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Abstract
The research potential in the field of mobile mapping technologies is often hindered by several constraints. These include the 
need for costly hardware to collect data, limited access to target sites with specific environmental conditions or the collec-
tion of ground truth data for a quantitative evaluation of the developed solutions. To address these challenges, the research 
community has often prepared open datasets suitable for developments and testing. However, the availability of datasets that 
encompass truly demanding mixed indoor–outdoor and subterranean conditions, acquired with diverse but synchronized 
sensors, is currently limited. To alleviate this issue, we propose the MIN3D dataset (MultI-seNsor 3D mapping with an 
unmanned ground vehicle for mining applications) which includes data gathered using a wheeled mobile robot in two distinct 
locations: (i) textureless dark corridors and outside parts of a university campus and (ii) tunnels of an underground WW2 
site in Walim (Poland). MIN3D comprises around 150 GB of raw data, including images captured by multiple co-calibrated 
monocular, stereo and thermal cameras, two LiDAR sensors and three inertial measurement units. Reliable ground truth 
(GT) point clouds were collected using a survey-grade terrestrial laser scanner. By openly sharing this dataset, we aim to 
support the efforts of the scientific community in developing robust methods for navigation and mapping in challenging 
underground conditions. In the paper, we describe the collected data and provide an initial accuracy assessment of some 
visual- and LiDAR-based simultaneous localization and mapping (SLAM) algorithms for selected sequences. Encountered 
problems, open research questions and areas that could benefit from utilizing our dataset are discussed. Data are available 
at https://​3dom.​fbk.​eu/​bench​marks.
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1  Introduction

1.1 � Mobile Mapping

Mobile mapping (Chiang et  al. 2021; Elhashash et  al. 
2022) is a widely used technique for various applications, 
such as documenting and inventorying scenes (Vallet and 
Mallet 2016; Di Stefano et al. 2021), integration of air-
borne surveying (Toschi et al. 2017), creating computer 
models for simulations or decisions (Tak et al. 2021; Feng 
et al. 2022), and guiding robots for navigation (Funk et al. 
2021). The integration of localization and mapping into 
a single process, known as simultaneous localization and 
mapping (SLAM), is crucial for accurate spatial posi-
tioning and navigation. A variety of sensors and devices 
can be used for mapping, including 2D and 3D LiDAR 
scanners, cameras, and depth sensors. SLAM algorithms 
perform well in indoor environments, such as factories 
and warehouses, allowing for autonomous operation of 
robots. However, mapping in outdoor and uncontrolled 
scenarios presents challenges for SLAM algorithms, such 
as uneven terrain, limited range of 2D LiDAR sensors, 
dynamic objects and more sources of sensor noise, which 
can potentially degrade the quality of mapping and render 
some popular assumptions useless (e.g., presence of the 
flat ground). In such scenarios, 3D LiDAR scanners and 
camera-based systems (V-SLAM) are more effective. In 
open spaces, global navigation satellite systems (GNSS) 
can provide a reliable location, but in areas where satellite 
signals are not available, such as tunnels, caves and mines, 
a more sophisticated SLAM algorithm is needed.

Research and development of mobile mapping solutions 
for such environments can be traced back to early works 
of Thrun et al. (2003), which showcased the usage of laser 
scanners mounted on a robot to carry out a volumetric 3D 
survey of an underground mine. Future advances in field 
robotics and increasing availability of open-source solu-
tions resulted in developing a wide selection of robotic 
(Kanellakis and Nikolakopoulos 2016; Nüchter et al. 2017; 
Ren et al. 2019; Trybała 2021; Yang et al. 2022), handheld 
(Zlot and Bosse 2013; Trybała et al. 2023), and wearable 
(Masiero et al. 2018; Blaser et al. 2019) solutions of vary-
ing complexity for mapping subterranean spaces. How-
ever, the problem of performing robust SLAM in challeng-
ing environments still cannot be considered as fully solved 
(Ebadi et al. 2022).

1.2 � Open Datasets

To advance research in the field of SLAM, multiple open 
datasets have been collected and made publicly available 

by scientists from the robotics and geomatics communi-
ties (Geiger et al. 2012; Liu et al. 2021; Macario Barros 
et al. 2022; Helmberger et al. 2022). These datasets allow 
researchers to investigate various mapping approaches and 
easily test and evaluate in-house, commercial, or open-
source software solutions without the need for access 
to expensive data acquisition platforms, particularly for 
robotic systems. The popularity of these datasets has led 
to the creation of benchmarks, where automated systems 
evaluate the accuracy of processing methods using stand-
ardized metrics and rank them among other submitted 
solutions.

This approach enables an objective comparison of differ-
ent SLAM algorithms through use of common metrics, such 
as absolute and relative trajectory errors (ATE and RTE), 
to assess localization accuracy. However, there are various 
other strategies for evaluating the quality of 3D mapping, 
such as using different metrics for measuring the compliance 
of point clouds with ground truth (GT), and for aligning 
the resulting spatial data with reference data, such as using 
global or local registration methods.

One of the key events that greatly accelerated progress 
in mobile mapping research were the competitions organ-
ized by the US-based Defense Advanced Research Projects 
Agency (DARPA), such as the DARPA Grand Challenges 
(starting from 2004) (Seetharaman et al. 2006) and the 
Subterranean Challenge (held in 2017–2021) (Chung et al. 
2023). The former type of competition primarily focused on 
the needs of the automotive industry, such as localization, 
mapping, and perception in open, urban areas, and the lat-
ter on robot autonomy, perception, and SLAM, respectively. 
Through dedicated funding, clear goals, and reliable evalu-
ation methods, these events enabled teams from around the 
world to collaborate and develop innovative SLAM solu-
tions. The by-products of these challenges are also open 
datasets and benchmarks, which were collected and formed 
during the field trials of the competitions. Although there 
are numerous publicly available datasets dedicated to evalu-
ating SLAM algorithms, the diversity of real-world envi-
ronments in which these algorithms are applied, as well as 
the various sensor configurations for which mapping solu-
tions are developed, results in a constant need for acquiring 
more data to evaluate method performance under different 
conditions. This issue is becoming increasingly critical as 
learning-based methods gain popularity. Providing them 
with well-diversified training data with reliable reference 
data is crucial for their generalization, adaptability, and 
in consequence usability in real-world scenarios. Further-
more, the universality and uniqueness of a dataset is not 
only determined by the environment in which the data was 
collected, but also by the limited set of sensors used. The 
use of multiple sensors to simultaneously acquire different 
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types of data not only facilitates the development and testing 
of data fusion methods, but also provides the most objective 
way to compare methods based on different sensors, such as 
visual SLAM (V-SLAM) with LiDAR-based approaches. In 
recent years, the AMICOS1 and VOT3D2 EIT Raw Materials 
projects, among others, tackled the use of ground/wheeled/
handheld robotic platforms, equipped with various imaging 
and LiDAR devices, to inspect underground mining sce-
narios and technical infrastructures. Multi-sensors robots 
(Trybała et al. 2022) or portable stereo-vision systems (Tor-
resani et al. 2021) can be used to search for hot idlers in a 
conveyor belt, map underground spaces, or automatically 
search for humans or damages of components (Szrek et al. 
2020; Menna et al. 2022; Dabek et al. 2022).

1.3 � Paper Contribution

A common aspect of robotics platforms and mobile mapping 
solutions is the accuracy and robustness evaluation of locali-
zation and mapping methods in harsh conditions (Nocerino 
et al. 2017; Trybała et al. 2023). Despite the availability of 
various robotic datasets collected in different environments, 
most of the available datasets do not have redundant sensor 
suites or accurate and complete 3D ground truth.

To address the above-mentioned issues, we propose a 
novel set of data collected in (i) an indoor man-made envi-
ronment (University buildings) and (ii) an underground 
facility in Walim (Poland) using a wheeled mobile robot 
(UGV) equipped with multiple low-cost sensors. The dataset 
comprises data from an exhaustive, redundant sensor sys-
tem, including two sets of different stereo cameras, inertial 
measurement units (IMUs), and two independent LiDAR 
scanners: a spinning Velodyne VLP-16 with an actuator 
and a solid-state Livox Horizon. To facilitate the evaluation 
of mapping results by the users, we also provide reliable 
GT data in the form of a survey-grade point cloud acquired 
with a Riegl time-of-flight-based terrestrial laser scanner 
and the parameters of the external calibration of the sensors 
mounted on the robot. The collected data are processed and 
a preliminary accuracy assessment of the results obtained 
with selected SLAM methods, utilizing various sensors, is 
presented.

The structure of the article is as follows. First, related 
works and available datasets for testing SLAM methods are 
discussed. Then, the utilized in-house mobile robot charac-
teristics, dataset structure, and ground truth data acquisi-
tion methodology are presented. The collected and shared 
eight sequences are reported in Sect. 3, together with some 
results of the performance of selected state-of-the-art SLAM 

algorithms. Finally, the directions of challenging research 
areas and an outlook or the future developments in the con-
text of utilizing the presented dataset close the paper.

2 � Related Works

2.1 � SLAM Datasets: Common Scenarios

In the general research area of mobile mapping, numer-
ous open datasets have been published, often featuring a 
dedicated benchmark. The most prominent research groups 
involved in these studies focus on the applications in the 
automotive industry, photogrammetry, surveying, and robot-
ics. At the early days of 3D SLAM developments for autono-
mous systems, datasets being published were dominated by 
car-based systems in urban areas and did not focus on bench-
marking and metrological evaluation of mapping. Thus, they 
did not provide an accurate reference data for mapping, but 
only the raw data from sensor systems consisting usually 
of camera(s), LiDAR scanners, and inertial measurement 
unit (IMU) (Smith et al. 2009; Blanco-Claraco et al. 2014; 
Cordts et al. 2015).

The prime example is the Massachusetts Institute of 
Technology (MIT) DARPA Grand Challenge 2007 dataset 
(Huang et al. 2010). Despite the lack of full GT, it still marks 
an important moment of publicly releasing a huge amount 
of image and point cloud data, acquired with sensors rel-
evant to the automotive industry applications, enabling a 
wide audience to work on robotic perception-related solu-
tions. Similarly, two Korea Advanced Institute of Science 
and Technology (KAIST) datasets (Choi et al. 2018; Jeong 
et al. 2019) include only GNSS-derived trajectories as the 
reference data, but provide additional data, recorded at day 
and at night, and extend the sensor selection by a thermal 
camera.

Among the most influential SLAM datasets, constitut-
ing arguably the most popular benchmark, is the Karlsruhe 
Institute of Technology and Toyota Technological Institute 
(KITTI) dataset (Geiger et al. 2012, 2013). The data were 
collected with a sensor system mounted on a roof of a Volk-
swagen car in the urban area of Karlsruhe, Germany. Apart 
from providing image, LiDAR point clouds and IMU data, 
it includes GNSS-based trajectory and an automated bench-
marking system for evaluating the performance of submitted 
solutions. Although it does not contain a reliable reference 
for mapping, subsequent developments added other chal-
lenges to the benchmark suite, such as image depth predic-
tion, object detection, or semantic segmentation. A recent 
survey of SLAM algorithms (Liu et al. 2021) highlighted 
the problem of providing the reliable GT for mapping in 
open SLAM datasets: only 35 out of 97 investigated datasets 
include 3D reference data for mapping quality evaluation.

1  https://​amicos.​fbk.​eu/
2  https://​vot-​3d.​com/

https://amicos.fbk.eu/
https://vot-3d.com/
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In the robotic and photogrammetric communities, three 
distinct classes of SLAM datasets can be distinguished, 
based on whether they were acquired with an unmanned 
aerial vehicle (UAV), unmanned ground vehicle (UGV), or 
a handheld system. An example of a UAV-based research is 
the European Robotics Challenge (EuRoC) dataset (Burri 
et al. 2016), which features visual–inertial system data with 
GT data consisting of trajectories acquired with a motion 
capture (MC) system, total station (TS) tracking and terres-
trial laser scanner (TLS) point cloud for mapping evaluation. 
However, the dataset lacks LiDAR scanning data. For UGV 
systems, the Technical University of Munich (TUM) RGB-D 
(Sturm et al. 2012) and Mobile Autonomous Robotic Sys-
tems lab (MARS) Mapper (Chen et  al. 2020) systems 
should be mentioned. The former one features only the data 
from depth cameras and only a, MC GT trajectory (further 
extended by an IMU in a handheld system in the TUM VI 
dataset (Schubert et al. 2018)), while the latter contains data 
from multiple LiDAR devices, stereo camera and an IMU, as 
well as trajectory obtained with a tracking system and a TLS 
point cloud. In the scope of the ETH3D dataset (Schops et al. 
2017), multiple image sequences obtained with a monocu-
lar camera and a stereo visual–inertial handheld system are 
shared. Most of them are recorded indoors, with a GT pro-
vided by a MC system. For a few scenes mapped outside, a 
GT is only reconstructed by a structure-from-motion (SfM) 
approach. From the most recent developments, interesting 
SLAM datasets start to include novel sensors such as event 
cameras (Klenk et al. 2021) and utilize simulation environ-
ments to facilitate the need for data acquisition in different 
conditions, especially for learning-based methods (Wang 
et al. 2020b). Nevertheless, the final evaluation of SLAM 
method performance should be assessed on real datasets, 
since multiple noise sources and possible failure factors pre-
sent in the real world are extremely hard to reproduce in a 
simulated environment.

2.2 � SLAM Datasets: Challenging Environments

All the above-mentioned datasets are, however, captured in 
relatively easy indoor, feature-rich environments. For mobile 
mapping underground sites, especially industrial facilities, 
conditions are much harder and include a multitude of poten-
tial noise sources, such as dust, variable humidity, uneven 
lighting, lack of distinct visual and geometrical features, 
vibrations, and uneven ground. These factors negatively 
affect possible assumptions in SLAM algorithm, e.g., the 
presence of planar features in the surveyed data. Dynamic 
conditions of the working machinery and possible rockfalls 
further contribute to the unpredictability of the environment 
and dangers that need to be recognized for a mobile robot 
working in such a facility. Thus, SLAM datasets acquired in 
such harsh conditions were investigated further: the HILTI 

(Helmberger et al. 2022) and ConSLAM (Trzeciak et al. 
2023) datasets from a construction site and the S3LI dataset 
(Giubilato et al. 2022) from Mount Etna in Italy, providing 
data of featureless, bare rock surface of the volcanic land-
scape. The HILTI dataset features multiple datasets from 
different editions, which vary in terms of the sensor suites 
used. Although the ConSLAM dataset provides data col-
lected with a similar, prototypic sensor setup, it provides 
data from a periodically repeated measurements at the same 
construction site. Another challenging natural environment 
of a botanic garden was investigated by Liu et al. (2023), 
who share a dataset collected with a wheeled mobile robot 
with a rich sensor selection and a reliable ground truth 3D 
point cloud. A different challenging case could be consid-
ered for the mapping systems operating in areas with unreli-
able, partial GNSS signal coverage. An example of a dataset 
focusing on such conditions is BIMAGE Blaser et al. (2021), 
which provides raw data from a mobile mapping system col-
lected in urban canyons and forest areas supplemented by 
ground control points surveyed with a total station.

The first underground SLAM dataset (Leung et al. 2017) 
was published in 2017 and featured data acquired in a Chil-
ean underground mine recorded using a Clearpath UGV, 
equipped with a radar, stereo camera, and a Riegl TLS. 
The TLS was used in two ways: as a reference sensor, per-
forming static scans when the robot was not moving, and 
similarly to an industrial-grade 3D LiDAR system, continu-
ously scanning during robot’s movement. However, utilizing 
such expensive instrument is not common, since it greatly 
increases the costs of the measurement system, is not suit-
able for flying units due to its weight, and the laser scan 
frequency is low (6 s for one full scan).

The most suitable datasets for evaluating robotic SLAM 
solutions for mining-related applications were acquired 
during the DARPA Subterranean (SubT) Challenge. Many 
teams shared data they collected during at least one of the 
events, which included a tunnel circuit, a power plant site 
and a cave system, all of which are relevant to the subject 
of our study. Datasets were published by the DARPA Army 
Research Lab (Rogers et al. 2020) and teams: Cerberus 
(Tranzatto et al. 2022), CoSTAR (Koval et al. 2022; Reinke 
et al. 2022), MARBLE (Kasper et al. 2019; Kramer et al. 
2022), CTU-Cras-Norlab (Petracek et  al. 2021; Krátký 
et al. 2021), Explorer (Wang et al. 2020a). They include 
UGV- and UAV-based data from stereo cameras, IMUs, and 
industrial-grade LiDAR scanners, seldom supplemented by 
thermal cameras and radars. The TLS-based GT was pro-
vided by DARPA. Although useful, those datasets usually 
feature expensive platforms (e.g., Boston Dynamics Spot) 
and do not have redundant sensors (multiple stereo cameras, 
LiDAR scanners, IMUs), making them solution dependent. 
A summary of the above-mentioned relevant open SLAM 
datasets is presented in Table 1.
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To move beyond a simple comparison between differ-
ent SLAM algorithms (working on the data from the same 
sensor), we decided to enhance this approach, allowing 
to compare results from SLAM running on different sen-
sors, acquired during the same sequence (e.g., solid-state 
and spinning LiDAR sensors, stereo and RGB-D camera). 
Moreover, utilizing low-cost solutions popular in the robotic 
community and sharing a survey-grade, TLS-based ground 
truth data, we allow researchers to evaluate SLAM software 
and hardware solutions that can be then used by them to 
create affordable systems for popularizing mobile mapping 
methods in underground applications.

3 � The MIN3D Dataset

The data were collected in interior and exterior areas of the 
Wroclaw University of Science and Technology (Fig. 1) and 
within some tunnels of the underground facility “Rzeczka”, 
which is a part of the “Riese” complex (Fig. 2), constructed 
during the World War II (Stach et al. 2014). Both sites fea-
ture varying surfaces and environments, which pose a chal-
lenge for SLAM algorithms as they must adapt to varying 
structural conditions, illumination changes, and the incon-
sistent level of the presence of distinct visual features.

3.1 � Employed Robotic System and Sensor 
Configuration

The data were collected using a mobile robot equipped 
with a multi-sensory measuring column (Fig.  3). The 
robot was equipped with various sensors, as well as a 
data recording computer, power batteries, and lighting, 
which featured an adjustable intensity to adapt to the 

Table 1   Comparison of selected relevant, popular SLAM open datasets

Dataset Setting LiDAR scanner Camera Inertial Other sensors GNSS 3D GT 
point 
cloudSpinning Solid state Stereo RGB-D

KITTI Urban ✓ – ✓ ✓ ✓ – ✓ –
KAIST multispectral Urban ✓ – ✓ – ✓ Thermal camera ✓ –
EuRoC Indoor – – ✓ – ✓ – – ✓
TUM VI Indoor – – ✓ – ✓ – – –
ETH3D Indoor and outdoor – – ✓ ✓ ✓ – – –
HILTI Construction site ✓ ✓ ✓ – ✓ – – ✓
ConSLAM Construction site ✓ – – – ✓ Monocular and thermal 

cameras
– ✓

S3LI Outdoor – ✓ ✓ – ✓ – ✓ –
Chilean underground 

mine
Underground – – ✓ – – TLS LiDAR, radar – ✓

SubT: DARPA Army 
Research Lab

Underground ✓ – ✓ – ✓ – – ✓

SubT: Cerberus Underground ✓ – ✓ – ✓ – – ✓
SubT: CoSTAR​ Underground ✓ – ✓ ✓ ✓ Thermal camera, 

event camera, UWB 
beacons

– –

SubT: MARBLE 
(ColoRadar)

Underground, indoor, 
and urban

✓ – – – ✓ Radars – –

SubT: CTU-Cras-
Norlab

Underground ✓ – ✓ ✓ ✓ – – ✓

MIN3D Indoor and under-
ground

✓ ✓ ✓ ✓ ✓ Thermal camera, multi-
ple IMUs

– ✓

Fig. 1   The employed multi-sensor UGV near the university building
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environmental conditions and enable the recording of 
image data in low-light environments. The list of utilized 
devices includes:

•	 A Velodyne LiDAR scanner, mounted at the top of the 
measuring column through an additional rotation mod-
ule, which increases the resolution of the acquired data 
by rotating the sensor around the horizontal axis.

•	 An Intel RealSense D455 depth camera, placed below the 
Velodyne.

•	 Monocular RGB and IR cameras installed in the middle 
pair and featuring a similar optical system and field of 
view.

•	 A synchronized Basler stereo-rig.
•	 A Livox LiDAR scanner located at the bottom of the 

column.
•	 A NGIMU inertial measurement unit mounted at the 

robot base.

The data are supplemented by two IMU sensors inte-
grated with an Intel RealSense camera and the Livox LiDAR 
system as well as an independent NGIMU. The robot was 
controlled manually from a remote operator panel. Control 
signals were transmitted in the 2.4 GHz frequency band, 
while data acquisition control telemetry was obtained from 
a tablet connected to a computer placed on the robot via a 
Wi-Fi network. The block diagram of the connected sensors 
is shown in Fig. 4, while the remote visualization and control 

Fig. 2   Mapped locations: underground tunnel (aka adit)

Fig. 3   The mobile robot with its sensors placed along the vertical col-
umn bar with the example data frames (adapted from: Trybała et al. 
2022)

Fig. 4   Block diagram of a robotic multi-sensory measurement system 
(Trybała et al. 2022)

Fig. 5   Remote visualization and control panel (Trybała et al. 2022)
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panel are shown in Fig. 5. A methodology for system cali-
bration, i.e., estimation of the relative orientation between 
sensors, was presented in Trybała et al. (2022).

3.2 � Data Acquisition

A total of eight datasets were acquired in two different 
settings:

•	 Three sequences inside and around the research building 
of the Faculty of Geoengineering, Mining and Geology at 
Wrocław University of Science and Technology (Poland).

•	 Five sequences in the underground site “Rzeczka”, part 
of the “Riese” underground complex (Walim, Poland).

The conditions of the university dataset resemble an 
industrial environment, with mostly monochromatic colors, 
scarce visual features, long and uniform corridors, and the 
presence of reflective surfaces. During the acquisitions in 
the subterranean environment, the robot was equipped with 
its own lighting system due to the absence of illumination 

in a huge part of the mine. These real underground condi-
tions allowed to illustrate the challenges often encountered 
in a setting of an industrial mine, where irregular tunnels 
carved or blasted in rock are mixed with reinforced, more 
structured areas.

To further increase the level of difficulty for SLAM algo-
rithms, the acquisitions featured illumination changes (robot 
driving from indoor to outdoor or through a room with light 
turned off) and frequent revisiting of the same area, often 
from different perspectives. The specific aims of each acqui-
sition, together with resulting data size, has been summed up 
in Table 2. Approximate robot trajectories for each sequence, 
drawn on a 2D projection of the ground truth point cloud 
cross sections, are shown in Figs. 6, 7, 8, 9, 10, 11, 12.

Due to some problems with the reliability of RealSense 
internal IMU, an additional NGIMU sensor was added to 
the measurement system. However, we still provide the 
incomplete data from the RealSense device, since it may 
allow some interesting analyses and development in terms 
of multi-IMU systems, as discussed further in Sect. 4. 
Similarly, probably due to the challenging environmental 

Table 2   Characteristics of the acquired data

a Velodyne LiDAR sensor placed horizontally
b Basler stereo with limited frame rate
c No RealSense IMU data

Sequence Path sketch Size/length Data acquisition aim Data samples Total size

University 1: ground levela Figure 6 60 m × 40 m /220 m Whole area mapping, longer route, 
reflective surfaces, lack of visual 
features

53,147 images
10,163 point clouds
130,370 IMU readings

26.1 GB

University 2: indoor/outdoor Figure 7 50 m × 20 m/120 m Indoor/outdoor transition with 
changing illumination

26,419 images
5359 point clouds
111,500 readings

22.1 GB

University 3: lab loop closures Figure 8 20 m × 10 m/90 m Changing illumination in different 
rooms, multiple loop closures

25,519 images
5093 point clouds
159,215 IMU readings

18.9 GB

Tunnel 1: forward passb Figure 9 80 m × 5 m/80 m Basic bare rock tunnel mapping, 
sparse geometrical and visual 
features

22,244 images
5785 point clouds
180,813 IMU readings

13.2 GB

Tunnel 2: return passb Figure 10 80 m × 5 m/80 m Basic bare rock tunnel mapping, 
sparse geometrical and visual fea-
tures. Possibility of multi-session 
mapping with previous dataset

19,104 images
4156 point clouds
129,952 IMU readings

10.8 GB

Tunnel 3: main tunnel with loops, 
part 1b

Figure 11 70 m × 20 m/120 m Loop closures in underground 
conditions, transitions between 
unstructured/structured geometry

27,198 images
7074 point clouds
221,094 IMU readings

17.9 GB

Tunnel 4: main tunnel with loops, 
part 2b,c

Figure 11 40 m × 20 m/60 m Loop closures in underground 
conditions, transitions between 
unstructured/structured geom-
etry. Kidnapped robot problem 
if analyzed jointly with previous 
dataset

12,821 images
3336 point clouds
37,303 IMU readings

13.9 GB

Tunnel 5: secondary tunnelb, c Figure 12 90 m × 10 m/100 m Basic bare rock tunnel mapping, 
transitions between unstructured/
structured geometry

19,884 images
5172 point clouds
57,828 IMU readings

22.5 GB
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conditions, the Basler stereo camera rig was not able to 
maintain the desired frame rate during the tunnel tests. 
Direct processing of this data will result in worse results 
than for images from other cameras, but might facilitate the 
development and evaluation of, e.g., AI-based image denois-
ing and frame rate interpolation methods for robustifying 
mobile robotic applications in challenging environments.

3.3 � Dataset Structure

The data were recorded using an Intel NUC machine and, 
during the measurements, saved in the.rosbag file format 
using ROS (Robot Operating System) Melodic (Quigley 
et al. 2009) and common driver packages. In the post-pro-
cessing operations, the data were unpacked and converted 

Fig. 6   Sketch of the robot trajectory in the university building 
(Sequence University 1): textureless ground floor

Fig. 7   Sketch of the robot trajectory in the university building 
(Sequence University 2): indoor–outdoor transitions

Fig. 8   Sketch of the robot trajectory in the university building 
(Sequence University 3): ground floor (Sequence 1)

Fig. 9   Sketch of the robot trajectories in the underground tunnel 
(Sequence Underground 1): main tunnel, forward pass

Fig. 10   Sketch of the robot trajectories in the underground tunnel 
(Sequence Underground 2): main tunnel, return pass

Fig. 11   Sketch of the robot trajectories in the underground tunnel 
(Sequences Underground 3 & 4): pass with multiple loops. Route is 
split into two sequences: before (blue) and after (red) kidnapping a 
robot (position marked as a red cross)
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to open formats suitable for further analyses, as shown in 
Table 3.

The naming convention of the files is < ROS times-
tamp >  < dot >  < extension > , since all data were time-
stamped in a centralized manner, according to the ROS 
master node clock. However, time stamps of some of the 
data were already pre-synchronized by the respective device 
drivers. Time stamps for: RealSense RGB, IR images, depth 
maps, and IMU are synchronized to each other, as well as 

Fig. 12   Sketch of the robot trajectories in the underground tunnel 
(Sequence Underground 5): secondary tunnel

Table 3   Data types and file 
formats

Source of data Type of data File format

Velodyne LiDAR scanner Point cloud .ply
Livox LiDAR scanner Point cloud .ply
RGB camera Image .png
FLIR IR camera Image .png
RealSense RGB camera Image .png
RealSense stereo IR camera Images .png
RealSense precomputed depth map Image .png
Basler stereo camera Images .png
IMU Livox Linear acceleration, angular velocity .csv
IMU RealSense Linear acceleration, angular velocity .csv
IMU NGIMU Linear acceleration, angular velocity .csv

Fig. 13   File structure of the MIN3D dataset. Separate ground truth point clouds are provided for each of the three university sequences, but 
a single reference point cloud is shared for all five sequences of the underground facility
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Basler stereo pairs and Livox point clouds with its internal 
IMU. The dataset general structure is explained in Fig. 13.

3.4 � Ground Truth and Evaluation Methodology

Reference data were acquired using a RIEGL VZ-400i ter-
restrial laser scanner (Fig. 14). The scanner features a laser 
pulse repetition rate of 100–1200 kHz, a maximum effective 
measurement rate of 500,000 points/s, and a measurement 
range of 0.5 m to 800 m. The scanning angle range is a total 
of 100° in a vertical line and max. 360° in the horizontal 
frame. The manufacturer’s stated accuracy of resulting sin-
gle point 3D position is 5 mm and the declared precision is 
3 mm (Riegl datasheet 2019).

For both test sites, the distance between consecutive scan 
positions was about 5–15 m. The scanning parameters used 
were a laser pulse repetition rate of 1200 kHz, a scanning 
resolution of 0.05°, and a point cloud resolution character-
ized by point-to-point distance of 17.5 mm at a distance of 
20 m.

The processing of the acquired TLS data was carried 
out in the dedicated RiSCAN PRO software (RIEGL Laser 
Measurement Systems GmbH 2019) for point cloud filtering 
and scan registration. The preliminary scan registration was 
performed using an automatic registration method based on 
voxels extraction and fitting. To improve scan position reg-
istration, alignment was performed using the multi station 
adjustment (MSA) procedure. The position and orientation 
of each scan position were adjusted in a bundle adjustment 
(BA), which included several iterations to minimize position 
error between overlapping planes and determine the best fit.

The alignment process resulted in an error (i.e., scanner 
position standard deviation after BA) of ca 2 mm for both 
test sites. Control of the alignment of the overlapping first 
and last positions, creating a loop, showed a spatial matching 
within 5 mm. This quality control was omitted only for the 
GT point cloud of the first university sequence, which does 
not include a loop. The resulting point cloud of the building 
test site and the underground facility are shown in Figs. 15 
and 16, respectively.

To facilitate the proper matching of measurement data 
with GT, reference points in the form of white spheres with 
a diameter of 100 mm were placed in the area of interest of 
both test sites (Fig. 17). The reference targets were selected 
to be properly visible by all the optical sensors mounted on 
the robot.

4 � Processing and Analyses

The MIN3D dataset could support evaluations of 3D map-
ping methods, including SLAM. As multiple approaches to 
assess the quality of the mapping results exist, we do not 
provide a dedicated benchmarking tool and leave the deci-
sion of selecting an appropriate workflow to the readers. 
Pipelines developed for ETH3D (Schops et al. 2017), 3D 
Tanks and Temples (Knapitsch et al. 2017), as well as a 
more sophisticated analysis presented by Toschi et al. (2015) 
could be mentioned as examples of sound methodologies for 
carrying out quality evaluation of the 3D reconstruction for 
the results achieved from processing MIN3D data.

An overview of current state-of-the-art strategies of tack-
ling common problems, based on the research and experi-
ences from the DARPA Subterranean Challenge, in applying 
SLAM in underground environments can be found in Ebadi 
et al. (2022). Moreover, we also envision a MIN3D contri-
bution toward the development of specific algorithms for 
challenging mining environments (Fig. 18), which includes, 
e.g., dedicated methods for dealing with various structuri-
zation levels of geometry, loop closure detection in mostly 
featureless conditions, or point cloud filtering and optimiza-
tion approaches.

4.1 � Underground Mobile Mapping Accuracy

During the preliminary evaluation of SLAM on our data-
set, comparisons of the point clouds obtained with exam-
ple SLAM algorithms were carried out on representative 
sequences of the dataset. One sequence has been selected 
from the indoor part of the dataset (University 2) and 
two sequences were chosen from the underground tun-
nels (Underground 1 and 3). Based on the state-of-the-art 
research, we chose one V-SLAM algorithm, one LiDAR-
inertial algorithm, and one pure-LiDAR method. We 
processed:

•	 RealSense RGB-D data with ORB-SLAM3 (Campos 
et al. 2021).

•	 Livox LiDAR scanner and IMU data with FAST-LIO 
SLAM (Kim et al. 2021; Xu et al. 2022).

•	 Actuated Velodyne LiDAR scanner data with SC-A-
LOAM (Kim et al. 2022).

As representative statistics, summarizing the mapping 
performance of each of those methods, we have chosen 
mean, standard deviation, and (− 3σ, 3σ) range of cloud-to-
cloud distance distributions, calculated as signed distances 
using M3C2 plugin of Cloud Compare software (Lague et al. 
2013).
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Point clouds based on the simultaneously acquired data 
from three different sensors were obtained using the previ-
ously mentioned state-of-the-art mobile mapping methods. 
They were then registered to the GT model using iterative 
closest point (ICP; Besl and McKay 1992) with an initial 
manual alignment. Mapping errors were estimated as the 
distances between the point clouds and the local GT model 
and signed according to their estimated normals. The error 
distributions were analyzed together with the qualitative 
analysis of the results (long- and short-term drifts, topology 
correctness). Summary statistics of the quantitative analysis 
of the mapping error distributions are presented in Table 4.

The obtained results show that the tested methods were 
appropriate for 3D mapping of the examined areas. Using 
a common color-coding scheme (Fig. 19), we compare the 
results of accuracy evaluation of the three tested SLAM 
approaches (Figs. 20, 21, 22). Qualitatively analyzing them, 
the resulting point clouds present the “correct” topology 
comparing to the GT data. However, in-depth analysis often 
revealed inconsistencies such as lack of proper loop closures, 
high short-term rotational drifts, long-term rotational drift 
around the robot’s roll axis, and increased noise near reflec-
tive surfaces. Those resulted in point cloud errors such as 
“ghosting”, i.e., not-aligned point clouds of areas measured 
multiple times or dimension deformation, i.e., shortening of 
the tunnel length. The above-mentioned issues occurred in 
both indoor and underground datasets and their example vis-
ualizations are presented in Fig. 23. It is worth mentioning 

Fig. 14   RIEGL VZ-400i terrestrial laser scanner

Fig. 15   Top view of reference TLS point clouds with the locations of 
the scan positions (in red): university ground floor, sequence 1

Fig. 16   Top view of reference 
TLS point clouds with the loca-
tions of the scan positions (in 
red): tunnels of the underground 
area. Part of the point cloud, 
representing the outdoor area 
irrelevant for the dataset, is not 
displayed
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Table 4   Statistics of the mapping error distributions for selected SLAM algorithms

Dataset Mean mapping error [cm] Standard deviation [cm] 95% of mapping error distribution range [m]

ORB-
SLAM3

FAST-
LIO-
SLAM

SC-A-
LOAM

ORB-
SLAM3

FAST-
LIO-
SLAM

SC-A-
LOAM

ORB-
SLAM3

FAST-LIO-
SLAM

SC-A-LOAM

University 2 − 3.5 2.8 − 7.7 101 31 54 (− 2.20, 
1.72)

(− 0.65, 
0.38)

(− 1.29, 0.85)

Underground 
1

− 3.8 0.7 − 8.9 47 23 60 (− 1.26, 
0.41)

(− 0.11, 
0.14)

(− 1.63, 0.73)

Underground 
3

− 3.5 2.5 − 14.6 45 16 81 (− 1.33, 
0.46)

(− 0.15, 
0.29)

(− 2.30, 1.44)

Fig. 19   Universal color scale used in all point cloud visualizations in 
Figs. 20, 21, 22, and 23

that no algorithm was able to properly recover from the sim-
ulation of the kidnapped robot problem between sequences 
Underground 3 and 4 using loop closure detection. Thus, 
Underground 3 was analyzed only as a standalone sequence.

4.2 � Multi‑sensor Signal Analysis

Apart from the core issue of improving robustness and 
reliability of various mobile mapping and localization 

approaches, we encourage using the proposed MIN3D 
dataset also for other purposes, such as image enhancement. 
Conditions in which the data were acquired can challenge 
state-of-the-art image processing methods. Such methods 
include, but are not limited to, image deblurring and upscal-
ing, frame interpolation, depth estimation from monocular 
camera (or improving the quality of depth obtained with the 
stereo images), and application of different 3D geometry 
reconstruction methods. Evaluations of deep learning-based 
techniques are foreseen, since scarcity of the training data 
from unique, underground conditions may seriously hinder 
their performance on the MIN3D dataset.

Furthermore, simultaneous acquisition of data from vari-
ous sensors allows exploration of novel data fusion methods: 
this could also include methods for improving the quality of 
the data using multiple devices. As an example, we show 
a proof of concept of utilizing two IMUs in the context of 
possible developments in the area of the positioning methods 
using multiple inertial devices. We compared signals from 
IMUs installed in Livox and RealSense, with the focus on 
acceleration data. Figure 24 presents raw data from the sen-
sors expressed in g units.

Firstly, the moving average of the absolute value of the 
signals was calculated for every channel with the window 
of 1 s (see Fig. 25). This way, an average variability of 
vibration strength can be visualized and compared per axis. 
The main visible difference between devices is expressed 
as slightly stronger vibrations in the horizontal plane for 
RealSense compared to Livox. It can be explained by the fact 
that RealSense was mounted higher on the sensor column, 
and angular movements of the entire column, with respect 

Fig. 17   References object on robot path in the building corridor (left) 
and in the underground tunnel area (right)

Fig. 18   Challenges for SLAM in the underground environment: 
uneven illumination, lack of visual features (left); changing types of 
geometry: passage from an unstructured tunnel to a concrete corridor 
(right)
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Fig. 20   Examples of SLAM results on the University 2 sequence: a ORB-SLAM3 (sparse point cloud); b FAST-LIO-SLAM; c SC-A-LOAM

Fig. 21   Examples of SLAM results on the Underground 1 sequence: a ORB-SLAM3 (sparse point cloud); b FAST-LIO-SLAM; c SC-A-LOAM

Fig. 22   Examples of SLAM results on the Underground 3 sequence: a ORB-SLAM3 (incomplete sparse point cloud); b FAST-LIO-SLAM; c 
SC-A-LOAM

Fig. 23   Issues in various SLAM results: a large linear drift error at the straight start of Underground 2 dataset (ORB-SLAM3); b double wall 
error and noisy points in the Underground 1 dataset (FAST-LIO-SLAM); c angular drift at the end of Underground 3 dataset (SC-A-LOAM)
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to the pivot point at the bottom of the column, translate to 
stronger readings of the RealSense IMU.

In the second step, a moving variance was calculated 
for all channels, also with the window length of 1 s (see 
Fig.  26). Comparison of vibrations in the XY direc-
tions shows that there is a visible proportional relation 
between the energy of vibration of each device. It could 
be explained by the fact that the devices are mounted at 
different heights on the column, and the angular nature of 
the vibrations of the column causes the amplification of 
vibrations in the lateral plane as a function of the height 
of the column.

The authors attempted to evaluate the relation between 
vibration energy for the devices. The best achieved fit was 
a linear model with the ratio of 2.93 at R2 = 0.91 (Fig. 27). 
It shows that RealSense at its mounting point experiences 
almost 3 × more energetic vibration in the horizontal plane 
in relation to Livox due to the angular vibrations of the 
column. Additionally, the linear nature of the model, as 

well as the coefficient of 2.93 can be confirmed by the fact 
that Livox is mounted 30 cm above the pivot point (bottom 
mount of the column) and RealSense is placed at 88 cm 
above the pivot point, which is 2.933 times higher.

5 � Conclusions 

The paper presented a novel UGV-based dataset for develop-
ing and testing mobile mapping solutions (e.g., SLAM) in 
challenging GNSS-denied conditions, common in mining 
applications or textureless indoor spaces. We provide data 
sequences collected simultaneously with multiple sensors, 
including different LiDAR scanners, cameras, and inertial 
units. The environments of tests were selected to pose a chal-
lenge for state-of-the-art data processing algorithms and fea-
ture changing illumination, varying complexity of geometry, 
and textureless areas. Acquisitions were carried out inside a 
university building and in an underground historical tunnel, 

Fig. 24   Raw signals from IMU accelerometers of Livox and RealSense
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which allows to also evaluate the performance degradation 
of developed methods between real and simulated condi-
tions. Such analysis would be especially valuable for learn-
ing-based approaches.

We presented quantitative evaluations of selected 
SLAM methods utilizing data from different sensors 
(cameras, LiDAR devices, IMU) and showed some short-
comings in their performance when applied to the MIN3D 
data. Additionally, an analysis of data from the multi-IMU 
system was performed to showcase the possible directions 
of research of multi-sensor data fusion.

In summary, it is envisaged that the utilization of 
the MIN3D dataset has the potential to accelerate 

advancements in multiple research domains within the 
field of robotics, computer vision and geomatics, acknowl-
edging that the list provided below is not exhaustive:

•	 Testing and improving mapping approaches (visual, 
LiDAR, fusion) in the challenging underground or 
indoor conditions.

Fig. 25   Moving average of absolute values for all axes with the win-
dow of 1 s. Axes X and Y (vibrations on the horizontal plane) show 
stronger vibration for RealSense, which was mounted higher on the 
column

Fig. 26   Moving variance for IMU linear accelerations X and Y (com-
parison per axis) with a window of 1 s. Significant proportional rela-
tion between vibration energy is revealed, which is a result of height 
difference of the mounting points on the column
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•	 Robustifying V-SLAM in the environments with chang-
ing illumination.

•	 Estimating depth with a monocular camera.
•	 Developing visual and LiDAR-based loop closure 

detection algorithms in degraded environments.
•	 Using multi-sensor odometry and mapping approaches 

(multi-IMU, multi-camera, multi-LiDAR).
•	 Online calibration and utilization of multi-sensor 

suites, including cameras with different spectral 
responses (e.g., RGB and thermal).
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