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Abstract—Studying free-standing conversational groups (FCGs) in un- 

structured social settings (e.g., cocktail party ) is gratifying due to the 

wealth of information available at the group (mining social networks) 

and individual (recognizing native behavioral and personality traits) 

levels. However, analyzing social scenes involving FCGs is also highly 

challenging due to the difficulty in extracting behavioral cues such as 

target locations, their speaking activity and head/body pose due to 

crowdedness and presence of extreme occlusions. To this end, we 

propose SALSA, a novel dataset facilitating multimodal and Synergetic 

sociAL Scene Analysis, and make two main contributions to research 

on automated social interaction analysis: (1) SALSA records social 

interactions among 18 participants in a natural, indoor environment 

for over 60 minutes, under the poster presentation and cocktail party 

contexts presenting difficulties in the form of low-resolution images, 

lighting variations, numerous occlusions, reverberations and interfering 

sound sources; (2) To alleviate these problems we facilitate multimodal 

analysis by recording the social interplay using four static surveillance 

cameras and sociometric badges worn by each participant, compris- 

ing the microphone, accelerometer, bluetooth and infrared sensors. 

In addition to raw data, we also provide annotations concerning in- 

dividuals’ personality as well as their position, head, body orientation 

and F-formation information over the entire event duration. Through 

extensive experiments with state-of-the-art approaches, we show (a) the 

limitations of current methods and (b) how the recorded multiple cues 

synergetically aid automatic analysis of social interactions. SALSA is 

available at http://tev.fbk.eu/salsa. 

 
Keywords—Multimodal group behavior analysis, Free-standing conver- 

sational groups, Multimodal social data sets, Tracking, Speaker recogni- 

tion, Head and body pose, F-formations, Personality traits. 

1 INTRODUCTION 

UMANS are social animals by nature, and the im- 
portance of social interactions for our physical 

and mental well-being has been widely acknowledged. 
Therefore, it is unsurprising that social interactions have 
been  studied  extensively  by  social  psychologists  in  a 
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Fig. 1. Analysis of round-table meetings (left, adopted 
from Mission Survival dataset [6]) has been attempted 
extensively– orderly spatial arrangement and sufficient 
separation between persons enable reliable extraction 
of behavioral cues for each person from such scenes. 
Exemplar SALSA frame (right) showing FCGs– varying 
illumination, low resolution of faces, extreme occlusions 
and crowdedness makes AASI highly challenging (best- 
viewed in color and under zoom). 

variety of contexts. Fundamental research on social in- 
teractions was pioneered by Goffman [1], whose symbolic 
interaction perspective explains society via the everyday 
behavior of people and their interactions. Face-to-face 
conversations are the most common form of social inter- 
actions, and free-standing conversational groups (FCGs) 
denote small groups of two or more co-existing persons 
engaged in ad-hoc interactions [2]. FCGs emerge natu- 
rally in diverse social occasions, and interacting persons 
are characterized by mutual scene locations and poses 
resulting in spatial patterns known as F-formations [3]1. 
Also, social behavioral cues like how much individuals 
speak and attend to others are known to be correlated 
with individual and group-specific traits such as Ex- 
traversion [4] and Dominance [5]. 

Automated analysis of social interactions (AASI) has 
been attempted for over a decade now. The ability to 
recognize social interactions and infer social cues is 
critical for a number of applications such as surveillance, 
robotics and social signal processing. Studying unstruc- 
tured social scenes (e.g., a cocktail party) is extremely 
challenging since it involves inferring (i) locations and 
head/body orientations of targets (persons) in the scene, 
(ii) semantic and prosodic auditory content correspond- 
ing to each target, (iii) F-formations and persons interact- 

1. A F-formation is a set of possible configurations in space that 
people may assume while participating in a social interaction. 
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ing at a particular time (addresser and addressee recog- 
nition), (iv) attributes such as the big-five personality 
traits [7] from the above social behavioral cues. 

Some of the aforementioned problems have been ef- 
fectively addressed in controlled environments such as 
round-table meetings (Fig. 1 (left)), where behavioral 
cues concerning orderly arranged participants can be 
reliably acquired through the use of web-cameras and 
close-talk microphones. However, all of them remain 
unsolved in unstructured social settings, where only 
distant surveillance cameras can be used to capture 
FCGs [3], and microphones may be insufficient to clearly 
recognize the speaker(s) at a given time instant due to 
scene crowding. We are expressly interested in analyzing 
FCGs (Fig. 1 (right)) in this work. 

To address the challenges involved in analyzing FCGs, 
we present SALSA, a novel dataset2 facilitating multi- 

modal and Synergetic sociAL Scene Analysis. In contrast 
to social datasets studying round-table meetings [6], [8], 

or examining FCGs on a small scale [9], [10], SALSA 
contains uninterrupted recordings of an indoor social 
event involving 18 subjects over 60 minutes, thereby 

serving as a rich and extensive repository for the behav- 
ioral analysis and social signal processing communities. 

In addition to the raw multimodal data, SALSA also 
contains position, pose and F-formation annotations over 
the entire event duration for evaluation purposes, as well 

as information regarding participants’ personality traits. 
The social event captured in SALSA comprised two 

parts: (1) a poster presentation session, and (2) a cocktail 
party scene where participants freely interacted with each 

other. There were no constraints imposed in terms of 
how the subjects were to behave (i.e., no scripting) or 

the spatial layout of the scene during the recordings. 
Furthermore, the indoor environment where the event 
was recorded was prone to varying illumination and 

reverberation conditions. The geometry of F-formations 
is also influenced by the physical space where the social 

interaction is taking place, and the poster session was 
intended to simulate a semi-structured social setting 

facilitating speaker labeling as described in Section 5.4. 
While it is reasonable to expect observers to stand in a 

semi-circular fashion around the poster presenter, none 
of the participants were instructed on where to stand 

or what to attend. Finally, as seen in Fig. 1 (right), the 
crowded nature of the scene and resulting F-formations 

gave rise to extreme occlusions, which along with the 
low-resolution of faces captured by surveillance cam- 
eras, make visual analysis extremely challenging. Also, 

crowdedness poses difficulties to audio-based analysis 
for solving problems such as speaker recognition. Over- 

all, SALSA represents the most challenging dataset for 
studying FCGs to our knowledge. 

To alleviate the difficulties in traditional audio-visual 
analysis due to the challenging nature of the scene, in ad- 

 
2. The SALSA dataset (raw data, annotations and associated code) is 

available at http://tev.fbk.eu/salsa. 

dition to four wall-mounted cameras acquiring the scene, 
sociometric badges [11] were also worn by participants to 
record various aspects of their behavior. These badges 
include a microphone, an accelerometer, bluetooth and 
infrared (IR) sensors. The microphone records auditory 
content that can be used to perform speaker recogni- 
tion under noisy conditions, while the accelerometer 
captures person motion. Bluetooth and IR transmitters 
and receivers provide information regarding interacting 
persons, and are useful for inferring body pose under 
occlusions. Cumulatively, these sensors can synergeti- 
cally enhance estimation of target locations and their 
head and body orientations, face-to-face interactions, F- 
formations, and thereby provide a rich description of 
FCGs’ behavior. Through the SALSA dataset, we make 
two main contributions to AASI research: 

Firstly, we believe that the challenging nature of 
SALSA will enable researchers to appreciate the 
limitations of current AASI approaches, and spur 
focused and intensive research in this regard. 
We go beyond audio-visual analysis for studying 
FCGs, and show how multimodal analysis can alle- 
viate difficulties posed by occlusions and crowded- 
ness to more precisely estimate various behavioral 
cues and personality traits therefrom. 

The paper is organized as follows. Section 2 reviews 
prior unimodal and multimodal approaches to AASI, 
while Section 3 highlights the limitations of traditional 
AASI approaches and datasets, motivating the need for 
SALSA. Section 4   describes   the   SALSA   dataset,   and 
the synergistic benefit of employing audio, visual and 
sensor-based cues is demonstrated via experiments in 
Section 5. We finally conclude in Section 6. 

2 LITERATURE   REVIEW 

This section reviews the state-of-the-art in social behavior 
analysis with specific emphasis on methods analyzing 
FCGs. We will first discuss unimodal approaches (i.e., 
vision-, audio- and wearable sensor-based) and then 
describe expressly multimodal approaches. 

2.1 Vision-based approaches 

Challenges pertaining to surveillance scenes involving 
FCGs addressed by vision-based methods include detec- 
tion and tracking of targets in the scene, estimation of 
social attention direction and detection of F-formations. 
We describe works that have examined each of the above 
problems as follows. 

Given the cluttered nature of social scenes involving 
FCGs, detecting and tracking the locations of multiple 
targets is in itself a highly challenging task. Multi-target 
tracking from monocular images is achieved through the 
use of a dynamic Bayesian network in [12]. As extreme 
occlusions are common in social scenes involving FCGs 
(see Fig. 1), employing information from multi-camera 
views can enable robust tracking. The color-based parti- 
cle filter tracker proposed in [13] for multi-target tracking 

• 

• 
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with explicit occlusion handling is notable in this regard. 
Of late, tracking-by-detection [14] combined with data 
association using global appearance and motion opti- 
mization [15] has benefited multi-target tracking. Some 
works have further focused on identity-preserving track- 
ing over long sequences [16]. These methods assume a 
sufficiently large number of high-confidence detections 
which might not always be available with FCGs due to 
persistent long-term occlusions, although recent works 
have focused on the detection problem under partial oc- 
clusion [17], [18]. Multi-target tracking is further shown 
to improve by incorporating aspects of human social 
behavior [19], [20], as well as with activity analysis [21]. 
However, F-formations are special groups, characterized 
by static arrangements of interacting persons constrained 
by their locations and head/body orientations. 

 

Social attention determination in round-table meet- 
ings, where high-resolution face images are available, 
has been studied extensively. Vision-based approaches 
typically employ head pose as a proxy to determine 
social attention direction [22]. In comparison, head pose 
estimation (HPE) from blurry surveillance videos is 
much more difficult. Visual attention direction of moving 
targets is estimated by Smith et al. [12] using position 
and head pose cues,  but  social  scenes  or  occlusions 
are not addressed here. Some works have exploited the 
relationship between walking direction and head/body 
pose to achieve HPE from surveillance videos under 
limiting conditions where no labeled training examples 
are available, or under occlusions [23], [14], [24]. Focus- 
of-attention estimation in social scenes is explicitly ad- 
dressed by Bazzani et al. [25], who model a person’s vi- 
sual field in a 3D scene using a subjective view frustum. 

 

Recently, the computer vision community has showed 
some interest in the detection and analysis of dyadic 
interactions [26], [27] and more general groups [28], [29], 
[30]. Also, the interest on detecting social interactions 
and F-formations from video has intensively grown. 
Cristani et al. [31], [32], [33] employ positional and 
head orientation estimates to detect F-formations based 
on a Hough voting strategy. Bazzani et al. [25] gather 
information concerning F-formations in a social scene 
using the Inter-relation pattern matrix. F-formations are 
modeled as maximal cliques in edge-weighted graphs 
in [34], and each target is presumed to be oriented 
towards the closest neighbor but head/body orientation 
is not explicitly computed. Gan et al. [35] detect F- 
formations upon inferring location and orientation of 
subjects using depth sensors and cameras. Setti et al. [9] 
propose a graph-cuts based framework for F-formation 
detection based on the position and head orientation 
estimates of targets. Based on experiments performed on 
four datasets (IDIAP Poster [34], Cocktail Party [10], Coffee 
Break [31] and GDet [25]), their method outperforms six 
state-of-the-art methods in the literature. 

2.2 Audio-based approaches 

Studying interactional behavior in unstructured social 
settings solely using audio or speech-based cues is ex- 
tremely challenging, as FCGs are not only characterized 
by speaking activity, but also by non-verbal cues such 
as head and body pose, gestural and proxemic cues. 
Furthermore, classical problems in audio analysis be- 
come extremely challenging and remain unexplored in 
crowded indoor environments involving a large number 
of targets. Indeed, current methodologies for speaker 
diarization [36], sound source separation [37] or local- 
ization [38] address scenarios with few persons. Nev- 
ertheless, a few studies on audio-based detection of 
FCGs have been published. Wyatt et al. [39] tackle the 
problem of detecting FCGs upon recognizing the speaker 
using temporal and spectral audio features. Targets are 
then clustered to determine co-located groups on the 
basis of speaker labels. More recently, FCG  detection 
and network inference is achieved in [40] employing a 
conversation sensing system to perform speaker recogni- 
tion, and F-formations are detected based on proximity 
information obtained using bluetooth sensors. 

2.3 Wearable-sensor based approaches 

Wearable sensors can provide complementary behavioral 
cues in situations where visual and speech data are 
unreliable due to occlusions and crowdedness. Hung et 
al. [41] detect FCGs in social gatherings by measuring 
motion via an accelerometer. With the increased usage 
of smartphones, mobile sensor data have also become 
a viable choice for analysis of social interactions  or 
more complex social systems [42]. Via mobile phones, 
proximity can be inferred from Wifi and bluetooth [43]. 
However, the spatial resolution of these sensors is limited 
to only a few meters, and the co-location of mobile 
devices does not necessarily indicate a social interaction 
between the corresponding individuals. Therefore, Cat- 
tuto et al. [44] propose a framework that balances scala- 
bility and resolution through a sensing tier consisting 
of cheap and unobtrusive active RFID  devices,  which 
are capable of sensing face-to-face interactions as well 
as spatial proximity over different scale lengths down to 
one meter or less. Nevertheless, we note that many of 
these works address relatively less crowded scenarios, 
not comparable in complexity to SALSA. 

2.4 Multimodal approaches 

Multimodal approaches to social interaction have essen- 
tially examined small-group interactions such as round- 
table meetings, and mainly involve audio-visual analysis 
as detailed below. Examples of databases containing 
audio-visual recordings and associated annotations are 
the Canal9 [45], AMI [8], Mission Survival [6], Free Talk 
[46] and the Idiap WOLF [47] corpora. In addition, the 
IMADE [48] and UEM [49] technological frameworks for 
recording of multimodal data to describe social scenes 
involving  FCGs  are  available.  Robotics  is  one  among 
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Fig. 2. Existing datasets facilitating F-formation detection. 
Frame border colors encode sensing modalities. 

other applications for which datasets have been pub- 
lished, see [50]. All these data collection efforts have 
inspired inter-disciplinary research in the field of human 
behavior understanding and led to the emergence of the 
social signal processing community [51]. Several of these 
databases have been utilized for isolating traits relating 
to an individual (e.g., big-five personality traits) or a 
group (such as dominance). Choudhury and Pentland [11] 
initiated behavior analysis using wearable sensors by 
developing the Sociometer. Recently, Olgu´ın et al. [52] pro- 
posed the Sociometric badge, which stores (i) motion using 
an accelerometer, (ii) speech features (rather than raw au- 
dio), (iii) position information and (iv) proximity to other 
individuals using a bluetooth sensor, and (v) face-to-face 
interactions via an infrared sensor. Sociometric badges 
have been used to capture face-to-face communication 
patterns, examine relationships among individuals and 
model collective and organizational behavior [53], detect 
personality traits and states, and predict outcomes such 
as productivity and job satisfaction [54]. Another notable 
AASI work employing multi-sensory information is that 
of Matic et al. [55], who estimate body orientation and 
inter-personal distance via mobile data and speech activ- 
ity to detect social interactions. 

 

3 SPOTTING THE RESEARCH  GAP 

While human behavior has been studied extensively in 
controlled settings such as round-table meetings, achiev- 
ing the same with FCGs is way more difficult as close 
audio-visual examination of targets is precluded by the 
crowded and occluded nature of the scene. We carried 
out an extensive analysis of previous AASI data sets 
focusing on FCGs; they have mainly been used to ad- 
dress two research problems: (1) Detecting F-formations 
and (2) Studying individual and group behavior from 
multiple sensing modalities. 

The vast majority of works addressing F-formation 
detection are vision-based. Fig. 2 presents snapshots of 
datasets used for F-formation detection, and positions 

 
 

Fig. 3. Datasets for social interaction analysis: the first 
five consist on round-table meetings and span over hours, 
while the last four study social networks/behavior and 
span over days/months. 

them with respect to the number (denoted using #) 
of annotated frames and scene targets. Among them, 
SALSA is unique due to its (i) multimodal nature, (ii) 
extensive annotations available over a long duration and 
(iii) challenging nature of the captured scene. 

Figure 3 depicts the datasets   used   for   individual 
and group behavioral analysis. While the first group (light-
gray) consists of audio-visual recordings spanning over 
hours acquired under controlled settings, the sec- ond 
group (dark-gray) comprises datasets acquired over 
days/months for studying social networks and group 
relationships. SALSA again stands out as it records infor- 
mation from both static cameras and wearable sensors, 
leading to a previously non-existent and highly infor- 
mative combination of sensing modalities. This section 
details some of the limitations of current AASI ap- 
proaches regarding F-formation detection and individual 
and group behavior analysis, thereby throwing light on 
how SALSA can spur critical research in these respects. 

 
3.1 Human tracking and pose estimation 

Human tracking and pose estimation in a social context 
is challenging for several reasons. Firstly, a person’s 
visual appearance can change considerably across the 
scene due to camera perspective and uneven illumi- 
nation, as well as with pose and  posture.  Secondly, 
large and persistent occlusions are frequent in such 
scenes, which corrupt subsequent observations. Thirdly, 
integrating auditory information to aid localization and 
orientation estimation is also difficult due to its inter- 
mittent nature and the adverse impact of reverberations 
and interfering sources. Beyond inherent complexity, the 
state-of-the-art is further challenged when raw audio- 
visual data cannot be recorded for processing or scene- 
specific optimization, e.g., due to privacy concerns. 
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Accurate FCG behavior analysis requires the correct 
assignment of observations to sources (targets) over the 
long run. Identity switches during tracking can corrupt 
the extraction of aggregated features that develop over 
time to infer personality traits, functional roles, or in- 
teraction networks, and long-term identity-preserving 
multi-target tracking is still unachievable. Furthermore, 
existing appearance-based pose estimation methods are 
not adapted to highly cluttered scenes with large and 
persistent occlusions. Finally, from the computational 
perspective, multi-target approaches are not able to ro- 
bustly and efficiently scale to large groups. 

3.2 Speech processing 

While numerous research studies have attempted speech, 
speaker and prosodics recognition under controlled con- 
ditions, several issues arise when auditory information 
is captured via mobile microphones in crowded indoor 
scenes. Firstly, regular indoor environments are prone to 
reverberations, which adversely affect many sound pro- 
cessing techniques. Secondly, intermittence of the speech 
signal necessitates speaker diarization prior to process- 
ing. Thirdly, the speech signal is also spatially sparse, 
and source separation techniques are usually required 
to segment speaker activity. Currently, there are no algo- 
rithms addressing source separation or diarization in the 
presence of a large number of sound sources and uncon- 
trolled conditions. While multimodal approaches have 
addressed these problems via audio-visual processing, 
they still cannot work with large groups of people and 
crowded indoor environments involving unconstrained 
and evolving interactions. 

3.3 F-formation detection 

Detecting F-formations in unconstrained environments 
is a complex task. As F-formations are characterized by 
mutually located and oriented persons, robust tracking 
and pose estimation algorithms are necessary. However, 
both multi-target tracking and head/body pose estima- 
tion in crowded scenes are difficult as discussed earlier. 
Even under ideal conditions, F-formation shapes are 
influenced by (i) the environment’s layout, i.e., room 
shape, furniture and other physical obstacles, (ii) scene 
crowdedness and (iii) attention hotspots such a poster, 
painting, etc. While existing methodologies typically as- 
sume that F-formation members are placed on an ellipse, 
robust F-formation detection requires accounting for the 
above factors as well. Also, most algorithms are visually 
driven, and few multimodal approaches exist to this end. 

3.4 Inferring personality traits 

Works seeking to recognize personality traits from in- 
teractive behavior have traditionally relied on the vi- 
sual and auditory modalities. Target position and pose, 
prosodic and intonation inference, face-to-face interac- 
tion detection, bodily gestures and facial expressions are 
commonly used for assessing the big-five personality 
traits. Most prior works study these behaviors in the 

context of round-table meetings, where participants are 
regularly arranged in space, and therefore their positions 
and body orientations are known a priori. Under these 
conditions, behavior analysis algorithms deliver pre- 
cise estimates concerning interactional behavior, thereby 
facilitating personality trait recognition. Nevertheless, 
there are very few works that studied personality infer- 
ence from unstructured interactions involving FCGs. 

Assessing the personality traits   of   a   large   number 
of interacting persons in crowded scenarios, where the 
group structure evolves progressively, is a highly chal- 
lenging task. In such cases, people constantly leave and 
join groups, and therefore groups are created, split, and 
merged. An in-depth analysis should take the group dy- 
namics into account in addition to the evolving physical 
arrangements and occasional conversations. Given that 
personality inference is a sophisticated and subtle task, 
the right combination of cues extracted from different 
modalities can lead to a robust assessment. 

3.5 The raison d’être of SALSA 

Upon analyzing the state-of-the-art in behavior analysis 
and personality inference,  we  conclude  that:  (i)  Even 
if multimodal analysis has been found to outperform 
unimodal approaches and provide a richer representa- 
tion of social interplays, some key tasks are not yet 
addressed in a multimodal fashion, e.g.pose estimation 
and F-formation detection; (ii) Social interactions have 
been studied under controlled settings, and there is a 
paucity of methods able to cope with unconstrained 
environments involving large groups, crowded spaces 
and highly dynamic interactions, and (iii) Most existing 
approaches have independently studied the different 
behavioral tasks – while it is known that bidirectional 
links between the tasks exist, these links have been rarely 
exploited. For instance, knowing the head and body 
orientations of individuals can help in the estimation of 
F-formations and vice-versa. Similarly, F-formation de- 
tection clearly benefits from accurate tracking algorithms, 
which at their turn can be influenced by the robust 
detection of F-formations. In order to foster the study 
of the aforementioned challenges, we recorded SALSA, 
whose description is presented in the next section. 

 
4 THE SALSA DATA SET 

In order to provide a new   and   challenging   evalua- 
tion framework for novel methodologies addressing the 
aforementioned challenges, we introduce the SALSA 
(Synergetic sociAL Scene Analysis) dataset. SALSA rep- 
resents an excellent test-bed for multimodal human 
behavior understanding due to the following reasons. 
Firstly, all behavioral data were collected in a regular 
indoor space with the participants only requiring to 
wear portable and compact sociometric badges which 
ensured naturalistic social behavior. Secondly, due to 
the unconstrained nature of the scene, the recordings 
contain numerous artifacts such as varying illumination, 
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TABLE 1 
Description of the sensors used in SALSA. STFT 

denotes short-time Fourier transform. 
Sensor Output Freq. (Hz) 

Vision 4 synchronized images 15 

Audio Amplitude stats & STFT 2 & 30 

Infra-red Detected badge’s ID 1 

Bluetooth Detected badge’s ID 1/60 

Accelerometer Body motion 20 

 

visual occlusions, reverberations or interfering sound 
sources. Thirdly, the recorded event involved 18 persons: 
such large social groups have rarely been studied in 
the behavior analysis literature. These participants did 
not receive any special instructions or scripts prior to 
the recording, and the resulting social interactions were 
therefore free-willed and hedonistic in nature. Finally, 
the social interplay was recorded via four wall-mounted 
surveillance cameras and the Sociometric badges3 worn 
by the targets. These badges recorded different aspects 
of the targets’ social behavior such as audio or motion 
as detailed later. This combination of static cameras 
and wearable sensors is scarce in the literature, and 
provides a wealth of behavioral information as shown in 
Section 5. These four salient characteristics place SALSA 
in a unique position among the various datasets available 
for studying social behavior, see Figures 2 and 3. 

4.1 Scenario and roles 

SALSA was recorded in a regular indoor space and the 
captured social event involved 18 participants and con- 
sisted of two parts of roughly equal duration. The first 
part consisted of a poster presentation session, where four 
research studies were presented by graduate students. 
A fifth person chaired the poster session. In the second 
half, all participants were allowed to freely interact over 
food and beverages during a cocktail party. 

It needs to be noted here that while some participants 
had specific roles to play during the poster presentation 
session, none were given any instructions on how to 
act in the form of a script. Consequently, the interaction 
dynamics correspond to those of a natural social inter- 
play. Obviously, participants with different roles (chair, 
poster presenter, attendee) are expected to have different 
interaction dynamics, and these roles were designed to 
help behavioral researchers working on role recognition. 

4.2 Sensors 

The SALSA data were captured by a camera network 
and wearable badges worn by targets. The camera net- 
work comprised four synchronized static RGB cameras 
(1024 768 resolution) operating at 15 frames per second 
(fps). Each participant wore a sociometric badge during 
the recordings which is a 9 6   0.5 cm box equipped 
with four sensors, namely, a microphone, an infrared 
(IR) beam and detector, a Bluetooth detector and an 
accelerometer. The badges are battery-powered and store 

3. http://www.sociometricsolutions.com/ 

 

 
 

Fig. 4. Five annotated F-formations represented via con- 
nections between feet positions (crosses) of interacting 
targets. Corresponding O-spaces are denoted by the col- 
ored convex shapes. 

 
recorded data on a USB card without the need for any 
wired connection, thus enabling natural social interplay. 
Table 1 presents an overview of the five sensors used. 

 
4.3 Ground truth data 

Annotations 

In order to fulfill the requirements expected of a sys- 
tematic evaluation framework, SALSA provides ground- 
truth annotations, which were performed either man- 
ually or semi-automatically over the entire event du- 
ration. The annotations were  produced  in  two  steps. 
In the first step, using a dedicated multi-view scene 
annotation tool, the position, head and body orientation 
of each target was annotated every 45 frames (3 s). To 
speed up the annotation process, the total number of 
targets was divided among three annotators. A target’s 
position, head and body orientation were annotated by 
a first annotator and then double-checked by the second. 
Discrepancies between their judgments were resolved by 
a third annotator. All annotators were clearly instructed 
on how to perform the annotations. To facilitate the 
annotation task, markings from the previous annotated 
frame were displayed so that only small modifications 
were needed. 

In the second step, annotated positions and head/body 
orientations were used for deducing F-formations. An- 
notations were again performed every 45 frames and 
we employed the following criteria for detecting F- 
formations: an F-formation is characterized by the mu- 
tual locations and head, body orientations of interacting 
targets, and is defined by the convex O-space they 
encompass such that each target has unhindered access 
to its center. A valid F-formation was assumed if the 
constituent targets were in one of the established pat- 
terns, or had direct and unconstrained access to the O- 
space center in case of large groups (refer to [31] for 
details). Figure 4 illustrates five annotated F-formations 
around four posters (target feet positions are marked 
with crosses) and corresponding O-spaces. Considering 
the two groups in the foreground, the F-formation in 
front of the poster on the right does not include the FCG 
with two targets on the left, since neither of them have 
access to the center of the larger group. 

http://www.sociometricsolutions.com/
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Fig. 5. Distributions of the big-five personality traits. 

Personality data 

SALSA also contains big-five personality trait scores of 
participants to facilitate behavioral studies. Prior to data 
collection, all participants filled the Big Five personality 
questionnaire [7]. The Big Five questionnaire owes its 
name to the five traits it assumes as constitutive of per- 
sonality: Extraversion– being sociable, assertive, playful 
vs. aloud, reserved, shy; Agreeableness– being friendly 
and cooperative vs. antagonistic and fault-finding; Con- 
scientiousness– being self-disciplined, organized vs. in- 
efficient, careless; Emotional Stability– being calm and 
equanimous vs. insecure and anxious; and Creativity– be- 
ing intellectual, insightful vs. shallow, unimaginative. In 
the questionnaire, each trait is investigated via ten items 
assessed on a 1–7 Likert scale. The final trait scores were 
computed according to the procedure detailed in [56], 
and the distributions of these traits over the 18 targets 
are presented in Figure 5. 

5 EXPERIMENTS ON SALSA 

This section is devoted to evaluate the performance of 
state-of-the-art methodologies for different behavioral 
tasks on SALSA. In order to ensure reproducibility of 
results, we will provide (i) the dataset, (ii) the software 
used to produce the obtained results and (iii) a detailed 
description of the experiments. While the data and the 
software will be made available online, a complete de- 
scription of the conducted experiments can be found in 
the supplementary material. 

5.1 Multimodal synchronization 

One critical issue when recording with several inde- 
pendent devices is synchronization, as the same event 
is labeled by independent sensors with different times- 
tamps. In the case of SALSA, we had to synchronize the 
eighteen badges worn by targets to the camera network. 
Assuming that there is no drift, we need to find the time- 
stamp mapping between each sociometric badge and the 
camera network. This problem reduces to determining 
the time-shift for each badge so that events are simulta- 
neously observed by the badge and the camera network. 

Using the position and body pose annotations, we de- 
termined the set of potential infra-red detections, times- 
tamped with respect to the cameras. By computing the 

Fig. 6. Synchronization procedure: Similarity scores for 
badge/target IDs 5, 10 and 16 as a function of the time- 
shift– a clear peak can be observed for all badges. 

similarity score between the potential and actual infra- 
red detections, we robustly estimated the temporal shift 
between each badge and the camera network. Computed 
scores for three of the badges, as a function of the shift 
are shown in Figure  6.  We  can  observe  a  clear  peak 
in the badge’s similarity score at the optimal time-shift. 
Computational details and obtained plots for all badges 
can be found in the supplementary material. 

5.2 Visual tracking of multiple targets 

Despite many advances in computer vision research, 
tracking individuals is still a unsolved problem. In the 
particular case of SALSA, person tracking is challenging 
due to the presence of extreme and persistent occlu- 
sions. Some targets are difficult to distinguish from oth- 
ers using appearance features, and identity-preserving 
tracking required for multimodal behavior interpretation 
is further hindered by non-uniform scene illumination 
even when multiple views are available.   State-of-the- 
art tracking-by-detection methods feature global appear- 
ance optimization [16], but require a sufficiently dense 
number of high-confidence detections across the whole 
sequence. However, target detection by itself is extremely 
challenging in such scenes even if leveraged through 
learning a set of detectors adapted to different occlusion 
levels [17]. We therefore considered a sequential Bayesian 
tracking approach without appearance model adapta- 
tion. The Hybrid Joint-Separable particle filter (HJS-PF) 
tracker [13] was specifically developed for systematic 
occlusion handling at frame-level, and has been applied 
to tracking in social scenes [10], [33]. 

HJS-PF represents targets’ states in the scene based on 
ground locations, and applies a multi-target color like- 
lihood with a first-order dynamical model to propagate 
a particle-set approximation of the posterior marginals 
for each target. In particular, the tracker exploits camera 
calibration information and a coarse 3D shape model 
for each target to explicitly model occlusion in the joint 
likelihood. While exact joint tracking is intractable with 
increasing number of targets (exponential blow-up in- 
duced by the curse-of-dimension), it is shown in [13] that 
single-target marginals can be updated under explicit 
occlusion reasoning with quadratic complexity, making 
the tracking of all 18 SALSA targets feasible. Further- 
more, to prevent marginals from overlapping when tar- 
gets have similar appearance– a frequent failure mode 
leading to identity switches – a Markov Random Field 
(MRF) defined over the targets’ positions is added in the 



9 
 

× 

 

 
 

Fig. 7. Tracking on Part 1 - Poster (top row) and Part 2 - Party (bottom row). Best viewed in color. 

propagation. At each HJS-PF iteration, the propagation 
is solved via message-passing and the update combines 
HJS-PF likelihoods from each view independently. With 
a final resampling, the a posteriori particle representation 
is obtained for each target. Details can be found in the 
supplementary material. 

We report HJS-PF tracking results on SALSA follow- 
ing the Visual Object Tracking Challenge (VOT 2013-14) 
evaluation protocol. The color model for each target was 
manually extracted from the initial part of the sequence 
where the target was free of occlusions, prior to tracking. 
These models were used for the whole sequence and 
were not re-initialized or adapted during tracking. HJS- 
PF was initialized for each target with the first available 
annotation, and tracking was performed at full frame 
rate (15 Hz) with 320   240 resolution, while evaluation 
was done every 3 s (or every 45 frames) consistent with 
the annotations. If the position estimate was over 70 cm 
from its reference, it was counted as a failure and the 
tracking of that target was re-initialized at the reference. 
Otherwise, the distance from the reference was accumu- 
lated to compute precision. In Table 2, the average pre- 
cision (average distance from the references), per-target 
failure rate (% of failures over 20K annotations), and 
frames-to-failure count (number of subsequent frames 
successfully tracked) are reported for the (i) first 30K 
frames (Poster), (ii) the remaining 25K frames (Party) 
and (iii) the total 60 minute recording. Our multi-thread 
implementation used in these experiments tracks the 18 
targets using 50 particles per target at 7 fps on a 3 GHz 
PC. While overall precision is high considering space 
dimensionality, low image-resolution and high occlusion 
rate (cf. last row of table; to our best knowledge no 
comparable dataset exists for tracking evaluation), a 
sensible increase in failure rate is observed for the Party 
session. Indeed, in FCGs, persons tend to occupy every 
available space and exhibit a relaxed body posture such 
that they are hardly visible in some of the camera views. 
Also, targets more often bend their bodies to grab food 

TABLE 2 
Mean tracking statistics and per-target occlusion rates for 

the four views. 

Poster  Party  All 

Precision (cm) 15.2 ± 0.1 20.1 ± 0.1 17.3 ± 0.1 
Failure rate (%) 2.6 ± 0.1 9.6 ± 0.3 5.7 ± 0.2 

   Frames-to-failure 1644 ± 63 439 ± 12 759 ± 21  

Occlusion (%) 28,35,22,26 25,28,49,27 27,32,34,27 
 

 

 

and beverages, and illumination varies considerably over 
the scene impeding color-based tracking. However, low 
failure rate in the Poster session where targets arrange 
themselves in a more orderly manner around posters 
indicates that occlusion handling is effective with the HJS-
PF filter. A snapshot of the tracking results during the 
Poster and the Party scenarios is found in Figure 7. Based 
on these results, we identify some key elements requisite 
for FCG tracking: (i) perform ground tracking with explicit 
occlusion handling at frame level, (ii) ex- tract 
discriminative signatures for each target to resolve 
identity switches (as in re-identification research), and 
(iii) learn the illumination pattern of the scene to adapt 
signatures locally to lighting conditions. These may be 
cast into a global optimization framework [16] and ex- 
tended to multi-modal tracking. 

5.3 Head and body pose estimation from visual data 

The estimation of the head and body pose is still an im- 
portant research topic in the computer vision community. 
Specifically, when focusing on estimating the positions 
and head and body orientation of individuals in FCGs 
monitored by distant surveillance cameras, several chal- 
lenges arise due to low resolution, clutter and occlusions. 
To demonstrate these challenges on SALSA, we consid- 
ered the recent work of Chen et al. [14], which is one 
of the few methods that jointly compute head and body 
orientation from low resolution images. In a nutshell, this 
algorithm consists of two phases. First, Histograms of 
Oriented Gradients (HoG) are computed from head and 
body bounding boxes obtained from training data. Then, 
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TABLE 3 
Head and body pose estimation error (degree). 

 
 

% training data view 1 view 2 view 3 view 4 
 

 

10% Head 45.7 ± 0.6 47.2 ± 0.3 48.4 ± 0.8 49.5 ± 1.2 
  Body 49.3 ± 0.5 51.6 ± 0.9 51.2 ± 0.4 54.6 ± 0.8  

5% Head 43.6 ± 0.5 46.2 ± 0.3 46.4 ± 0.8 47.5 ± 0.9 
  Body 47.3 ± 0.5 49.4 ± 0.5 49.9 ± 0.5 52.5 ± 0.7  

1% Head 42.2 ± 0.4 45.3 ± 0.3 43.4 ± 0.8 44.9 ± 1.5 
  Body 45.4 ± 0.5 47.5 ± 0.8 48.7 ± 0.7 51.7 ± 0.5  

 
a convex optimization problem that jointly learns two 
classifiers for head and body pose respectively is solved. 
Importantly, the classifiers are learned simultaneously, 
imposing consistency on the computed head and body 
classes so as to reflect human anatomic constraints (i.e., 
the body orientation naturally limits the range of possible 
head directions). The approach in [14] leverages informa- 
tion from both annotated and unsupervised data via a 
manifold term which imposes smoothness on the learned 
classification functions, typical of semi-supervised learn- 
ing methods. In our experiments, only labeled data were 
used for training. 

The method proposed in [14] is monocular and con- 
siders 8 classes (corresponding to an angular resolution 
of 45o) for both head and body classification. Therefore, 
to test it on SALSA, we also considered each camera 
view separately. In this series of experiments, the tar- 
get head and body bounding boxes were obtained by 
manual annotation, and a subset of about 7.5K samples 
was employed (bounding boxes were not available for 
targets going out of the field of view, see supplementary 
material). To compute visual features for both head and 
body, we used the HoG descriptors. In our tests, a small 
percentage of the frames   (1%,   5%,   10%)   were   used 
for training, while the rest were used for testing. For 
performance evaluation, we used the mean angular error 
(in degrees) defined in [14] for computing head and body 
pose estimation accuracy. 

Experiments were repeated ten times with random 
training sets, and corresponding average error and stan- 
dard deviation are reported in Table 3. Despite many 
occlusions and the presence of clutter, a state-of-the-art 
pose classification approach achieves satisfactory per- 
formance (maximum error of around one class width). 
However, it is worth noticing that our experiments were 
performed with homogeneous training and test data, in 
contrast with the heterogeneous data employed in [14]. 
We expect a significant decrease in performance when 
heterogeneous training data are used for pose estimation. 
Also, errors observed for head pose are considerably 
smaller than for body pose over all four camera views– 
this is because body pose classifiers are impeded by 
severe occlusions in crowded scenes. Precisely for this 
reason, previous works on F-formation detection from 
FCGs [31], [33], [57] have primarily employed head 
orientation, even though body pose has been widely 
acknowledged as the more reliable cue for determining 
interacting persons. We believe that devising a multi- 

 

 
Fig. 8. Mean speaker recognition accuracy with different 
methods on SALSA. 

view [58] and multimodal [59] approach also employing 
IR and bluetooth-based sensors for body pose estimation 
would be advantageous as compared to a purely visual 
analysis, which was one of the primary motives for 
compiling the SALSA dataset. 

5.4 Speaker recognition 

Speaker recognition is a critical and fundamental task 
in behavior analysis from FCGs. Processing the auditory 
data in SALSA is challenging for several reasons. First, 
the recordings were carried out in a regular indoor space 
prone to reverberations and ambient noise. Second, 18 
persons participated in the event and freely interacted 
with one another and therefore, the audio recordings 
consist of mixtures of speech signals emanating from 
different speakers. Third, the sociometric badges only 
retained part of the time-frequency representation, and 
thus high-performance speaker recognition is very chal- 
lenging on this data.  Finally,  as  relative  positions  of 
the speakers were constantly evolving, the speaker-to- 
microphone filter is not only unknown but highly time- 
varying, and thus very hard to estimate in practice. 
Indeed, current methods for speaker localization [38], 
[60] or source separation [37], [61] are not designed for 
such a complex scenario. 

Classical speaker recognition approaches build on Mel 
Frequency Cepstral Coefficients (MFCCs).   Computed 
from the short-time frequency transform (STFT), MFCC 
have been shown to achieve a good balance between 
descriptive power, complexity and dimensionality [62]. 
Four classifiers, namely, support vector machines with 
linear (SVM-L) and radial-basis function kernel (SVM- 
RBF), Gaussian mixture models (GMM) and random 
forests (RF) were employed for MFCC-based speaker 
recognition. To create ground-truth labels, we annotated 
by visual inspection the ID of the speaker within a group 
of five persons interacting over a 15-minute duration 
during the poster session. This yields one 6-class (5 
persons and silence) classification problem. We chose this 
group as the camera perspective and resolution allowed 
for reliable vision-based annotation. In addition to the 
straightforward strategy of feeding the badge-specific 
MFCCs to classifiers, we also concatenated the MFCCs 
extracted from all badges at every frame to deal with 
time varying speaker-microphone relative locations. In 
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TABLE 4 
F-formation detection with ground-truth data. 

 

  
Prec. 

Head 
Rec. 

 
F1 

 
Prec. 

Body 
Rec. 

 
F1 

HVFF lin [31] 0.56 0.72 0.63 0.59 0.74 0.67 
HVFF ent [32] 0.63 0.77 0.69 0.66 0.8 0.73 
HVFF ms [33] 0.58 0.73 0.64 0.61 0.76 0.68 

GT [57] 0.90 0.75 0.82 0.89 0.70 0.78 
GC [9] 0.80 0.85 0.82 0.82 0.85 0.83 

this way, we use badge’s information when the speaker 
is active and when it is not active. We refer to these 
two strategies as “No Fusion” (NF) and “Frame-based 
Fusion” (FBF) respectively. 

Mean speaker recognition accuracies obtained upon 
five-fold cross validation are presented in Figure 8. We 
observe that the FBF strategy systematically outperforms 
the NF strategy. Focusing on FBF, we observe that RBF- 
SVM and random forests perform similarly, while doing 
much better than GMM and outperforming linear SVM. 
Also, as GMMs are known to be less effective in higher 
dimensional spaces, we computed principal components 
so as to 90% variance in the FBF setting. 

In light of these results, we outline directions for 
future work. First, due to the crowded nature of scenes 
involving FCGs, auditory analysis is highly challenging. 
Due to ambient noise, reverberations and multiple sound 
sources, recognizing the speaker from the badge audio 
data is challenging per se. Nevertheless, performance 
increase observed  with the FBF  strategy  suggests that 
a multi-modal approach can be effective, where track- 
ing and pose estimates can facilitate multi-microphone 
based speech analysis. Finally, examining the badge data 
closely, most non-zero STFT coefficients are in the first 
nine frequency bins (< 300Hz). Therefore, algorithms 
attempting speaker recognition on SALSA should design 
features to exploit this frequency range. 

5.5 F-formation detection 

Detecting F-formations by visual observing crowded 
scenes is a challenging task. Several factors such as low 

video resolution, occlusions and complexities of human 
interactions hinder robust and accurate F-formation de- 
tection. We first considered four state-of-the-art vision- 
based approaches for individuating FCGs in SALSA. We 
adopted (i) Hough voting [31] (HVFF-lin), (ii) its non- 

linear variant [32] and (iii) multi-scale extensions [33] 
(denoted as HVFF-ent and HVFF-ms), (iv) the game- 

theoretic (GT) approach [57] and (v) the graph cut (GC) 
approach [9] as associated codes are publicly available4. 

These approaches take the targets’ positions and head 
pose as input, and compute F-formations independently 

for each frame. In particular, the Hough-voting methods 
work by generating a set of virtual samples around each 

target. These samples are candidate locations for the O-
space center. By quantizing the space of all possible 

 
4. http://profs.sci.univr.it/ cristanm/ssp/ 

http://www.iit.it/it/datasets-and-code/code/gtcg.html 

locations, aggregating samples in the same cell and 
finding the local maxima in the discrete accumulation 
space, the O-space centers and F-formations therefrom 
are identified. Oppositely, in the graph-cut algorithm, an 
optimization problem is solved to compute the O-space 
center coordinates. 

 
We first evaluated the above F-formation detection 

approaches using ground-truth position and head and 
body pose annotations, and considered all the annotated 
frames. F-formation estimation accuracy is evaluated 
using precision, recall and F1-score as in [31]. In each 
frame, we consider a group as correctly estimated if at 
least  T    G   of  the  members  are  correctly  found,  and 
if no more than 1 T G non-members are wrongly 
identified, where G is the cardinality of the F-formation 
G and T = 2/3. Results are reported in Table 4. Even the 
most accurate approach, i.e. the graph-cut method, only 
achieves a F1-score of about 0.83, clearly demonstrating 
the need of devising more sophisticated algorithms for 
detecting F-formations in challenging datasets such as 
SALSA. Moreover, it is worth noting that our results are 
consistent with the observations in previous works 
such as [31], i.e., using the body pose is more 
advantageous than using head orientation for detecting 
a group of interacting persons. 

 
In a second series of experiments, we evaluated the 

graph-cut approach using automatically estimated head 
and body orientations from the multi-sensor badge data. 
Specifically, we considered annotations for the target 
positions, and estimated head and body pose from visual 
data with the method proposed in [14]. In these ex- 
periments, HoG features extracted from head and body 
crops for the four camera views were concatenated and 
provided as input to the classifiers. In this series of 
experiments, we only considered a subset of frames 
where all the targets were in the camera field of view. 
To train the coupled head-body pose classifier, we used 
1% of the available samples as training data. Experiments 
were repeated ten times and the average performance is 
reported. We also integrated information from IR and 
audio sensors. Audio and IR are sparse observations, 
whilst visual data are available at every time-stamp. The 
likelihood of target n addressing m was estimated from 
audio and IR data. The maximum likelihood points to the 
person with whom m (the addressee) is more likely to 
interact. The audio and IR observations correspond to the 
direction of the addresser (n). For integrating multiple 
angles, we simply considered their weighted average. 
Weights were tuned so as to maximize algorithm per- 
formance on a small validation set. 

 
The results of our experiments are reported in Fig. 9. 

Clearly, when the head and body pose are automati- 
cally computed from visual analysis, the performance 
significantly decreases with respect to the use of ground- 

http://profs.sci.univr.it/
http://www.iit.it/it/datasets-and-code/code/gtcg.html
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Fig. 9. F-formation detection results (F1 score). Head and 
body pose were automatically estimated from visual, infra- 
red and audio data. 

truth (GT) annotations5. Furthermore, by combining in- 
formation from multiple modalities, we obtain a modest 
improvement with respect to using only visual data. 
Specifically, while jointly employing visual and infra- 
red data is advantageous with respect to exclusively em- 
ploying the visual data, the integration of audio sensors 
provides minimum benefit. Finally, it is worth noting that 
a decrease in performance with respect to the ground- 
truth is also due to the angle quantization process. This 
can be observed by comparing the four leftmost bars in 
Fig. 9. Therefore, casting head and body pose estima- 
tion as a classification task (as typical of related works, 
where four/eight pose classifiers are used) appears to be 
insufficient for robustly detecting F-formations. Instead 
of considering classifiers, our experiments suggest that 
a better strategy entails casting head and body pose 
estimation as a regression task. 

 

5.6 Interaction networks and personality traits 

The SALSA behavioral data also allow for investigating 
the relationship between social dynamics and higher- 
level behavioral determinants such as personality traits. 
In this section, different from traditional works that have 
correlated audio-visual behavioral cues with the big-
five traits, we show how the sociometric badge data can 
also be utilized for the same. To this end, we built three 
networks based on i) infra-red (IR) hits; ii) audio correla- 
tions6; and iii) group compositions from video-based F- 
formation annotations (GT). To account for the dynamics, 
we selected windows of 60 and 120 s, and proceeded to 
build a multimodal graph for each window. For infra- 
red, the graph representing the n-th window has an edge 
between the target pairs whose badges detected an infra- 
red hit during the time period defined by n. For audio, 
we employed the correlations and added an edge be- 
tween two targets if the corresponding correlation value 

 
5. Note that the accuracies with GT data reported in Fig. 9 are 

different from those presented in Table 4 since only a subset of frames 
is used in these experiments. In these considered frames, the scene is 
crowded since all 18 targets are inside the field of view. 

6. We computed the correlation between the badge STFT coefficients 
(normalized by the energy of the recording badge). 

is above a threshold (empirically set to 0.95). From the 
video data, we added an edge between two targets when 
they were detected as being part of the same group. 
Furthermore, we also built a static multimodal graph 
which encoded the entire sequence (equivalent to setting 
the window’s duration equal to the sequence’s duration). 
From these networks, we extracted three basic classes 
of structural characteristics, i.e., centrality, efficiency, and 
transitivity, and investigated how these characteristics are 
related to personality traits. 

Inspired by previous studies [63], [64], we extracted 
the three standard measures of centrality proposed by 
Freeman: degree, betweenness, and closeness centrality [65]. 
These centrality measures can be divided into two 
classes: those based on the idea that the centrality of a 
node in a network is related to how close the node is to 
the other nodes (e.g., degree and closeness centrality), and 
those based on the idea that central nodes stand between 
others playing the role of intermediary (e.g., betweenness 
centrality). Furthermore, we computed the network con- 
straint [66] for each individual; this measure provides 
an indication on how much the target’s connections are 
connected with one another. 

We also computed nodal and local efficiency for each 
node in the networks. The concept of efficiency [67] can be 
used to characterize how close to a ‘small world’ a given 
ego-network is. Small world networks are a particular 
kind of networks that are highly clustered, like regular 
lattices, and have short characteristic path lengths like 
random graphs [68]. The use of efficiency is justified by 
the hypothesis that the rate at which information flows 
within the network is influenced to some degree by the 
personality of the ego. 

Finally, we extracted the transitivity measure, which 
provides an indication of the clustering properties of 
the graph under analysis. Based on triads, i.e., triples 
of nodes in which either two (open) or three (closed) 
nodes are connected by an edge, transitivity is defined 
as the ratio of the number of closed triads to the num- 
ber of graph triads. In [63], Extraversion was found to 
negatively correlate with local transitivity, while McCarty 
and Green [69] found that agreeable and conscientious 
persons tend to have well-connected networks. 

We conducted a preliminary statistical analysis (sum- 
marized in Table 5) on the features derived from the 
interaction graphs described above, and investigated 
their associations with the personality data provided by 
SALSA. We only report associations that are significant at 
p < .05, unless otherwise stated. Unfortunately, we did 
not find statistical significant correlations between the 
personality traits and the auditory features. This issue 
will be subject of further investigation. 

Extraversion, a personality trait lying in the tendency 
to behave in a way to engage and attract other people, 
and hence usually activated in situations such as social 
gatherings, was found to be significantly associated (R = 
0.53) with the standard deviation of the degree centrality 
computed on the 60 s dynamic infra-red network. In 
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TABLE 5 
Significant Pearson correlations between the big-five 

traits and IR and GT network features (* denotes p < .01). 
 

 

Trait Feature R 
 

 

Betw. Median Dyn-120-IR .53 
Degree Std Dyn-60-IR .53 

 
 

Degree Median Dyn-120-IR .48 
Nodal Eff. Median Dyn-120-IR .49 

 
 

Local Eff. Stat-IR .52 

quantitative studies regarding the Creativity (or Open- 
ness to Experience) trait. Given this lack of information, 
the associations detected were remarkable, and deserve 
deeper investigation. This trait seemed to be associated 
with: i) local efficiency (R  =  0.51) computed on the 
static face-to-face interaction network; ii) mean closeness 
centrality (R =  .49) computed on the 60 s graphs built 
on infra-red; iii) betweenness centrality (R = 0.49), nodal 
efficiency (R = −0.49), and transitivity (R = −0.73, p < 

Cons. 
Nodal Eff. Median Dyn-60-GT .49 
Nodal Eff. Median Dyn-120-GT .56 
Trans. Mean Dyn-60-IR .54 

.01) computed on the static group interaction network; 
and iv) mean degree in both 60 s (R = −0.47) and 120 s 

Em. St. Trans. Median Dyn-60-IR -.53 

Betw. Stat-GT .49 
Clos. Mean Dyn-60-IR -.49 

(R = .5) graphs built from group annotations. Hence, 
creative persons seemed to participate overall in smaller 
and less connected networks than conservative targets. 

While the above analyses present correlations between 
Crea. 

Degree Mean Dyn-60-GT -.47 
Degree Mean Dyn-120-GT -.50 
Loc. Eff. Stat-IR -.51 
Nod. Eff. Stat-GT -.49 
Trans. Stat-GT -.73* 

some of the behavioral cues that can be extracted from 
the SALSA data and high-level personality traits, we 
believe the entire gamut of information available can 
enable the study of both individual and group-level 

other words, more extraverted targets appear to establish 
face-to-face interactions of variable duration, and thus 
engage with groups of diverse cardinality within the 1- 
minute windows under analysis. The expansion of the 
time window to 120 s provided additional insights: the 
higher a target scored on the Extraversion trait, the 
higher the median of his/her betweenness centrality (R = 
0.54). This suggests that the extravert targets in SALSA 
tended to act as brokers, i.e., they served as connectors 
between clusters of people who had fewer face-to-face 
interactions. 

Also, more agreeable subjects in SALSA were found 
to have a tendency towards engaging in face-to-face in- 
teractions with a higher number of people within highly 
connected clusters. Agreeableness was found to be sig- 
nificantly associated with the median degree centrality 
(R = 0.48) and the  median  nodal  efficiency  (R = 0.49) 
as computed on the 120 s graphs. Emotional Stability 
was found to be negatively associated with median 
transitivity (R = 0.53) on the 60 s infra-red graphs– this 
indicated that neurotic persons in SALSA tended to en- 
gage face-to-face during unbalanced interaction events. 

Regarding Conscientiousness, several significant asso- 
ciations were found. In particular, from the 60 s dy- 
namic interaction networks built on infra-red data, we 
noted that conscientious subjects tended to participate in 
densely connected groups, as indicated by the positive 
association with mean transitivity (R = 0.54). Thus, 
within the groups that naturally formed in the SALSA 
context, conscientious subjects took part mainly in those 
groups where the participants engaged more with each 
other. This fact is further confirmed by the significant 
association found on the static graph built on infra-red 
data between this trait and local efficiency (R = 0.52). 
Interestingly, the median nodal efficiency extracted from 
the dynamic graphs built upon group annotations consis- 
tently shows similar associations with this trait (R = 0.56 
using a 120 s window, R = 0.49 using 60 s). 

The social psychology literature does not offer many 

traits (e.g., dominance). Also, unlike round-table meetings, 
which typically have an agenda based on which partic- 
ipants assume certain roles that may not relate to their 
actual personality, SALSA captures hedonistic and free- 
wheeling social interactions, which even if challenging 
to analyze, can provide a wealth of information about 
one’s native behavior and personality. 

6 CONCLUSIONS AND FUTURE WORK 

Via extensive experiments, we have demonstrated how 
SALSA represents a rich but challenging dataset for 
analysis of FCGs. Vision-based analysis for target track- 
ing, head and body pose estimation and F-formation 
detection evidenced the shortcomings of state-of-the-art 
methodologies when posed with cluttered scenes with 
persisting and extreme occlusions. However, additional 
sensors available as part of the sociometric badge were 
found to be helpful in cases where visual analysis was 
difficult– in particular, (i) the infra-red sensor which 
indicates both the proximity and body pose of the in- 
teracting counterpart was found to improve F-formation 
detection, (ii) both IR and visual cues were found  to 
have significant correlations with the big-five personality 
traits, and (iii) improved speaker recognition with multi- 
badge speech data indicates the promise of additionally 
utilizing visual and accelerometer data to this end. 

Future research directions include: (a) developing new 
methodologies for robust audio processing in cluttered 
environments with many dynamic targets, (b) utilizing 
the bluetooth and accelerometer data for F-formation 
detection and personality trait recognition, and (c) de- 
signing tracking and head/body pose estimation algo- 
rithms capable of exploiting multimodal data. Given the 
extensive raw data and accompanying annotations avail- 
able for analysis and benchmarking, we believe SALSA 
can spur systematic and intensive research to address 
the highlighted problems in a multimodal fashion in the 
near future. Evidently, SALSA would serve as a precious 
resource for the computer vision, audio processing, social 

Extr. 

Agre. 
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robotics, social signal processing and affective computing 
communities among others. 
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