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Abstract: In recent years, massive development in the malware industry changed the entire landscape
for malware development. Therefore, cybercriminals became more sophisticated by advancing their
development techniques from file-based to fileless malware. As file-based malware depends on
files to spread itself, on the other hand, fileless malware does not require a traditional file system
and uses benign processes to carry out its malicious intent. Therefore, it evades conventional
detection techniques and remains stealthy. This paper briefly explains fileless malware, its life
cycle, and its infection chain. Moreover, it proposes a detection technique based on feature analysis
using machine learning for fileless malware detection. The virtual machine acquired the memory
dumps upon executing the malicious and non-malicious samples. Then the necessary features are
extracted using the Volatility memory forensics tool, which is then analyzed using machine learning
classification algorithms. After that, the best algorithm is selected based on the k-fold cross-validation
score. Experimental evaluation has shown that Random Forest outperforms other machine learning
classifiers (Decision Tree, Support Vector Machine, Logistic Regression, K-Nearest Neighbor, XGBoost,
and Gradient Boosting). It achieved an overall accuracy of 93.33% with a True Positive Rate (TPR) of
87.5% at zeroFalse Positive Rate (FPR) for fileless malware collected from five widely used datasets
(VirusShare, AnyRun, PolySwarm, HatchingTriage, and JoESadbox).

Keywords: malware; filelss malware; volatility; cybercrimes; machine learning; memory forensics

1. Introduction

Malware—a computer program that compromises a target system by infecting the
other programs installed on that system [1], is a significant threat to the security of in-
dividuals and organizations [1]. Malware could be used to steal sensitive data, disrupt
operations, and cause damage to systems. In most cases, malicious programs are created to
make illegal money by asking for ransomware in exchange for access to the user’s infected
machine [2,3]. Cybercriminals use various techniques to create and distribute malware,
including embedding it in legitimate software, disguising it as a legitimate application,
or using phishing attacks to trick users into installing it.

Fileless malware is a type of malware that infects the computer system through its
vulnerabilities and the legitimate programs installed. As the name describes, it does not
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fully rely on files. It targets the main memory of the computer system instead of the hard
disk. Fileless malware is a serious threat to cybersecurity because it can evade traditional
detection methods that rely on identifying malicious files on the hard disk. It can also be
difficult to remove because it does not leave any trace of itself on the hard disk [4]. There
are several ways for fileless malware to infect a computer system: One common method is
using malicious scripts embedded in legitimate files or programs. The script is executed
when the user opens the file or program and infects the system. Fileless malware can
also be delivered through phishing attacks, where the user is tricked into clicking on a
malicious link or downloading a malicious file. This malware became extremely popular
in 2017 as an exponential surge of 29% in the attacks was observed [5]. To protect against
fileless malware, it is important to practice safe browsing habits, such as avoiding clicking
on suspicious links or downloading unknown files. It is also important to keep software
and operating systems up-to-date and to use good quality antivirus software capable of
detecting fileless malware. The notion of good quality means the installed antivirus should
not be signature-dependent and heuristic-based detection [6]. Consequently, existing
state-of-the-art techniques have failed to detect fileless malware because of its stealth
capability [7]. It is also important to have a robust network and device configuration in
place to prevent unauthorized access and monitor for any suspicious activity.

Machine learning, including deep learning, has indeed been very successful in various
domains, including fileless malware detection [7–11]. These models can generalize well
on unseen testing samples, and they are accurate in detecting malware. However, it is
important to consider the performance measurement of these models in terms of training
and decision time, their requirement of an increased number of training samples, and their
vulnerability to adversarial attacks.

In this paper, we propose to use memory forensic techniques to extract the represen-
tative features of the fileless malware from the system’s main memory and use machine
learning for prediction. The use of memory forensic techniques and machine learning
in detecting fileless malware is a promising approach because it allows the detection of
malware that may not leave any trace on the hard disk. Analyzing the features of fileless
malware in the main memory makes it possible to identify patterns and characteristics
that could be used to train machine-learning algorithms to detect these threats. However,
it is notable that this approach may not be foolproof and may require ongoing updates
and adjustments to the machine learning model to stay effective against new and evolving
fileless malware threats. It is also important to have robust cybersecurity measures in
place to prevent the initial infection of fileless malware, as well as to have a plan in place
for responding to and mitigating the effects of a fileless malware attack which is out of
the scope of this paper. The malware and non-malware (benign) samples are executed in
the virtual machine individually, followed by creating a memory dump from the virtual
machine. We used Volatility—a memory forensic tool [12]—to extract the features from
memory dumps using different volatility plugins. The extracted features are stored as
datasets for validation by machine learning classifiers. The main contributions of this work
can be summarized as follows:

• The proposal of using memory forensic techniques in conjunction with advanced
state-of-the-art machine-learning algorithms to detect fileless malware.

• The creation of a dataset (though smaller but worth it) using memory forensic techniques.
• Preliminary results on the created dataset using state-of-the-art machine learn-

ing algorithms.

The remainder of the paper is organized as follows: Section 2 discusses the related
work, and Section 3 describes the types and working of malware. Section 4 presents steps
we adapted for malware detection based on machine learning classifiers. Section 5 evaluates
the approach experimentally, and Section 6 concludes and discusses future work.
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2. Related Work

Currently, malware is using sophisticated approaches for cyber attacks and advances
its attacking techniques from file-based to fileless attacks to bypass the existing solutions
for malware detection [13]. These existing solutions [14,15] can easily detect file-based
malware attacks on windows [16], Android [17,18], and IoT devices [19], but fail to detect
the fileless malware. This section presents the literature review, and comparative analysis
of machine learning approaches limited to fileless malware. Lee et al. [8] thoroughly
analyzed the attack techniques of ten previously known fileless malware collected from
public websites (e.g., Hybrid-analysis and GitHub) and proposed a classification method
for them based on their attack technique and characteristics. They used Cuckoo Sandbox
to analyze fileless malware and mapped them on MITRE ATT&CK kill-chain [20]. They
classified the fileless malware into three categories (attack type, evasion, and collection)
based on their results from Cuckoo Sandbox and improved the response time to fileless
attacks. Sanjay et al. [9] also discussed the technical details of fileless malware attacks
with their detection and mitigation techniques using heuristic-based malware analysis and
sandboxing. They categorized fileless malware into RAM-resident fileless malware and
script-based fileless malware. Then they described the evasion techniques used by the
fileless malware that is tricking the victim into downloading the malicious document that
contains a malicious script in the form of a macro. As the victim opens the malicious file,
the script injected in the file executes and inserts the malicious code into the memory.

Afreen et al. [7] also studied different types of fileless malware and analyzed their
infection and attack techniques along with their detection techniques. They defined various
execution techniques of fileless malware on the target systems, which include .NET frame-
works, Windows Management Instrumentation, and Power-Shell. They also discussed
different fileless malware attacks that performed an attack on the target system and gained
persistence to the system. They further clarified that improving the current analysis behav-
ior can improve the fileless malware detection technique. Fileless malware not only infects
the system through the infected file but can also infect the system through the browser.
Saad et al. [10] used the features of JavaScript and HTML5 and a JavaScript-based fileless
malware that targets the browser to infect the computer system by using the features such
as WebSockets, Web Workers, and Service Workers of HTML5 and JavaScript. They tested
their malware on different static and dynamic detection tools, and none of them detected
their malware. They showed that the attackers could exploit these features to insert fileless
malware in the browser and maintain its persistence by using WebSocket and Service
Worker, respectively.

Fileless malware can also infect Linux-based IoT devices. Dang et al. [21] developed
and deployed hardware and software-based honeypots in multiple public clouds. The hon-
eypots capture fileless and IoT-based malware, analyze their behavior, and profile their
characteristics. They observed 264 million malicious connections to their honeypots in one
year, among which 1.5 million were fileless attacks. They identified the fileless attacks by
thoroughly correlating the disclosed shell commands, monitoring file system modifications,
recording data-flow traffic, and examining third-party internet reports. They identified the
attacks of fileless malware and characterized them into eight types that include: occupying
end systems by altering the device password, damaging the system data by removing or
altering configuration files and programs, preventing system monitoring/auditing services,
retrieving system information, stealing valuable data, launching network attacks, and
launching attacks using no shell commands (e.g., SSH tunneling attacks). Malware can also
infect or take control of a victim’s machine to mine cryptocurrencies by using the system
resources without their knowledge. Such type of malware is called Cryptojacking or Cryp-
tocurrency mining malware [22,23]. Varlioglu et al. [24] reviewed fileless Cryptojacking
malware and studied different types of Cryptojacking malware, which include in-browser
Cryptojacking, in-host Cryptojacking, and fileless Cryptojacking. Moreover, they pro-
posed a digital forensics threat-hunting-oriented technique that can detect Cryptojacking
fileless malware.
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Borana et al. [11] briefly studied fileless malware and its life cycle and then proposed
a detection tool for fileless malware. Their detection tool consists of different modules that
can collect information about a running process and present that information to a system
admin for decision. The collected information may include information about the running
processes and their hierarchy (e.g., a list of child and parent processes). Then, they list the
process with the priority based on the information of DLLs, network protocols, network
connection state, local and foreign addresses, name and ID of a process, and port numbers.
They created the process dump and uploaded it to the online scanner “Virus Total” and
generated a report after scanning was complete. They triggered a warning to the system
administrator for the desired action if the online scanner found something malicious.

Tancio [25] studied different variations of fileless malware, including code injection,
script-based attacks, living off the land, and fileless persistence. In addition, they proposed
the fileless malware detection technique with the help of memory forensics using the
Volatility tool (Volatility is a command-line tool to extract the important information from
the memory image that is helpful for the detection of malware [12]). Their technique is
based on manual forensics analysis of the memory for the detection of fileless malware,
which is a high time, effort, and resource-consuming task. Tarek et al. [26] defined rules
called dynamic signatures to monitor the binaries of fileless malware and identify their
malicious behavior. They discussed the detection techniques of antiviruses and the eva-
sion techniques that hide malware from detection. Most antiviruses use signature-based
detection techniques, which maintain the signatures of malware in the viral definition
database of the antivirus programs. Antivirus programs use these signatures to scan for
particular malware. Dynamic signature detection cannot be bypassed by malware using
the above evasion techniques. They extracted the dynamic behavior of malware with the
help of Microsoft Tool “Detours” and API hooking. Once they create the process, it will
trigger the tool “Detours”, which injects the DLL created by the authors into the process
to perform hooking. They collect DLL logs, API calls and arguments and send them back
to the behavior analyzer that compares that extracted behavior with the signatures stored
in the database and performs the desired action. For experimental purposes, they wrote
three signatures: AMSI Bypass Detection, Lsass.exe process dump detection, and process
hollowing detection. They can detect a malicious process created by fileless malware using
these signatures.

Bucevschi et al. [27] presented an anomaly detection method for the command line
arguments to extract the features that build a machine learning model for the detection
of fileless malware using a perceptron algorithm called OSC. The perceptron algorithm
ensures that all the correct classifications of benign samples perform extra training to mini-
mize the number of falsely classified entries. They built a dataset for testing and training
purposes that contains 500,551 command lines, PowerShell scripts, Windows Management
instrumentation scripts, bash scripts, etc., provided by Bit-defender Cyber Threat Intelli-
gence (CTI) lab and Virus Total Intelligence (VTI). They decided to use the ratio of five
clean commands against malicious ones to reduce the rate of false positives. They further
avoided false-positive situations when they extracted specialized features for malicious
commands and cleaned the command lines with the extraction of features available in both
categories to observe the malicious commands, anomalies, and obfuscation methods.

Table 1 shows the summary of different approaches for the detection of fileless mal-
ware. It is important for any tool that aims to detect and protect against malicious behavior
to have a clear and understandable way of informing the user about any potential threats.
Simply providing a warning to the user may not be enough, especially if the user lacks
a technical background and does not know how to respond to the warning properly. One
potential improvement to the approach proposed by Borana et al. [11] could be to provide
more detailed information to the user about the detected threat, such as the specific process
or DLL that triggered the warning and recommendations on how to address the issue. It
could also be helpful to have an option for the tool to automatically take action to mitigate
the threat, such as blocking the process or quarantining the file, with the user’s permission.
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It is also important to consider the potential risks and limitations of the tool, such as the
possibility of false positives or the need for the user to consent before any action is taken. It
may be helpful to have additional safeguards to ensure that the tool is used responsibly and
does not cause unintended consequences. The proposed approach uses machine learning
techniques with memory forensics and explored 33 different features of in-memory and
browser-based fileless attacks. These fileless malware exploit PowerShell, WMI, Macros,
and VB scripts for attacks. The proposed approach built their dataset for the fileless mal-
ware downloaded from virus total, AnyRun, and PolySwarm websites. Comparing the
proposed work with the state-of-the-art provides more accurate classification and detection
results of fileless malware.

Table 1. Comparison of the proposed approach with state-of-the-art approaches.

Type of Malware Vulnerabilities Exploitation Analysis Technique Dataset Used Classification Detection

[10] In memory attack Javascript and HTML5 Tested on anti-malware
detection tools NA No No

[8]
In memory and
registry attacks, non
portable executable

Macros, scripts, registry
values, Powershell, SMB
payload, obfuscated code,
DLL files etc.

Analyzed published
and Kuckoo Sandbox
samples attack mapped
with MITRE

Collected
samples from
hybrid analysis
and GitHub

Yes No

[21] In-memory attack
Shell commands, file
system, data-flow, SSH
server in IoT

By Profiling four s/w
and h/w honeypots in
multiple public cloud

NA No No

[24]
In-browser
cryptojacking
attacks

PowerShell, WMI,
scheduler, and registry

Patterns of Fileless
malware for Tactics,
Techniques,
and Procedures

NA Yes No

[9]
In memory and
browser-based
attacks

Shell commands, file
system, SMB, macro,
browsers

NA NA Yes No

[11] In system and in
network attacks

Windows Registry Task
scheduler WMI etc.,

Runtime behavior of the
system NA No No

[16] In sensors memory IoT devices and edge
computing devices

ML-based model with
sigmoid function NA Yes Yes

[28] In-Memory attacks Windows PowerShell
scripts

Analysis of registry,
commands and
windows security logs,
abnormal processes

Own Dataset
(RAM dump) Yes No

[27] In-Memory attacks
Command lines,
PowerShell, WMI and
bash scripts

Observation of
Malicious commands,
anomalies,
and obfuscation
methods

Built own
dataset 500,551
command line,
PowerShell and
WMI Scripts, etc.

No Yes

Our
Approach

In-Memory and
browser attacks
with 33 different
features

PowerShell, WMI, Macros,
VB script

Machine Learning and
Memory Forensics

Virus Total,
AnyRun, and
PloySwarm

Yes Yes

3. Background

This section briefly discusses file-based and fileless malware’s infection chain and the
working of malware.

3.1. File-Based Malware Infection Chain

Figure 1 illustrates the infection chain of file-based malware. File-based malware
is a type of malware that is transmitted through files, such as executables, documents,
or scripts. These types of malware can infect a user’s system by being downloaded from a
malicious website, received as an attachment in an email, or transferred through an infected
flash drive. Once the infected file is received, it is written to the hard disk of the user’s
system. If the user has an antivirus program installed, the file may be scanned by the
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antivirus program. If the antivirus program detects the file as malicious (malicious), it
may remove or quarantine that file to prevent it from execution. If the antivirus program
does not detect the file as malicious (which means it is benign), the user is allowed to
execute it [13], which can lead to malware infecting the system. It is important for users to
be cautious when downloading files from unknown sources and to keep their antivirus
programs up to date to protect against file-based malware.

Figure 1. File-based malware infection chain (how malware infects the victim machine).

Life Cycle of File-Based Malware

Figure 2 shows the life cycle of file-based malware. It comprises the following
four phases:

Figure 2. Life cycle of file-based malware.

• Development phase:

The development phase of malware creation is the first step in the malware life cycle.
During this phase, the malware author creates the code for the malware to cause damage
to a victim’s computer or steal data from it. This phase is similar to the development
phase of typical software, in which the code is written and tested to ensure it functions
properly. During the development phase, the malware author may use various obfuscation
techniques to avoid detection by antivirus programs [29]. These techniques include em-
bedding, code appending, code surrounding, encryption, polymorphism, metamorphism,
stealth, and packing. Obfuscation techniques make the malware more difficult to detect
and analyze, making it harder for antivirus programs to identify and protect against it.
Once the malware has been developed and tested, it can be distributed to potential victims.
This can be achieved through various means, such as email attachments, malicious web-
sites, or infected flash drives. Thus, it becomes important for users to be cautious when
downloading files from unknown sources and to keep their antivirus programs up to date
to protect against malware.
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• Distribution phase:

The distribution stage of the malware life cycle is the phase in which the attacker
attempts to deliver the malware to the victim’s machine. Various mechanisms can be used
to accomplish this, such as social engineering, email attachments, exploit kits, and malver-
tizing [29]. Social engineering involves using psychological manipulation to convince the
victim to take a certain action, such as clicking on a link or downloading an attachment.
Attackers may use phishing emails or malicious websites to trick the victim into thinking
they are interacting with a legitimate source. Email attachments can also be used to deliver
malware. The attacker may send an email with a seemingly harmless attachment, but when
the victim downloads and opens the attachment, the malware is executed on their machine.
Exploit kits are tools used to exploit vulnerabilities in a victim’s system and install malware.
They are often used to deliver malware through malicious websites or email attachments.
Malvertizing is online advertising that uses malicious or infected ads to deliver malware to
the victim’s machine. The malware is executed on their machine when the victim clicks on
the ad.

• Infection phase:

During the infection stage of the malware life cycle [29], the goal of the attacker is
to infect the victim’s system with the malware successfully. To achieve this, the attacker
may use the malware to exploit vulnerabilities in the system. The attacker may also try to
remain stealthy so that the malware is not detected by the victim’s antivirus or anti-malware
programs. Several techniques help malware evade detection and infect the systems, namely,
rootkits, hiding in legitimate processes, and using encryption.

• Post-Infection phase:

After successfully infecting a victim’s system, the malware will typically perform
the actions it was designed to do. This can include a variety of malicious actions. Firstly,
the malware may try to establish a connection with the command and control (CnC)
server to receive further commands from the attacker. Secondly, the malware may try to
steal sensitive data from the victim’s system, such as passwords, financial information,
or personal documents. These data may be uploaded to the CnC server for the attacker to
use. Thirdly, some types of malware, known as ransomware, are designed to encrypt the
victim’s data and demand a ransom in exchange for the decryption key. Finally, the malware
may give the attacker remote access to the victim’s system, allowing them to control the
system remotely [29].

3.2. Fileless Malware Infection Chain

Figure 3 shows the infection chain of fileless malware. There are mainly two infec-
tion scenarios.

• Infection Scenario 1: Fileless malware is a type of malware that does not rely on
traditional infection methods, such as downloading and executing a file on the victim’s
system. Instead, it uses legitimate tools, such as PowerShell, to execute its code directly
in the system’s memory. The initial steps of infection for fileless malware are similar
to those of file-based malware. The victim may be tricked into downloading a file
containing a malicious macro or script stored on the hard disk. However, when this
file is executed, it uses PowerShell or another legitimate tool to execute its code in
the system’s memory. Once the code is executing in the memory, the malware may
trigger PowerShell to connect to a malicious Command and Control (CnC) server and
download the final payload of the malware. This payload is then run directly in the
system’s RAM without being stored on the hard disk [13]. Because fileless malware
does not leave any trace on the hard disk, it can be more difficult to detect and remove
than traditional file-based malware. It is important for users to be cautious when
interacting with unknown links or downloading attachments and to use antivirus and
antimalware software to protect against fileless malware.
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• Infection Scenario 2: The user can be infected by visiting a malicious website con-
taining malicious JavaScript triggered by some particular action. At this point, if
an antivirus scans the website, it will not find anything malicious. The malicious script
is triggered once the user performs a certain action on which the malicious JavaScript
loads. It spawns legitimate tools such as PowerShell that run the malicious code
directly in the RAM without storing anything on the hard disk. This code triggers
the PowerShell to connect to the malicious Command and Control (C&C) server to
download and run the final payload directly in the RAM without storing anything on
the hard disk [13].

Figure 3. Fileless malware infection chain.

Life Cycle of Fileless Malware

Figure 4 shows the life cycle of fileless malware. It comprises the following three phases.

Figure 4. Life cycle of fileless malware.

• Delivery phase: The attacker tries to deliver the malware to the victim’s machine
with the help of different techniques mostly used by traditional malware, including
social engineering, that encourages the victim to click on the link or send the initial
vector of the malware in the email attachment. The attacker’s goal is to deliver the
initial payload to the victim machine without triggering the antivirus or anti-malware
programs installed on the victim machine. The initial vector may include executables
or malicious documents, having malicious macros or scripts embedded in it and
delivered through emails, or users downloading them from malicious websites [30].

• Persistence phase: Malware uses different evasive techniques to achieve persistence
on the victim machine, which means the attack continues even after the system reboots.
In the case of fileless malware, the malware resides in the system’s main memory
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(RAM), which is a volatile memory. The drawback could be that the malicious code
could be erased when the system reboots. To overcome this limitation, fileless malware
maintains its persistence in the system by making changes to the system registry and
by setting the scripts that run automatically after the system reboot, with the help of
legitimate tools such as WMI, windows registry, or task scheduler [30].

• Exploitation phase: The malware performs the desired action for which it is designed
with the help of the legitimate tools installed on the system. If the malware contains
scripts or macros, they will be executed and run directly using PowerShell or the
command line. Fileless malware uses legitimate tools, such as MS Office, Windows
Management Instrumentation (WMI), Windows registry, PowerShell, or task scheduler
to perform its operation [30].

3.3. File-Based vs. Fileless Malware Comparison

It is worth recalling that fileless malware does not rely on the traditional method of
installing itself onto a victim’s computer by creating a new file. Instead, it uses existing
tools and processes on the victim’s computer to execute itself and carry out its malicious
activities. This can make its detection and prevention more difficult, as it does not leave
any visible trace on the victim’s computer.

On the other hand, file-based malware is a type of malware that creates a new file
on the victim’s computer as part of its installation process. This file can be detected and
removed by antivirus software or any other security tool.

Fileless and file-based malware could be equally dangerous and can cause harm to
a victim’s computer or network. For file-based malware detection, there exists a large
state-of-the-art, while fileless malware detection is still in its early stages.

Table 2 shows the comparison between file-based and fileless malware features based
on their techniques.

Table 2. Comparison between file-based and fileless malware.

Features File-Based Malware Fileless Malware

Source Code, Malicious File Available Not Available
Detection Complexity Moderate High

Persistence Medium Low

File Types Executables JavaScript, VBScript, Macros,
PowerShell, WMI

Target Single OS Can target multiple OS

Obfuscation Techniques File encryption, code
embedding, etc. Encoding, Encryption etc.

4. Our Malware Detection Approach

Memory forensics can be an effective way to detect fileless malware. Memory forensics
involves analyzing the contents of a computer’s memory (also known as a “memory dump”)
in order to identify and extract evidence of malicious activity. By creating a snapshot of
the infected machine and a memory dump, one can use a memory forensics tool such as
Volatility to extract the fileless malware’s features and train and test a machine learning
model. This machine learning model can then be used to detect fileless malware on systems.

It is important to note that memory forensics is a complex and specialized field, and it
requires a thorough understanding of the inner workings of a computer’s memory and
operating system. In addition to using a memory forensics tool such as Volatility, it may
also be necessary to use other specialized tools and techniques to extract and analyze the
relevant information from the memory dump. Overall, the use of memory forensics and
machine learning can be a powerful approach for detecting and analyzing fileless malware.
Figure 5 shows the architecture diagram of our approach.
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Figure 5. Architecture Of proposed system.

The details of our proposed machine learning-based approach toward fileless malware
detection are as follows.

4.1. Behavior Analysis and Features Extraction

We performed the following steps (as shown in Figure 6) to analyze fileless malware’s
behavior and extract its features from the memory dump.

Figure 6. Behavior analysis and features extraction flowchart.
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The process starts with the collection of both malware and non-malware samples.
The non-malware samples are executed in the virtual machine. In contrast, the malware
samples are executed in the online sandbox environment to check whether the Command
and Control Server (CnC server) is active by analyzing the network activity. If there is no
response from the CnC server against the malware sample, then the malware sample is
dropped from further analysis. In case of response, the malware sample is executed in
the virtual machine for further analysis. At this point, a snapshot of a virtual machine is
taken, which is then used to extract the memory dump of the virtual machine. In the end,
the memory dump is analyzed to extract the features. The extracted features are saved to
a CSV file and later used as the dataset for training and testing the machine learning model
using the Volatility Memory Forensics tool.

4.2. Acquisition of Memory Dump from the Virtual Machine

Fileless malware executes in memory to perform malicious actions, such as creating
a new process, using network resources, executing shell commands, making changes
in registry hives, etc., as shown in Figure 7. This behavior leads to the use of malware
analysis for the detection of fileless malware. In principle, we take the memory dump
of the machine and pass it to the volatility memory forensics tool that will help in the
analysis of the memory dump. To collect that memory dump, we developed a testbed
in a computing environment built using an Intel Core i5-7200U and AMD Radeon R5
M330 platform running Windows 10 Professional. To protect the device from infection,
we created a virtual environment with the help of VMWare Workstation 16 by setting up
a virtual machine running Windows 7 Service Pack 1. We used a Windows 7-based virtual
machine in this study because while analyzing the malware samples, we found that the
Volatility memory forensics tool is not working correctly with the memory dumps of the
virtual machines running the latest version of Windows. The virtual machine details are
shown in Table 3. The VM running Windows OS from the virtualized environment is
used to execute the malware and extract the memory dump. To protect the network from
infection and to provide network access to the virtual machine, a separate wireless network
adapter (TP-Link TL-WN722N) is added to the virtual machine, which is connected to the
separate network.

Figure 7. Virtual machine insights.

Table 3. Detail of Virtualized Environment.

OS RAM Storage Network

Windows 7 SP 1 2 GB 40 GB Host Only with separate network adapter

VMWare Workstation 16 allows one to take a snapshot of the virtual machines at
a specific state and save it to the snapshot file (vmss). This snapshot file extracts the
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memory dump from the virtual machine. Following is the process to collect the virtual
machine snapshots (as shown in Figure 8).

• Step 1—Take a snapshot of the clean virtual machine.
• Step 2—Executes malicious/non-malicious program on the virtual machine.
• Step 3—Take another snapshot of the virtual machine and extract the memory dump.
• Step 4—Revert to the clean instance of the virtual machine, i.e., restore the snapshot of

the clean virtual machine.
• Step 5—Extract the memory dump from the snapshot of the virtual machine using

VMWare tool-vmss2core.

Figure 8. The flow of the snapshot collection process.

After collecting the snapshot of the virtual machine, the next step is to extract the
memory dump from that snapshot of the virtual machine and to do this VMWare tool
vmss2core is used.

4.3. Feature Extraction from the Memory Dumps

After acquiring the virtual machine’s memory dump, the next step is to extract the
features from that memory dump against the malware or non-malware sample and save
them into the CSV file, which will be later used for training and testing the machine learning
models. The Volatility Framework tool is used for extracting features from memory dumps.
The Volatility tool has over 70 plugins to analyze the different characteristics of main
memory. This tool supports 32-bit and 64-bit operating systems, including all Windows,
Linux, and macOS flavors. To analyze the memory dump, we first need to initialize the
appropriate profile against the memory dump that helps the volatility understand from
which operating system the memory dump came. After setting the appropriate profile,
we can run different volatility plugins to extract the information, such as a list of the
running processes, a list of DLLs loaded by the process, a list of services running, network
connections, a list of registry hives, etc. Moreover, as volatility does not give the details of
registry events and network information such as DNS requests, etc., the malware sample
is also run on the online sandbox AnyRun [31] to extract network and registry-related
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features. The Volatility plugins used in this study to extract features from the memory
dump and the features extracted from the online sandbox are shown in Table 4.

Table 4. List of Volatility plugins used to extract features from memory dumps and the features
extracted from the online sandbox.

Name Description Type

pslist Display the list of running processes Plugin

pstree Display the list of the relationship of
parent-child processes Plugin

preview Display the list of hidden processes Plugin
dlllist Display the list of Dlls used by each process Plugin

mutantscan Display the list of windows thread
based mutexes Plugin

svcscan Display the list of windows services Plugin

handles Display the list of open handles of
each process Plugin

netscan Scan and Display the list of TCP connections
and sockets Plugin

ldrmodules Display the list of unlinked Dll’s Plugin
modules Display the list of loaded modules Plugin

privs Display the list of processes having privileges Plugin
callbacks Display the list of kernel routines Plugin
hivelist Display the list of registry hives Plugin

thrdscan Find and display the list of thread objects
present in the main memory Plugin

total registry events Display the total number of registry events Sandbox
registry read events Display the number of registry read events Sandbox
registry write events Display the number of registry write events Sandbox
registry delete events Display the number of registry delete events Sandbox

number of exe files dropped Display the number of exe files dropped Sandbox

number of files with unknown types dropped Display the number of files with unknown
file types dropped Sandbox

number of HTTP, HTTPS requests Display the number of HTTP,
HTTPS requests Sandbox

number of DNS requests Display the number of DNS requests Sandbox

After extracting the features from the memory dump using these plugins, the extracted
features are later used to train and test the machine learning model as shown in Figure 9.

Figure 9. Feature extraction process from memory dump using Volatility.

4.4. Dataset and Fileless Malware Sample Details

The fileless malware samples are collected from the websites, shown in Table 5. These
samples are executed one by one in the virtual machine to extract memory dump from the
virtual machine against each malware sample as described in Section 4.2. After acquiring
the memory dump, features from each memory dump are extracted with the help of
the Volatility Memory Forensics tool as described in Section 4.3. The dataset used in
this study is collected from [32], which is an unbalanced dataset because the number
of non-malware samples is slightly greater than the number of malware samples in the
dataset. We augment this dataset by adding 26 new fileless malware samples to balance
the dataset. Among the new fileless malware samples, only five malware samples were
executed successfully, and the remaining 21 malware samples did not execute successfully
because their command and control server was dead, therefore these 21 fileless malware
samples are dropped from the dataset.
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Table 5. Fileless malware samples collected.

SR. Name of Website Description Published Year Owned By No. of Malware
Samples Available

No. of Fileless
Malware Samples

Available and
Downloaded

1 VirusShare [33]

A repository of live
malware samples

with
malicious code

2011 Corvus Forensics 55,372,441 11

2 AnyRun [31]

An online
interactive sandbox

with a vast
malware

sample database

2016 AnyRun 6,200,000 10

3 PolySwarm [34]
A crowdsourced
threat detection

marketplace
2018 PolySwarm 350,000 5

4.5. Selection of Classifiers

Binary class classification exploits machine learning algorithms to classify data into
two categories or classes; in this study, as malware and non-malware (benign). To train
and test a classifier, it is usually necessary to split the available data into a training set
and a testing set. The training set is used to “train” the classifier by adjusting the model’s
parameters to fit the data. In contrast, the testing set is used to evaluate the classifier’s
performance on data that it has not seen before. We chose multiple state-of-the-art machine
learning algorithms for fileless malware detection, namely, Random Forest (RF), Decision
Tree (DT), Support Vector Machine (SVM), Logistic Regression (LR), K-Nearest Neighbor
(KNN), XGBoost (XGB), and Gradient Boosting (GB). These are all widely used machine
learning algorithms that can effectively classify data into the desired two categories. Each
algorithm has its strengths and weaknesses, and which one is best suited for a particular
task depends on the characteristics of the data and the requirements of the problem.

5. Experimental Evaluation

This section discusses the implementation details and the accuracy of the selected
machine-learning algorithms for fileless malware detection.

5.1. Experimental Setup for Implementation

For implementing the proposed methodology, the malware samples are analyzed in
the virtual environment using VMWare Workstation 16 by setting up a virtual machine
running Windows 7 Service Pack 1 equipped with 2 GB of RAM and 40 GB of storage.
The machine learning models have been developed and trained on Jupyter notebook,
an open-source web-based computing platform for live code execution [35].

Our analysis is based on 45 samples while each of the samples has 33 dimensions. We
divide the dataset into train and test splits, where we use 67% of the randomly chosen
samples for training the classifiers individually and the remaining 33% samples for testing
those pre-trained classifiers. We formulate the problem of fileless malware detection as
a binary class classification problem and evaluate all the chosen classifiers (i.e., RF, DT,
SVM, LR, KNN, XGB, and GB) on this dataset.

5.2. Feature Scaling

It is generally a good idea to scale the features in a dataset before training a machine
learning model, especially if the features have very different scales or ranges. This is
because many machine learning algorithms use some form of distance measure as part
of the learning process, and features with very different scales can dominate the distance
measure and make it difficult for the model to learn effectively.
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StandardScaler (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html, accessed on 2 November 2022) is a common method for scaling the
features of a dataset. It scales the data so that the mean becomes 0 and the standard
deviation is 1. This can help the model learn more effectively because the features are on a
similar scale, and it can also help prevent some types of numerical instability. Alternately,
MinMaxScaler (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
MinMaxScaler.html, accessed on 2 November 2022) is another method for scaling the
features of a dataset. It scales the data so that the minimum value becomes 0 and the
maximum value becomes 1. This can be useful for image data, which often has fixed pixel
values between 0 and 255 because it ensures that all the features are on the same scale.
However, it may not be as appropriate for datasets with a large variance or for features that
have a skewed distribution.

In general, it is important to consider the characteristics of the data and the specific
requirements of the machine learning algorithm when choosing a method for scaling the
features. Both StandardScaler and MinMaxScaler can be useful in different situations, but it
is important to choose the one that is most appropriate for the specific dataset and machine
learning problem at hand. To this end, in this paper, we have applied StandardScaler for
feature scaling.

5.3. Parameter Optimization

Parameter optimization is an important step in the process of building and evaluating
a classifier, as it can help improve the performance and generalization of the classifier
and can also help reduce the computational cost of training and evaluating the classifier.
Additionally, it can help prevent overfitting, which occurs when a classifier too closely fits
the training data and performs poorly on new, unseen data. Optimizing the parameters
allows us to find a balance between fitting the training data well and generalizing it to
new data.

It is worth mentioning that we applied 10-fold cross-validation on the train set (split
with 67% sample) to find the best hyperparameters and kept the test data unseen by the
classifiers to confirm the generalization of the classifiers. Table 6 shows the cross-validation
scores of the selected machine-learning algorithms on the train set.

Table 6. Computed best parameters with obtained CV score for different classifiers.

Classifier Parameters Score

Logistic Regression class_weight = “balanced”, fit_intercept = True,
solver = “liblinear” 77.0

Support Vector Machine C = 50, gamma = “scale”, kernel = “rbf”,
class_weight = “balanced”, degree = 3, shrinking = False 76.5

Gradient Boosting max_depth = 1, n_estimators = 100 90.0

KNearestNeighbor n_neighbors = 3, weights = “uniform”, algorithm = “auto”,
leaf_size = 5 60.5

XGB
gamma = 0.05, max_depth = 3, min_child_weight = 1,
n_estimators = 10, reg_alpha = 0.5, reg_lambda = 1.0,

subsample = 0.8
93.0

Decision Tree class_weight = “balanced”, criterion = “gini”,
max_features = “sqrt”, min_samples_split = 3, splitter = “best” 90.9

Random Forest bootstrap = False, criterion = “gini”, n_estimators = 50,
max_features = “sqrt” 97.5

5.4. Results

We report the results in terms of True Positive Rate (TPR), False Positive Rate (FPR),
and accuracy score. TPR is the fraction of malware samples correctly classified as malware
and FPR is the fraction of non-malware samples incorrectly classified as malware and
accuracy is the ratio of correct classifications to the overall classification attempts.

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
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We summarize our obtained results in Figure 10. In Figure 10a, we show the results
of chosen classifiers (with default parameters) on the original features (without scaling).
In this setting, we achieved as high as 87.5% TPR at the cost of 0% FPR hence leading
to an accuracy of 93.3% by RF classifier. Logistic regression ended up as 2nd best here
attaining an overall accuracy of 86.7% (TPR of 75% and FPR of 0). In Figure 10b, we show
the obtained results on the same original features but with classifiers trained on optimal
parameters. Further in Figure 10c,d, we show the results of classifiers (with default features)
and tuned classifiers on scaled data, respectively. As some of the classifiers, e.g., SVM,
are not robust enough to high variance and work generally well on scaled data, we see
a bit of improvement whereas some classifiers (DT, RF) are extremely robust to these
experimental conditions hence they equally perform well scaled/unscaled data. Here we
see that RF remained consistent in all experimental settings, and yielded comparatively
a higher accuracy of 93.33% (87.5% TPR at the expense of 0% FPR). It is worth mentioning
that SVM using optimized parameters, attained 87.5% TPR as RF however it has a higher
FPR of 14.28% as compared to 0% for RF.
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Figure 10. Results of different classifiers (in default settings) on original features (a) and scaled
features (c) and (on best-selected hyperparameters) on original (b) and scaled (d), respectively.

RF as a classifier has outperformed all other contestants: it remained consistent across
all experimental settings which prove its effectiveness against all the odds, i.e., (i) the limited
number of samples, (ii) high feature variance, and (iii) without parameter optimization.
Hence, it yielded as high as 87.5% TPR at the rate with zero FPR yielding an accuracy of
93.3%. We believe the performance will be improved further if the number of samples
is increased.

5.5. Discussion

The Random Forest as a classifier works by constructing a collection of decision trees
during training and using them to make predictions during testing. At each split in the tree,
the algorithm selects a random subset of the features to consider, which helps to decorrelate
the trees and reduce overfitting. The final prediction is made by averaging the predictions
of all the individual trees. One of the main advantages of RF is that it is relatively easy
to use, as it does not require much tuning of hyperparameters [36]. However, it can be
computationally expensive to train, especially for large datasets, and it may not perform as
well as more complex models on some datasets, which is not the case here. It worked well
on our dataset besides the limited number of samples. We believe this classifier will perform
well on larger datasets. We consider obtaining an overall accuracy of 93.3% by the RF
classifier a good starting point for fileless malware detection. We negate the concern related
to its overfitting as this result is obtained on the unseen test dataset, which technically
means our classifier already found a good bias–variance tradeoff. Another reason for being
so accurate is the absence of noise. If the dataset contains a lot of noise, it may be difficult for
the model to learn meaningful patterns and make accurate predictions. A smaller dataset
may contain less noise, making it easier for the model to learn and perform better, which is
the correct case here.

Fileless malware detection is a relatively newer area; thus, we can only compare our
detection accuracy with a similar approach from the literature (i.e., Bucevschi et al. [27]).
We managed to obtain 93.3% detection accuracy compared to 83.32%. It is worth noting
that Bucevschi et al. did not specify whether the command lines used in their study were
from fileless or file-based malware, which could impact the performance of their approach
in detecting fileless malware specifically. In addition, it is important to consider the context
in which the approaches were evaluated, including the dataset(s) used to evaluate the
performance of the models and any other relevant factors that could impact the performance
of the approaches.

It is not uncommon for RF to perform well on various tasks, especially when the data
are noisy or have a high degree of variance. However, it is always important to evaluate the
performance of any machine learning model in the context of the specific problem being
solved and to compare it to other possible approaches to see which one performs best. It
is also important to keep in mind that increasing the number of samples may improve
performance, depending on the specific characteristics of the data.
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5.6. Limitations

It is common for datasets in the field of cybersecurity to be limited in size, as it is
difficult to obtain large numbers of malicious samples. This makes it challenging to train
and evaluate machine learning models, as the models do not have sufficient training
samples to learn from. In the case of fileless malware, it can be particularly difficult to
obtain samples because the CnC servers may no longer be active, or the samples may only
work under certain conditions. Excluding these samples from your analysis is reasonable,
as they may not represent the types of fileless malware you are interested in detecting. One
way to potentially overcome the limited size of the dataset is to use data augmentation
techniques to generate additional synthetic samples. This can help increase the dataset’s
size and improve the model’s performance. We leave to use these augmentation and
fine-tuning techniques as related work.

6. Conclusions and Future Work

Fileless malware is a type of malware that does not rely on installing itself as a file
on the infected system’s hard drive. Instead, it runs directly in the main memory (RAM)
and leverages legitimate programs or operating system tools to carry out its malicious
activities. This makes it difficult to detect because it does not leave behind the usual traces
of malware, such as files or registry entries. The life cycle of fileless malware typically
begins with the initial infection, which may occur through various means, such as phishing
attacks, drive-by downloads, or exploitation of vulnerabilities in software. The malware
then establishes itself in the main memory and begins to carry out its malicious activities,
such as stealing sensitive data, installing additional malware, or taking control of the
infected system.

To detect fileless malware, it is important to focus on identifying the presence of
malicious activity rather than the presence of malware files. One approach to detecting
fileless malware is to analyze the features of the system’s main memory, looking for
indicators of malicious activity such as changes to system files or the use of unusual
network communication patterns. Machine learning techniques can be used to analyze
these features and identify patterns indicative of fileless malware. We have also exploited
a machine learning approach to develop our fileless malware detection model. By training
the model on a dataset of fileless malware and benign samples and then evaluating the
model’s performance on a testing dataset, we could select the best-performing model and
tune its hyperparameters to improve its accuracy. It is worth mentioning that Random
Forest achieved the highest accuracy of 93.3% with a TPR of 87.5% at an FPR of 0% on
the unseen test set. The metrics illustrate the models’ ability to correctly identify fileless
malware and non-fileless malware (benign) samples with high precision.

We plan to improve the efficiency of our proposed fileless malware detection method.
One potential direction for future work could be incorporating features related to process
creation and network connections into the machine-learning model. The model can distin-
guish malicious and legitimate processes more accurately by considering a broader range
of features. Another potential direction for improvement could be to incorporate additional
machine learning techniques, such as deep learning approaches, which have shown to
be effective in a variety of tasks, including malware detection. Deep learning approaches
can learn complex patterns in data and can be particularly effective when working with
large, high-dimensional datasets. It may also be useful to consider incorporating other
types of features, such as those related to system behavior, system configurations, and user
activity, which can provide additional context for the machine learning model to consider
when making predictions. Finally, it may be beneficial to conduct further evaluations of the
model’s performance on a diverse and representative dataset to ensure that the model is
robust and can generalize to new situations.
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