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Abstract: In this paper, we show the influence of the chemical structure of four different conformers
on the secondary electron emission and backscattering of an electron beam from a gel of methacrylic
acid. The conformers have different permanent dipole moments, which determines the cross sections
for elastic collisions with electrons. The cross sections are used in Monte Carlo simulations of an
electron beam, which enters the gel of methacrylic acid. The secondary electron yield and the
backscattering coefficient are computed as a function of the beam energy.

Keywords: methacrylic acid; electron–molecule scattering; secondary electron yield; backscattering
coefficient; Monte Carlo simulation

1. Introduction

Methacrylic acid (MAA) is a carboxylic acid, which also contains a carbon–carbon
double bond. Already in 1880, Engelhorn [1] investigated the polymerization of MAA. Later
Trommsdorff [2] suggested MAA as a model compound for proteins. The polymerization
reaction can be initiated by light or electrons and is autoaccelerating (Trommsdorff–Norrish
effect) [3,4]. The polymerization properties of MAA depend on the structure and orientation
of individual MAA molecules [5]. MAA is also an ingredient of the polymer gel MAGIC
(Methacrylic and Ascorbic acid in Gelatin Initiated by Copper), which is used for radiation
dosimetry by polymerization [6].

Monte Carlo simulations are frequently used to asses the usage of polymer gels for
radiation dosimetry (see, e.g., Adinehvand and Rahatabad [7] and Parwaie et al. [8]). In the
majority of Monte Carlo simulations, the chemical structure of the individual molecules
is not taken into account. In this paper, we show that the chemical structure determines
the cross sections for the interaction with electrons and therefore influences the outcome
of the Monte Carlo simulations. We found four stable conformers of MAA. In previous
studies by Badawi et al. [9] and by Frighetto and Bettega [10], only two of these conformers
are discussed.

We present Monte Carlo simulations of secondary and backscattered electrons origi-
nated from an electron beam, which enters a gel of MAA molecules. The secondary electron
yield and the backscattering coefficient can be measured by elelctron microscopy and are
important in the image formation in the electron microscope [11].

Our models for cross sections for elastic collisions, electronic excitation and ionization
are based on parameters, which can be obtained from quantum chemical calculations. All
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cross section models and the Monte Carlo simulation techniques are discussed in Section 2.
In addition, we present analytic expressions for the cumulative probabilities, which are
derived from the cross sections and are used in the Monte Carlo simulations. In Section 3,
we give the details of the quantum chemical calculations, which are used to compute the
cross sections. In Section 4, we present the results from the quantum chemical calculations
and show the cross sections. Furthermore, we discuss the outcomes of the Monte Carlo
simulations. The paper ends with conclusions in Section 5.

2. Theoretical Methods
2.1. Monte Carlo Simulation Technique

Evaluation of the physical quantities related to the interaction of electrons with MAA
was performed by the Monte Carlo simulations based on the energy-straggling strategy
(see, e.g., Chapter 6 in [12]), in which all single energy losses occurring along the electron
trajectory are taken into account. In this case, the stochastic process for multiple scattering
is assumed to follow a Poisson-type law and the numbers µi are uniformly distributed
random numbers in the range [0, 1]. The step-length between two collision processes is
thus computed as

∆s = −λ ln µstep (1)

where the mean free path is given by

λ =
1

Nσtot
(2)

N is the number of molecules per unit volume. σtot is the total cross section. We note that
the total cross section is a function of the collision energy and therefore the mean free path
is a function of the kinetic energy of the electron. The total cross section is given by the sum

σtot = σel + σinel + σphonon + σpolaron (3)

Here σel is the elastic cross section, σinel = σelect + σion is the sum of the cross sections σelec
for electronic excitation and σion for ionization, σphonon is the electron–phonon cross section,
and σpolaron is the cross section for trapping the electron in the interaction site and to create
a polaron. The various cross sections are described in more detail in the next subsection.

At the end of each step, it is decided, which kind of process will occur. The cumulative
probabilities for this decision process are defined as

p1 =
σel

σtotal

p2 = p1 +
σinel
σtotal

p3 = p2 +
σphonon

σtotal
p4 = 1

A random number µtype is generated. Depending on the value of µtype, it is decided, which
type of collision process occurs. For the decision, the following intervals are used.

• If 0 ≤ µtype < p1, an elastic collision process happens.
• If p1 ≤ µtype < p2, an electronic excitation or ionization process happens.
• If p2 ≤ µtype < p3, an phonon scattering event happens.
• If p3 ≤ µtype < 1, the electron induces a polarization and a polaron is created.

The various cases are described in more detail below. Depending on the type of the collision
event, the kinetic energy of the electron is reduced. If the kinetic energy is below the value
of the electron affinity, the electron is not traced anymore. If an electron is emitted from
the surface, its energy is recorded. In the case of an ionization process, a new electron is
created at the position of the ionization event and treated by the same algorithm.
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The case 0 ≤ µtype < p1: elastic collision process.

The electron undergoes an elastic collision process, the polar scattering angle θ is
determined from differential elastic cross section dσel

dΩ (E, θ). The cumulative probability for
this process is defined as

Pel(θ, E) =
2π

σel

∫ θ

0

dσel
dΩ

sin ϑ dϑ (4)

Because Pel(θ, E) is a monotonically increasing function in the interval [0, 1], we can use a
random number µθ to compute the scattering angle θ from the equation

µθ = Pel(θ, E) (5)

The case p1 ≤ µtype < p2: electronic excitation or ionization process.

The process is considered an electron excitation event, if the kinetic energy is below
the ionization threshold and the electronic excitation energy is substracted from the kinetic
energy. Otherwise it is considered an ionization event. Notice that in this work we
neglect the resonant emission via Auger and autoionization processes upon ionization and
excitation of the molecules. The kinetic energy W of the ejected electron is computed with
the help of the cumulative probability of the differential ionization cross section

Pion(W, E) =
1

σion

∫ W

0

dσion
dW ′

dW ′ (6)

This is a monotonically increasing function in the interval [0, 1] and can easily be inverted.
With the random number µW , the energy of the ejected electron is determined as

µW = Pion(W, E) (7)

After the collision the energy of the primary electron is adjusted by subtracting the binding
energy and the kinetic energy of the ejected electron. Furthermore the ionizatin process
creates a secondary electron with the kinetic energy W, which is propagated with the same
algorithm as the primary electron.

The case p2 ≤ µtype < p3: electron–phonon scattering.

In that case, a phonon is created by the electron. The phonon energy is substracted
from the electron kinetic energy and the deflection angle is determined by (Appendix C
in [12])

cos θ′ =
E + E′

2
√

EE′
(1− Bµphonon) + Bµphonon (8)

Here, E and E′ are the electron kinetic energy before and after the collision, µphonon is a
random number and (Appendix C in [12])

B =
E + E′ + 2

√
EE′

E + E′ − 2
√

EE′
(9)

The case p3 ≤ µtype < 1: polaronic effect.

In that case, the electron induces a polarization of the medium around itself creating
a polaron. If the random number fullfils the condition, the electron is removed from the
simulation.

2.2. Models for Cross Sections
2.2.1. Elastic Cross Sections

The collision between an electron and a polar molecule is dominated by the interaction
between the charge of the electron and the molecular dipole [13]. We calculate the cross
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sections using the first Born approximation for the interaction between a charge and a
rotating dipole [14]. Because the energy for rotational excitations is in the order of a few
meV, the energy loss of the electron is neglected.

The MAA molecule is an asymmetric top molecule, which has three different moments
of inertia. The elastic cross section can be written as

σel = ∑
d

σel
d (10)

where the sum runs over the three axes of inertia [15]. For each axis of inertia, the partial
cross section is given by

σel
d =

8π

3k2 D2
d ln

∣∣∣∣ k + kd
k− kd

∣∣∣∣ (11)

Here, Dd is the component of the molecular dipole moment along the principal axis of
inertia with index d. The wavenumbers of the electron before and after the collision are
given by

k =
1
h̄
√

2meE and kd =
1
h̄

√
2me(E− h̄ωd) (12)

Here, h̄ωd = 2Bd is the energy difference between the first two rotational levels and Bd is
the rotational constant for the rotation axis with index d.

The differential elastic cross section for the collision of an electron with the asymmetric
top molecule is given by the sum [15]

dσel
dΩ

= ∑
d

dσel
d

dΩ
(13)

In the first Born approximation, the differential elastic cross section along the rotation axis
d is given by [15]

dσel
d

dΩ
= ∑

τ′

4D2
d

3
k′d
k

1
(k2 + k2

d − 2kkd cos θ)
(14)

where θ is the angle between the initial wavevectors and final wavevector of the incident
electron. For the determination of the deflection angle of the electron after the elastic
collision, the cummulative probability

Pel(θ, E) =
2π

σel

∫ θ

0

dσel
dΩ

sin ϑdϑ (15)

is used. This integral can be solved in closed form and the expression for the cumulative
probability is given by

Pel(θ, E) =
1

σel

4π

3k2 ∑
d

D2
d ln

(k + kd)
2

k2 + k2
d − 2kkd cos θ

(16)

2.2.2. Cross Sections for Electronic Excitation

The cross section for electronic excitation is given by [13]

σelec = ∑
f

σelec
f (17)

The sum runs over cross sections for electronic excitation from the electronic ground state
into the excited states f . The integral cross section for each electronically excited state is
calculated with the first Born approximation

σelec
f =

8π

3k2 D2
0 f ln

∣∣∣∣∣ k + k f

k− k f

∣∣∣∣∣ (18)
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Here, D0 f is the transition dipole moment between the electronic ground state and the
electronically excited state f of the molecule. The wavenumbers of the electron before (k)
and after (k f ) collision are given by

k =
1
h̄
√

2meE and k f =
1
h̄

√
2me(E− ∆E0 f ) (19)

where ∆E0 f is the electronic excitation energy between the electronic ground state of the
molecule and the electronically excited state f .

2.2.3. Ionization Cross Sections

The total cross section for direct ionization by electron impact can be written as the
sum of the partial ionization cross sections for the nocc occupied orbitals [16,17]

σion(E) =
nocc

∑
i

σion
i (E) (20)

Here, σion
i (E) is the partial ionization cross section for ionization from orbital i. Within

the Binary-Encounter Bethe (BEB) model the partial ionization cross section is given
by [16,17]

σion
i =

Si
ti + ui + 1

[
(2−Qi)

(
1− 1

ti
− ln ti

ti + 1

)
+

Qi ln ti
2

(
1− 1

t2
i

)]
(21)

Here, Qi is a parameter in the BEB model to take into the account the oscillator strength. If
the oscillator strength is unknown (as in our case) these parameters can be set to one. The
energy-independent prefactor is given by

Si = 4πa2
0Ni

(
R
Bi

)2
(22)

where a0 = 0.529× 10−10 m is the Bohr radius, Ni is the occupation number of the or-
bital and R = 13.6 eV is the Rydberg constant. In the above equation, we have used
reduced variables

ti =
E
Bi

and ui =
Ui
Bi

(23)

where E is the kinetic energy of the incoming electron, Bi is the electron binding energy
in orbital i and Ui is the expectation value of the kinetic energy of the bound electron in
orbital i. All energies are given in eV.

The differential ionization cross section is given by

dσion
i

dwi
=

Si
ti + ui + 1

[
Qi − 2
ti + 1

(
1

wi + 1
+

1
ti − wi

)
+(2−Qi)

(
1

(wi + 1)2 +
1

(ti − wi)2

)
+Qi ln ti

(
1

(wi + 1)3 +
1

(ti − wi)3

)]
Here, W is the energy of the ejected electron and wi =

W
Bi

. The cumulative probability can
be obtained by integrating the differential cross section up to a given value of the energy of
the ejected electron. The integration can be done analytically and gives the formula
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Pi(wi, E) =
1
σi

Si
ti + ui + 1

[
Qi − 2
ti + 1

(
ln
∣∣∣∣wi + 1
ti − wi

∣∣∣∣+ ln ti

)
+ (2−Qi)

(
1

ti − wi
− 1

wi + 1
+ 1− 1

ti

)
+

Qi ln ti
2

(
1

(ti − wi)2 −
1

(wi + 1)2 + 1− 1
t2
i

)]

In our simulation, we use the total ionization cross section in order to compute
the probability for an ionization process. For the determination of the energy of the
ejected electron, we use the cumulative probability for the ionization from the highest
occupied molecular orbital (HOMO). Therefore, the energy of the incoming electron after
the ionization process is

E′ = E−W − εHOMO (24)

where εHOMO is the binding energy of an electron in the HOMO. A procedure, which goes
beyond this approach is the CPA100 model, which is discussed by Bordage et al. [18].

2.2.4. Electron–Phonon Cross Sections

The cross section for electron–phonon interaction is calculated using the Fröhlich
theory [19,20]. For a given density N of molecules per unit volume, the cross section can be
written as (Appendix C in [12])

σph(E) =
1
N

1
a0

[
n(T) + 1

2

][
ε(0)− ε(∞)

ε(0)ε(∞)

] h̄ωph

E
ln

1 +
√

1− h̄ωph
E

1−
√

1− h̄ωph
E

(25)

where E is the energy of the incident electron and h̄ωph is the phonon energy of the
longitudinal vibrations of the lattice. a0 is the Bohr radius, ε(0) the static dielectric constant
and ε(∞) the dielectric constant for high frequency. The average number of phonons n(T)
at temperature T is given by (Appendix C in [12])

n(T) = (e
h̄ωph
kBT − 1)−1 (26)

where kB is the Boltzmann constant.

2.2.5. Electron–Polaron Cross Sections

The cross section for an electron to be trapped due to polaronic effects is calculated
with the model by Ganachaud and Mokrani [21]

σpol(E) =
1
N

Strape−γtrapE (27)

Here, N is the density of molecules per unit volume and E is the kinetic energy of the
electron, γtrap and Strap are parameters for the energy domain and the size of the trap.

3. Computational Details

All parameters, which are used in the calculations of the elastic and ionization cross
sections are calculated with the quantum chemistry computer package Gaussian 16 [22].
The aug-cc-pVTZ basis set has been used in all calculations [23]. The geometries, dipole
moments, rotational constants and vibrational frequencies have been computed with the
Becke, 3-parameter, Lee-Yang-Parr (B3LYP) exchange–correlation functional [24,25].

For the ionization cross sections, the binding energies of the valence electrons have
been calculated with the Outer Valence Green’s Function (OVGF) method [26] using aug-
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cc-pVTZ basis set [23]. The program package Gaussian 16 [22] has been used for these
calculations. Since the OVGF method provides the binding energies only for the outer
valence orbitals, the binding energies of all other orbitals are calculated using Koopman’s
theorem from the Hartree–Fock orbital energies. The average kinetic energy of the bound
electrons before the ionization are computed from the Hartree–Fock orbitals.

The computations of the electronically excited states have been performed with the
program package TURBOMOLE [27]. Electronic excitation energies and transition dipole
moments have been computed with time-dependent density functional theory [28] using
the B3LYP functional [24,25] and the aug-cc-pVTZ basis set [23].

The Monte Carlo simulations are performed with the program SEED. The program
is based on the Monte Carlo strategies, which are described in the Chapter 6 of Dapor’s
book [12]. The cross sections and cumulative probabilities, which are used by SEED are
computed with scripts written in AWK and Python. For each primary beam energy ten
million trajectories have been computed.

4. Results and Discussion

With the geometry optimization, we found four stable conformers, which are shown
in Figure 1. For the geometry optimizations, the Berny algorithm [29] is used. For each
conformer the vibrational frequencies have been calculated and no imaginary frequencies
have been found. In order to distinguish the conformers, we call them cis, if the OH-
group and the CH3-group are on the same side of two carbons atoms, which connect the
two groups. Otherwise the conformers are called trans. Furthermore, we distinguish the
conformers by the relative orientation of the OH-group. If the Hydrogen atom of the OH-
group is rotated to the outside of the molecule, we call the conformer chain-like, otherwise
ring-like. With this naming convention, we can derive four names: cis-chain (CC), cis-ring
(CR), trans-chain (TC) and trans-ring (TR). The cartesian coordinates of the four conformers
are given in Appendix A. The two chain-like conformers CC and TC have been also found
by Badawi et al. [9] and by Frighetto et al. [10]. The two ring-like conformers have not
been discussed previously. The conformers CC, CR and TC belong to the symmetry point
group Cs. These conformers have one mirror plane, which contains all carbon and oxygen
atoms. The geometry of the conformer TR has no mirror plane and the molecule transforms
as the point group C1. In this case, the COOH-group is rotated out of the plane, which
reduces the static interaction between the hydrogen atoms, which carry a small positive
charge, in the OH-group and the CH2-group. In the conformer CR, the static interaction
between the OH-group and the CH3-group is smaller, because the hydrogen atoms of
the CH3-group have larger distances from the hydrogen atom of the OH-group. Table 1
shows the symmetry groups, the total electronic energies ∆Eelec, the enthalpies ∆H and
the Gibbs free enthalpies ∆G of the four conformers. TC is the most stable conformer. The
conformer CC is about 2.5 kJ/mol less stable. The two ring-like conformers, CR and TR,
are more than 20 kJ/mol higher in energy. The large energy difference between chain-like
and ring-like conformers imply that under equilibrium conditions (at room temperature)
less than 1 percent of the molecules will be found in the ring-like conformation. In the
condensed phase, the energy difference could be smaller, because the larger dipole moment
of the ring-like conformers causes a larger solvation energy. Furthermore, the molecules
can be frozen in their conformation.

The most important molecular parameters are collected in Table 2. The dipole moments
of the two most stable conformers (TC and CC) are 1.79 D and 1.91 D, respectively. This is
in good agreement with the calculations by Badawi et al. [9], who report 1.76 D and 1.88 D
using density functional theory (B3LYP) with the 6-311+G** basis set.
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(a) cis-chain (CC) (b) cis-ring (CR)

(c) trans-chain (TC) (d) trans-ring (TR)
Figure 1. Molecular geometries of the four conformers.

Table 1. Symmetry groups and relative total electronic energies (∆Eelec), enthalpies (∆H) and Gibbs
free enthalpies (∆G) of the four conformers of MAA. All values are given in kJ/mol. The values of
the most stable conformer (TC) is set to zero. ∆H and ∆G are calculated at a temperature of 298.150
Kelvin and a pressure of one atmosphere.

Conformer CC CR TC TR

point group Cs Cs Cs C1
∆Eelec 2.35 25.92 0.0 22.68

∆H 2.37 25.30 0.0 22.03
∆G 2.58 25.19 0.0 21.68

The rotational constants for the conformer TC are 5.40, 3.49 and 2.15 GHz, which is
in good agreement with the results of the calculations, which have been performed by
Badawi et al. [9] (5.374, 3.484 and 2.141 GHz with B3LYP/6-311+G**). For the conformer
CC, the rotational constants are 5.33, 3.52 and 2.15 GHz. This is again in good agreement
with calculations by Badawi et al. [9] (5.308, 3.517 and 2.143 GHz with B3LYP/6-311+G**).

Table 2. Molecular parameters of the four conformers. Dipole moments (D) and its components
(Dx, Dy and Dz) are given in Debye, rotational constants (Bx, By and Bz) in GHz and the ionization
threshold (Eion), the electron affinity (EEA) and the gap energy (Egap) in eV.

Conformer CC CR TC TR

|D| 1.91 4.71 1.79 4.27
Dx 1.44 2.50 1.35 −2.97
Dy −1.25 −4.00 −1.17 2.95
Dz 0.00 0.00 0.00 0.82
Bx 5.33 5.28 5.40 5.30
By 3.52 3.51 3.49 3.41
Bz 2.15 2.14 2.15 2.19

Eion −10.256 −10.454 −10.351 −10.647
EEA 0.580 0.389 0.588 0.418
Egap 5.83 5.93 5.95 6.08



Molecules 2023, 28, 1126 9 of 16

4.1. Cross Sections

In Figure 2, we show the elastic cross sections for the four conformers of MAA. For
energies above a few eV, the elastic cross sections are proportional to the inverse of the
collision energy and show as straight lines in the double-logarithmic plot in Figure 2. The
elastic cross sections for the conformer CR is slightly larger than that for the conformer TR.
The elastic cross sections for the two ring-like conformers CR and TR are roughly five times
larger than those of the chain-like conformers CC and TC. The relative size of the elastic
cross sections is due to the square of the absolute values of the molecular dipole moments
in Equation (11). The absolute values of the dipole moments of the two ring-like conformers
CR and TR are 4.71 D and 4.27 D, respectively. These values are about 2.5 times larger than
those of the two chain-like conformers CC and TC (1.91 D and 1.79 D, respectively).

Figure 2. Elastic cross sections for the four conformers.

In Figure 3, we show the electronically inelastic cross sections (σinel = σelec + σion) for
the four conformers. The cross sections for the three conformers CC, CR and TC are nearly
identical to each other, whereas the cross section for the conformer TR is slightly lower in
the region between 10 and 100 eV. The values of the cross sections for electron–phonon
interactions for all MAA conformers are the same and for the examined range of electron
energies (1 to 10,000 eV) are in the range between 5× 10−24 m2 and 2× 10−27 m2. When
the electron energy increases the cross section for electron-phonon interaction decreases as
1/E. For all conformers of MAA, the values of the cross sections for polaronic effect are the
same. and they exhibit the smallest values of among all cross sections which were taken
into account in this study. It is worth noticing that the values of the cross section obtained
for electron–phonon and electron–polaron interactions are much more smaller than those
received for the electronically inelastic cross sections. Therefore, Figures 2 and 3 present
only elastic and electronically inelastic cross sections.

Figure 3. Electronically inelastic cross sections for the four conformers of MAA.
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4.2. Inelastic Mean Free Path

Since there is a general lack of data for electron interactions with MAA, we compare
the inelastic mean free path in MAA with the inelastic mean free path in glassy carbon.
Glassy carbon (also called glass-like carbon) is an allotrop of carbon with a density of
1.5 g/cm3, which is 35% lower than that for graphite [30]. We define the inelastic mean free
path as

λinel =
1

Nσinel
=

1
N(σelec + σion)

(28)

The inelastic mean free paths for all four conformers of MAA are shown in Figure 4 to-
gether with the inelastic mean free path for glassy carbon from calculations by
Tanuma et al. [31]. As it can be expected from the electronically inelastic cross sections in
Figure 3 the mean free inelastic paths of all four conformers are very similar to each other.
In the range between 10 and 100 eV the TR conformer shows slightly larger the values of
λinel than the other three conformers. The values of the inelastic mean free path of glassy
carbon is very similar for the values the conformer TR.

Figure 4. The inelastic mean free path as a function of the electron energy for the four conformers of
MAA. Shown also are the values for glassy carbon from calculations by Tanuma et al. [31].

4.3. Spectrum of Emitted Electrons

In Figure 5, are presented the energy distributions of the electrons, which are emitted
from the surface of MAA. The figure shows the spectrum up to 50 eV for beam energies
of 400, 800, 1200 and 1600 eV. Most of the electrons are ejected with energies below 6
eV with a maximum between 2 and 4 eV. This can be expected, because MAA has an
intensive electronic ππ∗ excitation at around 6 eV. For all conformers, the energies of the
ππ∗ excitation are listed as Egap in Table 2. If the energy of the electron beam increases, the
electrons enter the material with a higher energy. The ionization cross section decreases
with increasing energy. Hence the probability for an ionization event in a layer close to the
surface decreases. The effect can be seen in Figure 5: the intensity of the peak decreases,
when the beam energy increases. The peaks for the conformer CR are higher than those for
the other conformers. The difference between CR and the two ring-like conformers is due
to the larger elastic cross section of CR. In materials with larger elastic cross sections, the
deflection of the incoming electron beam is bigger. Hence the electron beam has a longer
path length in a layer close to the surface. Therefore more electrons, that are generated by
ionization events, can escape from the material. Even though TR and CR have both large
dipole moments, the peaks of TR are visible smaller than those of CR. This is a consequence
of the smaller inelastic cross section of TR, which means a lower efficiency in generating
ionization events.
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Figure 5. The spectrum of the ejected electrons of the four conformers of MAA. Shown is the low
energy part up to 50 eV for beam energies of 400, 800, 1200 and 1600 eV.

4.4. Secondary Electron Yield

The secondary electron yield (SEY) for a given beam energy Ebeam is defined as integral
of the distribution of emitted electrons with energies below 50 eV (see, e.g., Chapter 9 in
Dapor [12]). The SEY can be expressed as follows

δ =
∫ 50

0

dY
dE

dE (29)

where we have used dY
dE as the number of electrons, which are ejected with an energy

between E and E + dE. In the Monte Carlo code, a discrete value of dE is chosen and the
number of ejected electrons in each interval is recorded in a histogram. Routines from
the GNU Scientific Library [32] are used for this purpose. It should be noted that we use
the expression for the secondary electron yield as a measure for the low-energy electrons,
that are emitted from the surface. This should not be confused with the total number of
secondary electrons, which are generated by ionization events inside the material and
cannot reach the surface. In Figure 6, we show the SEY as a function of the beam energy
for the four conformers of MAA. For all conformers, the SEY has its maximum at a beam
energy of 350 eV. For higher energies the SEY decreases, because the secondary electrons are
generated at a larger depth inside of the material and are trapped within the target. Among
the four conformers has the largest SEY, followed by TR and the two chain-like conformers
CC and TC. This is the same trend as seen for the elastic cross sections in Figure 2. A larger
elastic cross section increases the probability for the deflection of the primary electron beam,
also increasing the backscattering of the electrons. The backscattered primary electrons
generate secondary electrons before leaving the material. These secondary electons are
generated in a layer close enough to the surface to be able to escape. This situation is
discussed in more detail in Chapter 3 of the book by Goldstein et al. [11].
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Figure 6. Secondary electron yield as a function of the electron energy for the conformers of MAA.

4.5. Backscattering Coefficient

The backscattering coefficient (BC) for a given beam energy Ebeam is defined as the
integral of the distribution of emitted electrons with energies above 50 eV (see, e.g., Chapter
8 in Dapor [12]). The BC can be written as

η =
∫ ∞

50

dY
dE

dE (30)

The BC for the four conformers of MAA are shown in Figure 7. All BCs are mono-
tonically increasing functions of the energy of the beam energy. As already seen for the
elastic cross sections and the SEYs, the BC is largest for the conformers with the largest
dipole moment: The largest BC are obtained for the conformer CR, followed by TR. The
BCs for the two chain-like conformers CC and TC are much smaller. As already discussed
in the previous paragraph about the SEY, a larger elastic cross sections causes a stronger
deflection of the primary electrons, which causes a larger BC.

Figure 7. Backscattering coefficient as a function of the electron energy for the conformers of MAA.

5. Conclusions

In this paper, we present the effect of the molecular structure of different conformers
of MAA on the cross sections for elastic and electronically inelastic collisions. With Monte
Carlo simulations, we investigate the influence of these cross sections on the secondary
electron yield and backscattering coefficient of an electron beam, which enters a gel of MAA.

We found four stable conformers of MAA. Previous studies [9,10] found only the two
chain-like conformers CC and TC. For the first time, the two ring-like conformers CR and
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TR are discussed. CR and TR are energetically less stable than the chain-like conformers by
about 20 kJ/mol and could be important in the condensed phase. Their dipole moments
are about 2 to 3 times larger than those of the chain-like conformers. Therefore the cross
sections for elastic collisions are about five times larger for the ring-like conformers than
for the chain-like conformers. As a consequence the backscattering coefficient are larger
for the ring-like conformers. Due to the larger amount of backscattered electrons a larger
amount of secondary electrons is created near the surface and is emitted (see also Chapter
3 in Goldstein [11]).

Our study also shows the influence of the molecular dipole moment, which is usually
neglected in Monte Carlo simulations, on the secondary electron yield and the backscatter-
ing coefficient.
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Appendix A

Table A1. Optimized geometry of the cis-chain (CC) conformer.

Atom x y z

O 0.9346189 1.7965848 0.0000000
O −1.3041028 1.9224280 0.0000000
C −0.3061712 1.2440575 0.0000000
C −0.2576940 −0.2494828 0.0000000
C 1.0795576 −0.9335940 0.0000000
C −1.4228608 −0.8948597 0.0000000
H 0.8085916 2.7565113 0.0000000
H −2.3549987 −0.3483615 0.0000000
H −1.4656348 −1.9754677 0.0000000
H 0.9541568 −2.0147959 0.0000000
H 1.6672687 −0.6515099 −0.8746298
H 1.6672687 −0.6515099 0.8746298

Table A2. Optimized geometry of the cis-ring (CR) conformer.

Atom x y z

O 0.8423816 2.0221396 0.0000000
O −1.3691634 2.0368648 0.0000000
C −0.3606584 1.3859107 0.0000000
C −0.3202111 -0.1193781 0.0000000
C 1.0063430 −0.8315972 0.0000000
C −1.4864043 −0.7608088 0.0000000
H 1.5715462 1.3925424 0.0000000
H −2.4143627 −0.2074551 0.0000000
H −1.5354293 −1.8412617 0.0000000
H 0.8634562 −1.9101224 0.0000000
H 1.6012511 −0.5834171 −0.8838255
H 1.6012511 −0.5834171 0.8838255

Table A3. Optimized geometry of the trans-chain (TC) conformer.

Atom x y z

O 1.2346890 1.8396044 0.0000000
O −1.0073890 1.8718951 0.0000000
C 0.0200500 1.2357640 0.0000000
C 0.0743488 −0.2522614 0.0000000
C −1.2606060 −0.9377689 0.0000000
C 1.2419804 −0.8947832 0.0000000
H 1.0659909 2.7924234 0.0000000
H 2.1816231 −0.3633705 0.0000000
H 1.2797315 −1.9760832 0.0000000
H −1.1377877 −2.0189883 0.0000000
H −1.8463154 −0.6482157 0.8733865
H −1.8463154 −0.6482157 −0.8733865

Table A4. Optimized geometry of the trans-ring (TR) conformer.

Atom x y z

O 1.124721 −1.327637 −0.310174
O 1.688881 0.736496 0.267327
C −0.678803 0.190585 −0.003865
C −1.644023 −0.934183 0.225340
C 0.768226 −0.214444 −0.033572
C −1.055832 1.445961 −0.245443
H −1.461549 −1.413911 1.188471
H −2.671848 −0.577986 0.198328
H −1.509995 −1.704488 −0.534221
H −2.101791 1.720884 −0.266745
H −0.353129 2.237733 −0.471946
H 1.252088 1.539374 0.574122
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