded; in further steps then, Ee(x, y) is

concluded for each pair (c, cJ) r, g, b 2. If σ satisfies the disjunct δe, then no such conclusion is
made, and we have Ee(c, cJ) only if c ≠ cJ. On the other hand, no justified clashing assumption χ
for c can include both V Fxi , c or V Txi , c where c is a or its standard name, as without an
inherited axiom V F resp. V T it is not possible to derive Fxi (a) and Txi (a).

The Boolean query that we construct is

Q = ∃y

e=(i, j)∈E

c : Ee(yi, y j).

Informally, the graph G is encoded in Q, where the variables yi, y j amount to nodes i and j. If
in the assignment σ, the edge e is selected (i.e., δe is satisfied), then we must match yu and yv to
different colors, as all Ee(c, c), where c r, g, b are not possible; if e is not selected, yi and y j

can be matched to any colors. For the least CAS-model for χσ w.r.t. identity ν, Iσ = Î(χσ, ν), we
have that Iσ►Q iff the graph Gσ is 3-colorable.

It is then is not difficult to verify that K ►Q holds iff for every assignment σ, we have Iσ►Q,
i.e., Gσ is 3-colorable. Hence, K ►Q iff G is a yes-instance of CERT3COL. Furthermore, in
K the module structure and all assertions are fixed, and only the inclusion axioms vary; hence
Πp-hardness under the stated restriction holds.

For the data-complexity (i.e., fixed module structure, only the assertions in the modules Km
vary, and the query Q fixed), the coNP-hardness follows from the reduction of 3SAT to CKR-

model existence in the proof of Theorem 3: the 3SAT instance E is unsatisfiable iff K►c : V(c1)

resp. K►V(c1), say, as this is equivalent to K not having a CKR-model.

Appendix A.5. Proofs of Section on Datalog Translation

Appendix A.5.1. Normal form

Table A.17 shows minimal clashing sets for instances of defeasible axioms in normal form
(under unique name assumption, some particular instances can be further be simplified).

67

D E

Σ

±

∪ ∪ ∪

{ ± }

∪ ∪ ∪ ± ±

± ±
± ± ± ±

SROIQ

SROIQ

∈ SROIQ ∈ L ∈ L

{ ± ∃ ± } SROIQ
∃ ∃ { }

Proof of Lemma 5. Intuitively, to prove item (a) we need to show that the rules for normal form
transformation are complete with respect to the possible input axioms; to prove item (b) one has
to show that the translations produce at most a linear increase in the size of the output CKR.
Finally, to prove item (c), we have to show that any interpretation satisfying the original axiom
can be extended to an interpretation satisfying the transformed axiom set, and, conversely, that
any interpretation satisfying the transformed axioms set satisfies the original axiom: in verifying
this, we have also to prove that the interpretations agree on the justification of the overridings.

(a). Let Σ = NCΣ NRΣ NIΣ. and Γ = NCΓ NRΓ NIΓ. We extend such vocabulary to Σ and Γ
in all of its components by adding a distinct set of new symbols: that is Σ = NCΣ NRΣ NIΣ
with NCΣ = NCΣ XΣ, NRΣ = NRΣ WΣ, NIΣ = NIΣ ZΣ. similarly, Γ = NCΓ NRΓ NIΓ
with NCΓ = NCΓ XΓ, NRΓ = NRΓ WΓ, NIΓ = NIΓ ZΓ. The extended vocabularies are
only used to consider the new symbols added in the translation.

We prove the assertion showing the following claim: the CKR KJ over extended vocabulary

Σ, Γ , that is obtained by exhaustively applying the rules in Table 2 to axioms in K, is in
-RL and in normal form. We can prove the claim by cases on the possible form of

input axioms.

Let α K be a -RL axiom. We assume α e : the case for α Γ can be shown
similarly. We consider all of the possible cases in which α is not already in normal form and
show how the rules can be applied to yield a normal form equivalent. In the following we
use the same conventions on symbols used in Table 2 (e.g., C, D represent complex concepts
while A, B are concept names).

– If α = D(a), by applying the corresponding rule in Table 2 we obtain S = X(a), X D .
We note that since X is a new concept name, X(a) is in normal form, while X D need
further expansion (that will be shown as one of the cases below): we remark however
that the latter axiom is in -RL, since by definition concept assertions can be only
defined over right concept expressions.

– If α = C ± D, by applying the corresponding rule in Table 2 we obtain S = {C ± X, X ±
D}. As in the case above, both C ± X and X ± D need further expansion (treated in the
cases below), but the axioms are indeed in SROIQ-RL.

– If α = C ± A, then we can recognize the following cases:

– If C = A, {a} or ∃R.T, then α is already in normal form.

– If C = C1 п C2, then by applying the rule of Table 2 we obtain the set {C1 ± Y1, C2 ±
Y2, Y1 п Y2 ± X}. All of the axioms are in SROIQ-RL and the first two axioms can be
further expanded following the case for α = C ± A.

– If C = C1 п C2, then by applying the rule of Table 2 we obtain the set {C1 ± A, C2 ±
A}. All of the axioms are in SROIQ-RL and the two axioms can be then expanded
following the case for α = C ± A.

– If C = R.C1 (or, similarly, if C = R. α), then by applying the rule of Table 2
we obtain the set C1 X, R.X A . The axioms are in -RL and the
second axiom is in normal form while the first can be expanded following the case for

α = C ± A.
– If C = eval(C1, C), then by applying the rule of Table 2 we obtain the set {eval(X, Y) ±

B ∈ Km, C1 ± X ∈ Kmx, C ± Y ∈ G, Y ± ∃mod.{mx} ∈ G}. Note that the axioms are in

68

SROIQ ±
± } ± ±

± { ±

SROIQ-RL and the first and last axioms are in normal form. The axioms C1 ± X and

C ± Y can be expanded following again the case for α = C ± A.

– If C = ∃eval(R, C).A, then by applying the rule of Table 2 we obtain the set {∃W.A ±
B, eval(R, C) ± W}. The axioms are in SROIQ-RL, the first is in normal form, while
the second can be further expanded following the case for α = eval(R, C) ± T .

– If α = A ± D, then we can recognize the following cases:

– If D = A, ∃R.{a} or ≤ 1R.T, then α is already in normal form.

– If D = ¬C1, then by applying the corresponding rule of Table 2 we obtain the axiom

{A п C ± ⊥}. The axiom is in SROIQ-RL and can be further expanded following the
case for α = C ± A.

– If D = D1 п D2, then by applying the corresponding rule of Table 2 we obtain the
set {A ± D1, A ± D2}. Both axioms are in SROIQ-RL and can be further expanded
following the case for α = A ± D.

– If D = ∀R.D1, then by applying the corresponding rule of Table 2 we obtain the set

{A ± ∀R.X, X ± D1}. Both axioms are in SROIQ-RL and the first is in normal form:
the second axiom can be further expanded following the case for α = A ± D.

– If D =≤ 0R.T, then by consecutively applying the rule of Table 2 relative for axioms
A ±≤ 0R.T and then the rule for A ± ∀R.D, we obtain the set {X ± ∀R.Y1, Y1 ± ¬T}.
It is easy to check that all of the axioms are in SROIQ-RL and in normal form.

– If α = Sym(P), Trans(P) or Asym(P), then by applying the corresponding rules of Table 2

we directly obtain a set of SROIQ-RL axioms in normal form.

– If α = eval(R, C) ± T , then by applying the rule of Table 2 we obtain the set {eval(R, Y) ±
T ∈ Km, C ± Y ∈ G}. Both axioms are in SROIQ-RL and the first is in normal form.
The second one can be expanded following the case for α = C ± A. This can be shown
analogously for α = eval(R, C) ◦ S ± T and α = Dis(eval(R, C), S).

In the cases where α = D(β), transformations are similar to the non-defeasible cases, and
thus the assertion can be shown using an analogous reasoning as follows.

– If α = D(D(a)), by applying the corresponding rule in Table 2 we obtain the set S =

{X(a), D(X ± D)}. We note that X(a) is in normal form, while X ± D need further
expansion (shown in the cases below); both axioms are in SROIQ-RLD.

– If α = D(C D), by applying the corresponding rule in Table 2 we obtain S = C

X, D(X D) . As in the strict case, both C X and X D need further expansion, but
the axioms are indeed in -RLD. Note that this case covers also the case D(C A)
(i.e. where C is complex and A is atomic): the further expansion of the left side can be
completed using the transformation rules for the strict axioms.

– If α = D(A ± D), then we can recognize the following cases:

– If D = A, ∃R.{a} or ≤ 1R.T, then α is already in normal form.

– If D = ¬C1, then by applying the corresponding rule of Table 2 we obtain {D(A п C ±

⊥)}. The axiom is in SROIQ-RLD and can be further expanded following the strict
case for α = C ± A.

– If D =≤ 0R.T, then by the rules of Table 2 relative for axioms A ±≤ 0R.T and then the
rule for A ± ∀R.D (as in the strict case), we obtain the set {X ± ∀R.Y1, D(Y1 ± ¬T)}. It
is easy to check that all of the axioms are in SROIQ-RLD and in normal form.

69

Σ

Σ L ∈ L

|| ||
|| ||

|| || || ||

CAS CAS

CAS

– As in the strict case, if α = D(Sym(P)), D(Trans(P)) or D(Asym(P)), then by applying

the rules of Table 2 we obtain a set of axioms in SROIQ-RLD and in normal form.

(b). The assertion can be proved by introducing a measure on input axioms from K. Given a

concept C over Σ or Γ, we define its size ||C|| as:

– ||A|| = 0 for A ∈ NCΣ, ||R|| = 0 for R ∈ NRΣ, ||{a}|| = 0 for a ∈ NIΣ;

– ||¬C|| = ||C|| + 1;

– ||C1 S C2|| = ||C1|| + ||C2|| + 1, for S ∈ {п, п};

– ||QR.C1|| = ||R|| + ||C1|| + 1, for Q ∈ {∃, ∀, ≤ n};

– ||eval(C1, C)|| = ||C1|| + ||C|| + 1 and ||eval(R, C)|| = ||C|| + 1;

We extend the definition to axioms α in Le as:

– ||C(a)|| = ||C||;

– ||R(a, b)|| = 0;

– ||C ± D|| = ||C|| + ||D|| + 1;

– ||char1(R)|| = ||char2(R, S)|| = 0, for char1 ∈ {Sym, Trans, Asym, Irr} and char2 ∈

{Inv, Dis}.

For defeasible axioms, D(α) = α . The size of sets of axioms is the sum of sizes of
all their components. We can prove that every rule in Table 2 adds in the size S of the
resulting set at most a linear increase w.r.t. the size α of the input axiom. This can be
easily proved by cases on the rules of Table 2; for example:

– Let α = C(a), then ||α|| = ||C|| and ||S || = ||C|| + 1. Thus ||S || = ||α|| + 1.

– Let α = C ± D, then ||α|| = ||C||+ ||D||+1 and ||S || = ||C||+1 + ||D||+1. Thus ||S || = ||α|| +1.

– Let α = A ± ¬C, then ||α|| = ||¬C||+1 = ||C||+2 and ||S || = ||A||+||C||+1+||⊥||+1 = ||C||+2.
Thus ||S || = ||α||.

– Let α = A ± C п D, then ||α|| = ||C п D||+ 1 = ||C|| + ||D|| + 2 and ||S || = ||C|| + 1 + ||D|| + 1 =

||C|| + ||D|| + 2. Thus ||S || = ||α||.

– Let α = eval(C1, C) ± B then ||α|| = ||eval(C1, C)|| + 1 = ||C1|| + ||C|| + 2 and ||S || =

1 + (||C1|| + 1) + (||C|| + 1) + 2 = ||C1|| + ||C|| + 2. Thus ||S || = ||α|| + 3.

Note that the cases for defeasible axioms are similar to the corresponding strict cases.

(c). For every axiom α in e (as above, the case for α Γ can be proved similarly), let S be
the set of axioms obtained from the application of the corresponding rule in Table 2 to α.

Let INK be a justified named CAS-model for K on (Σ, Γ) such that INK ►c : α for c ∈ N. We

can extend this interpretation to the interpretation I
NK

on
D

Σ, Γ
E

such that:

– Let A ∈ NCΣ. If A ∈ NCΣ then AI(c) = AI(c). Otherwise, if A ∈ XΣ then it has been

introduced in the translation in an axiom set S : then AI(c) is the least set of d ∈ ∆I(c) such
that I(c)►S . Similarly for A ∈ NCΓ and the global interpretation M.

70

∈ ∈ ∈

() ∈ () ∈

CAS

CAS

I ()
M

CAS

– Let R ∈ NRΣ. If R ∈ NRΣ then RI(c) = RI(c). Otherwise, if R ∈ WΣ then it has been

introduced in the translation in an axiom set S : then RI(c) is the least set of (d, d) ∈

∆I(c) × ∆I(c) such that I(c)►S . Similarly for R ∈ NRΓ and the global interpretation M.

– Let a NIΣ. If a NIΣ then aI(c) = aI(c). Otherwise, if a ZΣ then it has been

introduced in the translation in an axiom set S : then aI(c) is a new domain element
d ∈ ∆I(c) such that I(c)►S . Similarly for a ∈ NIΓ and the global interpretation M.

– If α, e χ(x): if α is in normal form, then α, e χJ(x); otherwise, let αJ be the (single)
defeasible axiom in the set obtained by exhaustively applying the rules in Table 2 to α,

then (αJ, e) ∈ χJ(x).

For the first direction (i), we show that for all axioms α in Le , with INK ►c : α, we have
 NK

ICAS built as above is a model of KJ and I
NK

►c : α.
Σ CAS

For strict axiom cases, we can show the claim by induction on the form of α and transforma-
tion rules, for example:

– If α = C ± D, then S = {C ± X, X ± D}. By hypothesis I(c)►C ± D, that is

CI(c) ⊆ DI(c) : by construction we have that CI(c) ⊆ XI(c) and XI(c) ⊆ DI(c). This

implies that CI(c) ⊆ DI(c) and thus I(c)►α.

– If α = C(a), then S = {X(a), X ± C}. By hypothesis I(c)►C(a) that is aI(c) ∈ CI(c): by

construction, aI(c) ∈ XI(c) and XI(c) ⊆ CI(c), which directly implies aI(c) ∈ XI(c) and

thus I(c)►α.

– If α = A ± C п D, then S = {A ± C, A ± D}. By hypothesis I(c)►α, thus AI(c) ⊆

CI(c) ∩ DI(c). This implies that AI(c) ⊆ CI(c) and AI(c) ⊆ DI(c): then, by definition of

I(c), AI(c) ⊆ CI(c) and AI(c) ⊆ DI(c) which directly implies that I(c)►α.

– If α = eval(C1, C) ± B, then S = {eval(X, Y) ± B ∈ Km, C1 ± X ∈ Kmx, C ± Y ∈ G, Y ±

∃mod.{mx} ∈ G}. By hypothesis I(c)►eval(C1, C) ± B: hence for every xM ∈ CM,
aI(x) ∈ C1

I(x)
implies aI(c) ∈ BI(c). Considering the translated set S and the definition

of I
NK

, we have that xM ∈ YM and, by the content of its newly associated module mx,

C1
I(x)

⊆ XI(x). By the interpretation of the eval expression in S , we have that for every

aI(x) ∈ C1
I(x)

then aI(c) ∈ BI(c), and thus I(c)►α.

In the case of defeasible axioms, we can moreover show that the translation preserves the
justification of the axioms. For all defeasible axioms, if we consider the case of and

the non-exceptional case for every (c) (i.e. for instances e s.t. α, e g χ(c)), the result
can be shown as in the strict case. Otherwise, consider the case in which there exists some

(α, e) ∈ χ(c). Then, for example:

– If α = D(C ± D), then S = {C ± X, D(X ± D)}. Then, by construction, if (α, e) ∈ χ(c),

we have (X ± D, e) ∈ χJ(c). Since INK is justified for K, then there exists a clashing set

Q =
N
{¬D(e), C(e)} that is satisfied by I(c). By definition, we also have that I(c)►Q. Then,

K

CAS we also have a justification for (X ± D, e), since it holds that QJ = {¬D(e), X(e)}

is a clashing set that is satisfied in I(c).

in I

71

CAS

CAS

CAS

I ()

CAS

CAS

CAS

CAS

CAS Σ CAS CAS

CAS CAS

– If α = D(D(a)), then S = {X(a), D(X ± D)}. Then, if (α, a) ∈ χ(c), we have (X ± D, a) ∈

χJ(c). Since INK is justified for K, then there exists a clashing set Q = {¬D(a)} that

is satisfied by I(c). We also have that, by definition, I(c)►Q. Then, I
NK

contains a
justification for (X ± D, a), since I(c) satisfies the clashing set QJ = {¬D(a), X(a)}.

Finally, the converse direction (ii) is proved by showing that: considering the definition

of I
NK

given above, for all axioms α in L , for every justified I
NK

s.t. I
NK

►KJ and

I
NK

►c : α, then INK (i.e. the original model on (Σ, Γ)) is a justified model of K and
INK ►c : α. We can then again show the claim proceeding by induction on the form of α
and transformation rules, for example:

– If α = C ± D, then S = {C ± X, X ± D}. By hypothesis I(c)►α, thus CI(c) ⊆ XI(c) ⊆

DI(c). This implies that CI(c) ⊆ DI(c) and thus CI(c) ⊆ DI(c) (since C, D ∈ Σ), that is

I(c)►α.

– If α = C(a), then S = {X(a), X ± C}. By hypothesis I(c)►α, thus aI(c) ∈ XI(c) and

XI(c) ⊆ CI(c). This implies that aI(c) ∈ CI(c) and thus aI(c) ∈ CI(c) (since a, C ∈ Σ), that

is I(c)►α.

– If α = C п A ± B, then S = {C ± X, X п A ± B}. By hypothesis I(c)►α, thus

CI(c) ⊆ XI(c) and XI(c) ∩ AI(c) ⊆ BI(c). This implies that CI(c) ∩ AI(c) ⊆ BI(c). Hence

CI(c) ∩ AI(c) ⊆ BI(c) (since C, A, B ∈ Σ), that is I(c)►α.
– If α = eval(C1, C) ± B then S = {eval(X, Y) ± B ∈ Km, C1 ± X ∈ Kmx, C ± Y ∈ G, Y ±

 ∃mod.{mx} ∈ G}. It holds that I
NK

►c : α, then we have that
S

 XI(e) ⊆ BI(c). This

implies that
S

CAS

M C1I(e) ⊆ BI(c), that is INK ►c : α.
e∈YM

In the case of defeasible axioms, we can again show that the justification of the original

axiom is preserved. For all defeasible axioms, if we consider the case of M and the non-

exceptional case for every (c) (i.e. for instances e s.t. αJ, e g χJ(c)), the result can be
shown as in the strict cases. Thus, let us consider the case in which there exists some

(αJ, e) ∈ χJ(c). Then, for example:

– If α = D(C ± D), then S = {C ± X, D(X ± D)}. Then, if (X ± D, e) ∈ χJ(c), by

construction we have (α, e) ∈ χ(c). By hypothesis I
NK

is justified for KJ: then there
exists a clashing set QJ = {¬D(e), X(e)} that is satisfied by I(c). By definition of the

translation, we also have that I(c)►C(e). Then, in INK we also have a justification for

(α, e), since the corresponding clashing set Q = {¬D(e), C(e)} is satisfied in I(c).

– If α = D(D(a)), then S = {X(a), D(X ± D)}. Supposing (X ± D, a) ∈ χJ(c), we

have (α, a) ∈ χ(c). Since I
NK

is justified for KJ, then there exists a clashing set QJ =
{¬D(a), X(a)} that is satisfied by I(c). This directly implies that I(c)►¬D(a). Since

Q = {¬D(a)} is a clashing set for (α, a), then we also have a justification in INK .

CAS

e∈C

72

M

M
∈

∈ M

¬ ∈ M

(M I)

{ } ⊆ M

Appendix A.5.2. Translation correctness

Given a CAS-interpretation ICAS = , , χ , we construct a corresponding Herbrand inter-
pretation S = I(ICAS) of the program PK(K) as the smallest set of literals so defined:

– l ∈ S , if l ∈ PK(K);

– instd(a, A, c, main) ∈ S , if I(c)►A(a);

– tripled(a, R, b, c, main) ∈ S , if I(c)►R(a, b);

– ovr(p(e)) ∈ S , if ovr(p(e)) ∈ OVR(ICAS);

– l ∈ S with l = instd(a, A, c, t), tripled(a, R, b, c, t) and t ≠ main, if test(t) ∈ S and

l ← b1, . . . , bn ∈ grnd(PK(K))OVR(ICAS) where {b1, . . . , bn} ⊆ S .

– test(t) ∈ S , if ovr(p(e)) ∈ OVR(ICAS) and r ∈ grnd(PK(K)), with ovr(p(e)) ∈ Head(r) and

test fails(t) ∈ Body(r);

– unsat(nlit(a, A, c)) ∈ S , if I(c)$Kc ∪ {A(a)};

– unsat(nrel(a, R, b, c)) ∈ S , if I(c)$Kc ∪ {R(a, b)};

– test fails(t) ∈ S , if unsat(t) g S .

Note that unsat(main) g S .

Proof of Proposition 13. We will prove that I(MG) is an answer set for PG(G) if G is satisfiable.
Note that, by restricting the definition of I(ICAS) to the global context, I(MG) is as follows:

– Facts of PG(G) are included in I(MG);

– instd(a, A, g, main) ∈ I(MG) iff MG►A(a) for A ∈ NC and a ∈ NI;

– tripled(a, R, b, g, main) ∈ I(MG) iff MG►R(a, b) for R ∈ NR and a, b ∈ NI;

– unsat(main) g I(MG);

We can show that I(MG)►grnd(PG(G)), that is for every rule instance r ∈ grnd(PG(G)) it holds
that I(MG)►r. This can be readily established by examining the possible rules that appear in
grnd(PG(G)); we list here some representative cases. Suppose that I(MG)►Body(r):

– (prl-instd): then insta(a, A, g, main) ∈ I(MG)27 and, by definition of the translation, A(a) ∈ G.
This implies that MG►A(a) and thus instd(a, A, g, main) is added to I(MG).

– (prl-ninstd): then we would have ninsta(a, A, g), instd(a, A, g, main) I(G). This

would mean that A(a) G, but G►A(a). Assuming that G is satisfiable this is not possible
and unsat(main) is not added to I(G). On the other hand, if G is not satisfiable, no answer
set would exist due to the constraint (prl-sat).

– (prl-eq): then we would have eq(a, b, g, main) I(G). By definition of the translation,
a = b G: since we are assuming UNA, this contradicts the assumption that G is satisfiable.
Thus unsat(main) is not added to I(G). However, if G is not satisfiable, no answer set would
exist due to the constraint (prl-sat).

– (prl-subc): then {subClass(A, B, g), instd(a, A, g, main)} ⊆ I(MG). By definition of the
translation we have A ± B ∈ G and, for the construction of I(MG), MG►A(a) which implies
that MG►B(a). Thus instd(a, B, g, main) is added to I(MG).

27In this proof, for simplicity of notation, we consider g = gm or g = gk.

73

M M
M

L L

∈ ⊆ ∈
⊆ ∈

∈ () ∈

п ± ∈ ∈ ∩

∃ ± ∈ ∈ ∃

± ∀ ∈ ∈ ∈

M M M (·)

M ⊆ M M ⊆ M M M
M M ⊆ M M

– (prl-subex): then {subEx(A, R, B, g, main), instd(b, A, g, main), tripled(a, R, b, g, main)} ⊆
I(MG). By definition of the translation we have ∃R.A ± B ∈ G and, for the construction of
I(MG), MG►A(b), R(a, b). By definition of the semantics, this proves MG►(∃R.A)(a) which
implies that MG►B(a) and instd(a, B, g, main) is added to I(MG).

– (prl-supex): then {supEx(A, R, a, g, main), instd(b, A, g, main)} ⊆ I(MG). By definition of
the translation we have A ± ∃R.{a} ∈ G and, for the construction of I(MG), MG►A(b): this
implies that bMG ∈ (∃R.{a})M, that is (bMG , aMG) ∈ RMG . Thus tripled(b, R, a, g, main) is
added to I(MG).

On the other hand, we can show that if M is the (unique) answer set of PG(G), then we can build

an interpretation (using the conditions above) such that ►G. Specifically, = ∆M, M is
as follows:

– ∆M = {c | c ∈ NIΓ ∪ NIΣ};

– cM = c, for every c ∈ NIΓ ∪ NIΣ;

– AM = {d ∈ ∆M | M►instd(d, A, g, main)}, for every A ∈ NCΓ ∪ NCΣ;

– RM = {(d, dJ) ∈ ∆M × ∆M | M►tripled(d, R, dJ, g, main)} for R ∈ NRΓ ∪ NRΣ.

We then can show that ►G; hence G holds. Furthermore, by construction of I(G)
from G and from M, as M I(G) we obtain G. It follows that G = , which
proves that M = I(G) is the unique answer set of PG(G).

To show that is a model for G, we must verify that satisfies (a) the condition (i) of a
CKR interpretation and (b) the conditions (i) and (ii) of a CAS-model. As for (a), we easily prove

that NM CtxM: by rule (igl-subctx2), for every c N we have M►instd(c, Ctx, gm, main),

which implies cM CtxM. The condition CM CtxM for every C C can be shown similarly by
the rule (igl-subctx1). As for (b), we consider the form of all axioms β in Γ resp. Σ that can
occur in G. We show here only some of the cases (the others are similar):

– Let β = A(a) ∈ G, then, by rule (prl-instd), M►instd(a, A, g, main). This directly implies that

aM ∈ AM.

– Let β = ¬A(a) ∈ G, then M►ninsta(a, A, g, main). Assuming that M►A(a), we would have
that M►instd(a, A, g, main). But, by the rule (prl-ninstd), we would have that unsat(main) ∈
M and M would violate the constraint (prl-sat). Thus M$A(a).

– Let β = A ± B ∈ G, then M►subClass(A, B, g). If d ∈ AM, then by definition M►instd(d, A,

g, main): by rule (prl-subc) we obtain that M►instd(d, B, g, main) and thus d ∈ BM.

– Let β = A1 A2 B G. Then M►subConj(A1, A2, B, g). Supposing d A1
M AM

2 , then by

definition M►instd(d, A1, g, main) and instd(d, A2, g, main): by rule (prl-subcnj) we obtain
that M►instd(d, B, g, main) and thus d ∈ BM.

– Let β = R.A B G, then M►subEx(R, A, B, g). Let d (R.A)M: by definition
of the semantics this means that some dJ AM exists such that d, dJ RM. Thus, M►instd(dJ,

A, g, main) and M►tripled(d, R, dJ, g, main). By rule (prl-subex), we obtain that
M►instd(d, B, g, main): thus d ∈ BM as required.

– Let β = A R.B G. Then M►supForall(R, A, B, g). Let d AM and there is (d, dJ) RM:
then M►instd(d, A, g, main) and M►tripled(d, R, dJ, g, main). By rule (prl-forall), we have
that M►instd(dJ, B, g, main) which implies M►B(dJ).

74

∈

∈

∈

I

ˆ

I

∈ ∈

I I
± ∈

± ∈ I
{ } ⊆

{ } ⊆

∈ ∈ L M

∈ () ∈ () ∈

– Let β = R ◦ S ± T ∈ G. Then M►subRChain(R, S , T, g). Supposing (a, c) ∈ RM and
(c, b) ∈ RM, we have M►tripled(a, R, c, g, main) and M►tripled(c, S , b, g, main). By rule
(prl-subrc), we have that M►tripled(a, T, b, g, main) which implies M►T (a, b).

– Let β = Dis(R, S) G, then M►dis(R, S , g). Suppose that d, dJ RM and d, dJ S M: then

we have M►tripled(d, R, dJ, g, main) and M►tripled(d, S , dJ, g, main). By rule (prl-dis) we
would obtain unsat(main); but then M would violate (prl-sat), a contradiction.

By definition of the translation, for every D(β) G with β Σ, it also holds that ►β: for
example, let β = A(b); then the fact insta(b, A, gk, main). is added to PG(G), which implies that

M►instd(b, A, gk, main) and, by construction of the model, M►A(b).

Proof of Lemma 6. Let us consider S = I(Î(χ)) defined above and the reduct GS (PK(K)) of
PK(K) with respect S . That is, GS (PK(K)) is the set of rules obtained from all ground instances of

rules in PK(K) by removing: (i) every rule r such that S ►l for some NAF literal not l Body(r);
and (ii) the NAF part from the bodies of the remaining rules. Note that the NAF literals in PK(K)
involve instances of ovr, test fails and unsat.

We can then proceed to prove items (i) and (ii) of the lemma, showing that the answer sets of

PK(K) coincide with the sets S = I(Î(χ)) where χ is a justified clashing assumption of K.

(i). Assuming that χ is a justified clashing assumption, we show that S = I(Î(χ)) is an answer
set of PK(K).

We first show that S ►GS (PK(K)), that is for every rule instance r GS (PK(K)) it holds that

S ►r. We can prove this by examining the possible rule forms that occur in GS (PK(K)). The
cases for the rules in Prl are analogous to the proof of Proposition 13. Here we show some of the

representative cases (other cases can be shown by similar reasoning). Assuming that S ►Body(r)

and r stems from a rule rJ in grnd(PK(K)) of the following form, we show that Head(r) S and
thus r is satisfied:

– (prl-instd): then insta(a, A, c, t) I(Î(χ)) and, by definition of the translation, A(a) Kc

(as t can only be main). This implies that (c)►A(a) and thus instd(a, A, c, main) is added to
I(Î(χ)).

– (prl-subc): then subClass(A, B, c), instd(a, A, c, t) I(Î(χ)). By definition of the transla-
tion we have A B Kc. For the construction of I(I(χ)), if t = main then (c)►A(a). This

implies that (c)►B(a) and instd(a, B, c, t) is added to I(Î(χ)). Otherwise, if t ≠ main then
instd(a, B, c, t) is directly added to I(Î(χ)) by its construction.

– (plc-evalat): then subEval(A, C, B, c), instd(c1, C, g, t), instd(a, A, c1, t) I(Î(χ)).

Thus we have that eval(A, C) B G and G►C(c1). For the construction of I(Î(χ)), if

t = main then (c1)►A(a); This implies that (c)►B(a) and instd(a, B, c, t) is added to I(Î(χ)).
Otherwise, if t ≠ main then instd(a, B, c, t) is directly added to I(Î(χ)) by its construction.

– (prop-inst): then insta(a, A, g) ∈ I(Î(χ)). Since r ∈ GS (PK(K)), we have that
ovr(insta, a, A, c) g OVR(Î(χ)), thus (A(a)) g χ(c). By definition of the translation, A(a) ∈ G

and thus I(c)►A(a); hence instd(a, A, c, main) is added to I(Î(χ)).

– (prop-subc): then {subClass(A, B, g), instd(a, A, c, t)} ⊆ I(Î(χ)). As r ∈ GS (PK(K)), we

have ovr(subClass, a, A, B, c) g OVR(Î(χ)) and hence (A ± B, a) g χ(c). By definition,
A ± B ∈ G and, if t = main, I(c)►A(a) Thus, for the definition of CAS-model and the

75

K

M ⊆

()

M M

() ∈

{ } ⊆ ∈

(M I)

{ ¬ } (±) (±) ∈
∈ I ¬ I

∈ modM. For every c ∈ NG (and

semantics, instd(a, B, c, t) is added to I(Î(χ)). If t ≠ main, then instd(a, B, c, t) is added to

I(Î(χ)) by construction.

– (ovr-subc): then def subclass(A, B), prec(c, g), instd(a, A, c, main) I(Î(χ)). As r

GS (PK(K)), we have test fails(nlit(a, B, c)) g I(Î(χ)). By construction of I(Î(χ)) this

implies that unsat(nlit(a, B, c)) I(Î(χ)), meaning that (c)► B(a). Thus, (c) satisfies the
clashing set A(a), B(a) for the clashing assumption A B, a . Consequently, A B, a χ

and by construction ovr(subClass, a, A, B, c) is added to I(Î(χ)).

– (test-subc): then {def subclass(A, B), prec(c, g), instd(a, A, c, main)} ⊆ I(Î(χ)). Thus
D(A ± B) ∈ G and I(c)►A(a) (an instance of such defeasible axiom). By the construction of
I(Î(χ)) we have that test(nlit(a, B, c)) ∈ I(Î(χ)).

– (test-fails1): then instd(a, A, c, nlit(a, A, c)) ∈ I(Î(χ)). As r ∈ GS (PK(K)), we have that

unsat(nlit(a, A, c)) g I(Î(χ)). By construction of S , test fails(nlit(a, A, c)) ∈ I(Î(χ)).

– (test-add1): then test(nlit(a, A, c)) ∈ I(Î(χ)). By definition of S , this directly implies that

instd(a, A, c, nlit(a, A, c)) ∈ I(Î(χ)).

– (test-copy1): then {test(nlit(a, A, c)), instd(b, B, c, main)} ⊆ I(Î(χ)). By definition of S ,
this directly implies that instd(b, B, c, nlit(a, A, c)) ∈ I(Î(χ)).

Minimality of S = I(Î(χ)) w.r.t. the (positive) deduction rules of GS (PK(K)) can be motivated

as in case of the global least model I(G) for PG(G). Indeed, no model S J S of GS (PK(K))

such that S J ≠ S can exist: as Î(χ) is the least model of K w.r.t. χ, S J can not be a proper subset
of S on any of the facts from the input translations, nor on insta, triplea, instd, tripled for

the environment (i.e., last argument) main. Consequently, S J will also contain all atoms on ovr
from S , as for every corresponding clashing assumption α, e χ(c), the body of the (reduct of)
some overriding rule in PK(K) that encodes a clashing set for α, e will be satisfied. Furthermore,

S J will also contain all literals over test from S : consequently S J has to contain all literals
instd, tripled for environments different from main and all literals on unsat and test fails

from S . That is, S J = S must hold.
(ii). Let S be an answer set of PK(K). We show that there is some justified clashing assumption

χ for such that S = I(Î(χ)) holds.
First of all, we note that as S is an answer set for the CKR program, all literals on ovr and

test fails in S are derivable from the reduct GS (PK(K)).

By the definition of I(Î(χ)) we can easily build a model IS = S , S , CAS S from the
answer set S as follows: the global interpretation S is analogous to the structure that
was defined for the answer set M of PG(G) in Proposition 13. We note that, by well-known
modularity properties of answer set semantics (splitting sets [64]), the restriction of S to the

vocabulary of the global part G, denoted S |G, is an answer set of PG(G): thus by Proposition 13,
it follows that MS = MG and that MS is the least Herbrand model of G. Thus, if c ∈ NG
(that is, if grnd(PG(G))►instd(c, Ctx, gm, main)) Dthen cM

E∈ CtxM; if Km ∈ Kc (that is, if

thus, for every cM ∈ CtxM), we build the local interpretation IS (c) = (∆c, ·I(c)) as follows:

– ∆c = {d | d ∈ NIΣ};

– aI(c) = a, for every a ∈ NIΣ;

grnd(PG(G))►tripled(c, mod, m, gm, main)) then cM, mM

76

{() | ∈ }

∈ L

∈ ∈ L

± ∈ ∈ ∈

() ()

∈ (±)
±

(∃ ±)
∈ () ∈

∃ ± ∈ ∃

c, mM
 ∈ modM (that is, every Km ∈ Kc) we have I(c)►Km. We proceed by

Σ

– AI(c) = {d ∈ ∆c | S ►instd(d, A, c, main)}, for every A ∈ NCΣ;

– RI(c) = {(d, dJ) ∈ ∆c × ∆c | S ►tripled(d, R, dJ, c, main)} for R ∈ NRΣ;

Finally, χS (c) = α, e Irl(α, c) = p, ovr(p(e)) S . To prove the claim, we have to show that
IS meets the definition of a least justifed CAS-model for K, that is:

(i). cM ∈ CtxM, for every c ∈ N, and CM ⊆ CtxM, for every C ∈ C;

(ii). for every x ∈ CtxM, ∆I(x) = ∆M and aI(x) = aM, for a ∈ NIΣ;

(iii). for every α ∈ LΣ ∪ LΓ in G, M►α;

(iv). for every D(α) ∈ G (where α ∈ LΣ), M►α;

(v). for every (x, y) ∈ modM s.t. y = mM, then I(x)►Km;

(vi). for every α ∈ G ∩ LΣ and x ∈ CtxM, I(x)►α, and

(vii). for every D(α) ∈ G (with α ∈ LΣ), x ∈ CtxM, and |x|-tuple d of elements in NIΣ such that

d g {e | (α, e) ∈ χ(x)}, I(x)►α(d).

Conditions (i), (iii) and (iv) directly follow from Proposition 13. Condition (ii) holds since, given
x ∈ CtxM, for everDy a ∈ NEIΣ it holds that aI(x) = aM = a. Condition (v) is verified by showing that

cases and consider the form of all of the axioms β e that can occur in Kc. The case for axioms
in the general normal form of Table 1 can be proved analogously as in the cases of Proposition 13:
thus we have to prove the case of local reference axioms.

– Let β = eval(A, C) B Kc, then S ►subEval(A, C, B, c). If cJ CM and d AI(c
J), then

by definition S ►instd(d, A, cJ, main) and S ►instd(cJ, C, gm, main). By rule (plc-evalat) we
obtain that S ►instd(d, B, c, main): hence, by definition d ∈ BI(c).

– The case for β = eval(R, C) ± T can be shown analogously.

To prove, condition (vii), let us assume that D(β) G with β Σ. We proceed by cases on the
possible forms of β. In the following we only show some of the relevant cases.

– Let β = A(a). Then, by definition of the translation, we have that S ►insta(a, A, g, main). Sup-
pose that A(x), a g χN(c), and hence A(x), a g χS (cM). Then by definition, ovr(insta, a, A, c) g
OVR(Î(χ)). By the definition of the reduction, the corresponding instantiation of rule (prop-
inst) has not been removed from GS (PK(K)): this implies that S ►instd(a, A, c, main). By
definition, this means that aI(c) ∈ AI(c).

– Let β = A B. Then, by definition of the translation, we have that S ►subClass(A, B, g). Let
us suppose that bI(c) AI(c): then S ►instd(b, A, c, main). Suppose that A B, b g χS (c):
by definition, ovr(subClass, b, A, B, c) g OVR(Î(χ)). By the definition of the reduction, the
corresponding instantiation of rule (prop-subc) has not been removed from GS (PK(K)): this

implies that S ►instd(b, B, c, main). Thus, by definition, this means that bI(c) ∈ BI(c).

– Let β = R.A B. Then S ►subEx(R, A, B, g). Suppose that d (R.A)I(c): by def-
inition of the semantics this means that some dJ AI(c) exists such that d, dJ RI(c).
Thus, S ►instd(dJ, A, c, main) and S ►tripled(d, R, dJ, c, main). Suppose that R.A B, d g
χS (c): by definition, ovr(subEx, d, R, A, B, c) g OVR(Î(χ)). By the definition of the reduction,
the corresponding instantiation of rule (prop-subex) has not been removed from GS (PK(K)).

Thus it holds that S ►instd(d, B, c, main), and hence dI(c) ∈ BI(c).

for every Km s.t.

77

∈ ∩ L

⊂

()
I

∈ ()

() ∈ ∈

Table A.18: Negative deduction rules Pnd

(pnd-instd) ¬instd(x, z, c) ← ¬insta(x, z, c).

(pnd-tripled) ¬tripled(x, r, y, c) ← ¬triplea(x, r, y, c).

(pnd-subc) ¬instd(x, y, c) ← subClass(y, z, c), ¬instd(x, z, c).
(pnd-cnj1) ¬instd(x, y1, c) ← subConj(y1, y2, z, c), ¬instd(x, z, c), instd(x, y2, c).

(pnd-cnj2) ¬instd(x, y2, c) ← subConj(y1, y2, z, c), ¬instd(x, z, c), instd(x, y1, c).

(pnd-subex1) ¬instd(xJ, y, c) ← subEx(v, y, z, c), ¬instd(x, z, c), tripled(x, v, xJ, c).

(pnd-subex2) ¬tripled(x, v, xJ, c) ← subEx(v, y, z, c), ¬instd(x, z, c), instd(xJ, y, c).

(pnd-supex) ¬instd(x, y, c) ← supEx(y, r, xJ, c), ¬tripled(x, r, xJ, c).

(pnd-supforall) ¬instd(x, z, c) ← supForall(z, r, zJ, c), ¬instd(y, zJ, c), tripled(x, r, y, c).

(pnd-leqone1) ¬tripled(x, r, x2, c) ← supLeqOne(z, r, c), tripled(x, r, x1, c), instd(x, z, c).

(pnd-leqone2) ¬instd(x, z, c) ← supLeqOne(z, r, c), tripled(x, r, x1, c), tripled(x, r, x2, c).

(pnd-subr) ¬tripled(x, v, xJ, c) ← subRole(v, w, c), ¬tripled(x, w, xJ, c).

(pnd-subrc1) ¬tripled(x, u, y, c) ← subRChain(u, v, w, c), ¬tripled(x, w, z, c), tripled(y, v, z, c).

(pnd-subrc2) ¬tripled(y, v, z, c) ← subRChain(u, v, w, c), ¬tripled(x, w, z, c), tripled(x, u, y, c).

(pnd-dis1) ¬tripled(x, v, y, c) ← dis(u, v, c), tripled(x, u, y, c).

(pnd-dis2) ¬tripled(x, u, y, c) ← dis(u, v, c), tripled(x, v, y, c).

(pnd-inv1) ¬tripled(y, v, x, c) ← inv(u, v, c), ¬tripled(x, u, y, c).

 (pnd-inv2) ¬tripled(y, u, x, c) ← inv(u, v, c), ¬tripled(x, v, y, c).

Condition (vi) can be verified similarly as (vii): non-defeasible global axioms β G Σ can not
appear in clashing assumptions in χS , thus they can not give rise to the corresponding overriding
assumptions in OVR(χS); this implies that the corresponding instantiations of propagation rules
in PD are never removed from GS (PK(K)) and thus the cases can be proved like in the proof for
the previous condition.

Thus, IS is a CAS-model of K. We next argue that in fact IS = Î(χS), i.e., IS is the least
CAS-model of K for the clashing assumption χS as in Corollary 1. We already noted that w.r.t.
the global context, MS coincides with M̂ from Proposition 13. Assuming that I ⊂ IS is a

CAS-model of K with clashing assumption χS , we can construct an interpretation S J S such that
S J►GS (PK(K)), by removing (at least) one fact insta(d, A, c, main) or triple(d, R, dJ, c, main)
from S ; however, this would contradict that S is an answer set of PK(K). Hence, IS = Î(χS)
holds.

Finally, it remains to show that χS is justified. As α, e χS (c) is due to ovr(p(e)) S and
ovr(p(e)) is derived from the reduct GS (PK(K)), it follows that S must satisfy the body Body(r)

of some overriding rule r for p(e). Consequently, S (c) must satisfy the clashing set S c,(α,e) for
α, e that is encoded in Body(r); note that satisfaction of not test fails(nlit(x, y, c)) means
that test fails(nlit(x, y, c)) is not satisfied, which due to the rule (test-fails1) means that
unsat(nlit(x, y, c)) is derived. From the latter, however, we conclude that for the negative literal

¬β that is encoded by nlit(x, y, c), item (ii) of Theorem 2 holds. As item (i) of this theorem

holds for every positive literal β S c,(α,e), it follows that the clashing assumption α, e at c is
justified. In conclusion, χS is justified. This proves the result.

Appendix A.6. Justification safeness

Table A.18 shows a set of negative deduction rules (corresponding to the positive rules in Prl) that
can be added to the translation under the assumption of justification safeness (see Section 5.4).

78

SHIQ

References

[1] L. Bozzato, L. Serafini, Materialization Calculus for Contexts in the Semantic Web, in: [66], 2013, pp. 552 – 572.
[2] L. Bozzato, T. Eiter, L. Serafini, Defeasibility in contextual reasoning with CKR, in: 29th Italian Conference on

Computational Logic, Torino (CILC 2014), Italy, June 16-18, 2014., volume 1195 of CEUR Workshop Proceedings,
CEUR-WS.org, 2014, pp. 132–146.

[3] L. Bozzato, T. Eiter, L. Serafini, Contextualized knowledge repositories with justifiable exceptions, in: M. Bienvenu,
M. Ortiz, R. Rosati, M. Simkus (Eds.), 27th International Workshop on Description Logics (DL2014), Vienna,
Austria, July 17-20, 2014, volume 1193 of CEUR Workshop Proceedings, CEUR-WS.org, 2014, pp. 112–123.

[4] J. McCarthy, Notes on formalizing context, in: R. Bajcsy (Ed.), 13th International Joint Conference on Artificial
Intelligence (IJCAI’93), Morgan Kaufmann, 1993, pp. 555–562.

[5] D. Lenat, The Dimensions of Context Space, Technical Report, CYCorp, 1998. Published online
http://www.cyc.com/doc/context-space.pdf.

[6] F. Giunchiglia, C. Ghidini, Local Models Semantics, or Contextual Reasoning = Locality + Compatibility, Artificial
Intelligence 127 (2001) 2001.

[7] F. Giunchiglia, L. Serafini, Multilanguage hierarchical logics, or: how we can do without modal logics, Artificial
Intelligence 65 (1994) 29–70.

[8] G. Brewka, F. Roelofsen, L. Serafini, Contextual default reasoning, in: Proceedings of the 20th international joint
conference on Artificial intelligence (IJCAI’07), Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007,
pp. 268–273.

[9] G. Brewka, T. Eiter, Equilibria in heterogeneous nonmonotonic multi-context systems, in: Proceedings of the
Twenty-Second Conference on Artificial Intelligence (AAAI-07), Vancouver, Canada, 2007, pp. 385–390.

[10] O. Khriyenko, V. Terziyan, A framework for context sensitive metadata description, Int. J. Metadata, Semantics and
Ontologies 1 (2006) 154–164.

[11] S. Klarman, Reasoning with Contexts in Description Logics, Ph.D. thesis, Free University of Amsterdam, 2013.
[12] L. Serafini, M. Homola, Contextualized knowledge repositories for the semantic web, J. of Web Semantics 12

(2012) 64–87.
[13] U. Straccia, N. Lopes, G. Lukácsy, A. Polleres, A general framework for representing and reasoning with annotated

semantic web data, in: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), Special
Track on Artificial Intelligence and the Web, 2010.

[14] L. Tanca, Context-based data tailoring for mobile users, in: Datenbanksysteme in Business, Technologie und Web
(BTW 2007), Workshop Proceedings, Verlagshaus Mainz, 2007, pp. 282–295.

[15] O. Udrea, D. Recupero, V. S. Subrahmanian, Annotated RDF, ACM Transactions on Computational Logic 11
(2010) 1–41.

[16] L. Bozzato, M. Homola, L. Serafini, Towards more effective tableaux reasoning for CKR, in: Y. Kazakov, D. Lembo,
F. Wolter (Eds.), Proceedings of the 2012 International Workshop on Description Logics, DL-2012, Rome, Italy,
June 7-10, 2012, volume 846 of CEUR Workshop Proceedings, CEUR-WS.org, 2012, pp. 114–124.

[17] L. Bozzato, C. Ghidini, L. Serafini, Comparing contextual and flat representations of knowledge: a concrete case
about football data, in: V. R. Benjamins, M. d’Aquin, A. Gordon (Eds.), Proceedings of the 7th International
Conference on Knowledge Capture (K-CAP 2013), 2013, ACM, 2013, pp. 9–16.

[18] B. Motik, U. Sattler, R. Studer, Query answering for OWL-DL with rules, J. Web Semantics 3 (2005) 41–60.
[19] D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering

in description logics: The DL-Lite family, J. Automated Reasoning 39 (2007) 385–429.
[20] M. Krötzsch, Efficient inferencing for OWL EL, in: [65], 2010, pp. 234–246.
[21] M. Krötzsch, A. Mehdi, S. Rudolph, Orel: Database-driven reasoning for OWL 2 profiles, in: V. Haarslev,

D. Toman, G. E. Weddell (Eds.), 23rd International Workshop on Description Logics (DL 2010), volume 573 of
CEUR Workshop Proceedings, CEUR-WS.org, 2010.

[22] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The Combined Approach to Query Answering in
DL-Lite, in: F. Lin, U. Sattler, M. Truszczynski (Eds.), 12th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2010), AAAI Press, 2010.

[23] T. Eiter, M. Ortiz, M. Šimkus, K. Trung-Tran, G. Xiao, Query rewriting for Horn- plus rules, in: 26th
Conference on Artificial Intelligence (AAAI ’12), AAAI Press, 2012.

[24] S. Ahmetaj, M. Ortiz, M. Simkus, Polynomial datalog rewritings for expressive description logics with closed
predicates, in: S. Kambhampati (Ed.), 25th International Joint Conference on Artificial Intelligence (IJCAI 2016),
IJCAI/AAAI Press, 2016, pp. 878–885.

[25] F. Buccafurri, W. Faber, N. Leone, Disjunctive logic programs with inheritance, in: D. D. Schreye (Ed.), Logic
Programming: The 1999 International Conference (ICLP 1999), MIT Press, 1999, pp. 79–93.

[26] B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, B. C. Grau, OWL 2 Web Ontology Language Profiles, W3C
Recommendation, W3C, 2009. Http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/.

http://www.cyc.com/doc/context-space.pdf
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

79

SROIQ

[27] M. Gelfond, V. Lifschitz, Classical Negation in Logic Programs and Disjunctive Databases, New Generation
Computing 9 (1991) 365–385.

[28] M. Gelfond, V. Lifschitz, The Stable Model Semantics for Logic Programming, in: Logic Programming: Proceedings
Fifth Intl. Conference and Symposium, MIT Press, Cambridge, Mass., 1988, pp. 1070–1080.

[29] A. Bikakis, G. Antoniou, Defeasible contextual reasoning with arguments in ambient intelligence, IEEE Transactions
on Knowledge and Data Engineering 22 (2010) 1492–1506.

[30] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, A non-monotonic description logic for reasoning about typicality,
Artificial Intelligence 195 (2013) 165–202.

[31] P. A. Bonatti, M. Faella, I. Petrova, L. Sauro, A new semantics for overriding in description logics, Artificial
Intelligence 222 (2015) 1–48.

[32] I. Horrocks, O. Kutz, U. Sattler, The even more irresistible , in: Procs. of the 10th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2006), AAAI Press, 2006, pp. 57–67.

[33] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The Description Logic Handbook,
Cambridge University Press, 2003.

[34] W3C, OWL 2 Web Ontology Language Document Overview, W3C Recommendation, 2009.
[35] B. Motik, R. Rosati, Reconciling description logics and rules, J. ACM 57 (2010).
[36] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, H. Tompits, Combining answer set programming with description

logics for the semantic web, Artif. Intell. 172 (2008) 1495–1539.
[37] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995. URL: http://webdam.inria.

fr/Alice/.
[38] A. K. Chandra, P. M. Merlin, Optimal Implementation of Conjunctive Queries in Relational Data Bases, in:

Conference Record of the 9th Annual ACM Symposium on Theory of Computing (STOC 1977), 1977, pp. 77–90.
[39] F. Buccafurri, W. Faber, N. Leone, Disjunctive logic programs with inheritance, Theory and Practice of Logic

Programming (TPLP) 2 (2002) 293–321.
[40] G. Xiao, S. Heymans, T. Eiter, DReW: a reasoner for datalog-rewritable description logics and dl-programs, in: 1st

International Workshop on Business Models, Business Rules and Ontologies (BuRO 2010), 2010.
[41] F. Ricca, The DLV java wrapper, in: F. Buccafurri (Ed.), 2003 Joint Conference on Declarative Programming,

(AGP-2003), 2003, pp. 263–274.
[42] L. Bozzato, L. Serafini, Knowledge propagation in contextualized knowledge repositories: An experimental

evaluation, in: Knowledge Engineering and Knowledge Management (EKAW 2014) Satellite Events. Revised
Selected Papers, volume 8982 of Lecture Notes in Computer Science, Springer, 2015, pp. 35–51.

[43] G. Casini, T. Meyer, K. Moodley, I. J. Varzinczak, Towards Practical Defeasible Reasoning for Description Logics,
in: [66], 2013, pp. 587–599.

[44] M. Fink, L. Ghionna, A. Weinzierl, Relational information exchange and aggregation in multi-context systems, in:
J. P. Delgrande, W. Faber (Eds.), Logic Programming and Nonmonotonic Reasoning - 11th International Conference
(LPNMR 2011), volume 6645 of Lecture Notes in Computer Science, Springer, 2011, pp. 120–133.

[45] D. Nute, Defeasible Logic, in: D. Gabbay, C. Hogger, J. Robinson (Eds.), Handbook of Logic in Artificial
Intelligence and Logic Programming, volume III, Clarendon Press, Oxford, 1994, pp. 353–395.

[46] A. Bikakis, G. Antoniou, Local and distributed defeasible reasoning in multi-context systems, in: Rule Representa-
tion, Interchange and Reasoning on the Web, International Symposium (RuleML’08), 2008, pp. 135–149.

[47] F. Baader, B. Hollunder, Embedding defaults into terminological knowledge representation formalisms, Journal of
Automated Reasoning 14 (1995) 149–180.

[48] K. Britz, I. J. Varzinczak, Introducing role defeasibility in description logics, in: L. Michael, A. C. Kakas (Eds.),
Logics in Artificial Intelligence - 15th European Conference (JELIA 2016), volume 10021 of Lecture Notes in

Computer Science, 2016, pp. 174–189.
[49] K. Britz, T. Meyer, I. J. Varzinczak, Semantic foundation for preferential description logics, in: D. Wang,

M. Reynolds (Eds.), 24th Australasian Joint Conference on Artificial Intelligence (AI 2011), volume 7106 of Lecture

Notes in Computer Science, Springer, 2011, pp. 491–500.
[50] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, Semantic characterization of rational closure: From propositional

logic to description logics, Artificial Intelligence 226 (2015) 1–33.
[51] P. A. Bonatti, C. Lutz, F. Wolter, Description logics with circumscription, in: 10th International Conference on

Principles of Knowledge Representation and Reasoning (KR 2006), AAAI Press, 2006, pp. 400–410.
[52] P. A. Bonatti, M. Faella, L. Sauro, Defeasible Inclusions in Low-Complexity DLs, J. Artificial Intelligence Research

42 (2011) 719–764.
[53] G. Governatori, Defeasible description logics, in: G. Antoniou, H. Boley (Eds.), 3rd International Workshop

on Rules and Rule Markup Languages for the Semantic Web (RuleML 2004), volume 3323 of Lecture Notes in

Computer Science, Springer, 2004, pp. 98–112.
[54] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato, Reasoning about Typicality in Low Complexity DLs: The Logics

EL⊥Tmin and DL-Litec Tmin, in: T. Walsh (Ed.), 22nd International Joint Conference on Artificial Intelligence

http://webdam.inria/

80

(IJCAI 2011), IJCAI/AAAI, 2011, pp. 894–899.
[55] G. Casini, U. Straccia, Rational closure for defeasible description logics, in: [65], 2010, pp. 77–90.
[56] G. Casini, T. Meyer, I. J. Varzinczak, K. Moodley, Nonmonotonic Reasoning in Description Logics: Rational

Closure for the ABox, in: [66], 2013, pp. 600–615.
[57] L. Giordano, D. T. Dupré, Reasoning in a rational extension of SROEL, in: M. Lenzerini, R. Peñaloza (Eds.),

29th International Workshop on Description Logics (DL2016), volume 1577 of CEUR Workshop Proceedings,
CEUR-WS.org, 2016.

[58] J. McCarthy, Circumscription – a form of non-monotonic reasoning, Artificial Intelligence 13 (1980) 27–39.
[59] M. Cadoli, L. Palopoli, Circumscribing DATALOG: expressive power and complexity, Theoretical Computer

Science 193 (1998) 215–244.
[60] S. Heymans, T. Eiter, G. Xiao, Tractable Reasoning with DL-Programs over Datalog-rewritable Description Logics,

in: 9th European Conference on Artificial Intelligence (ECAI 2010), 2010, pp. 35–40.
[61] B. Glimm, Y. Kazakov, T. Tran, Scalable Reasoning by Abstraction Beyond DL-Lite, in: M. Ortiz, S. Schlobach

(Eds.), 10th International Conference on Web Reasoning and Rule Systems (RR 2016), volume 9898 of Lecture

Notes in Computer Science, Springer, 2016, pp. 77–93.
[62] I. Stewart, Complete Problems Involving Boolean Labelled Structures and Projection Transactions, Journal of Logic

and Computation 1 (1991) 861–882.
[63] G. Gottlob, N. Leone, F. Scarcello, Hypertree decompositions: A survey, in: J. Sgall, A. Pultr, P. Kolman (Eds.),

Mathematical Foundations of Computer Science 2001, 26th International Symposium, MFCS 2001 Marianske Lazne,
Czech Republic, August 27-31, 2001, Proceedings, volume 2136 of Lecture Notes in Computer Science, Springer,
2001, pp. 37–57. URL: https://doi.org/10.1007/3-540-44683-4_5. doi:10.1007/3-540-44683-4_5.

[64] V. Lifschitz, H. Turner, Splitting a logic program, in: P. V. Hentenryck (Ed.), 11th International Conference on
Logic Programming (ICLP 1994), MIT Press, 1994, pp. 23–37.

[65] T. Janhunen, I. Niemela¨ (Eds.), Logics in Artificial Intelligence - 12th European Conference (JELIA 2010), Helsinki,
Finland, September 13-15, 2010. Proceedings, volume 6341 of Lecture Notes in Computer Science, Springer, 2010.

[66] T. Eiter, B. Glimm, Y. Kazakov, M. Krötzsch (Eds.), Informal Proceedings of the 26th International Workshop on
Description Logics, Ulm, Germany, July 23 - 26, 2013, volume 1014 of CEUR Workshop Proceedings, CEUR-
WS.org, 2013.

