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An Automated Multi-Layered Methodology to
Assist the Secure and Risk-Aware Design
of Multi-Factor Authentication Protocols

Marco Pernpruner, Roberto Carbone, Giada Sciarretta, and Silvio Ranise

Abstract—Authentication protocols represent the entry point to online services, so they must be sturdily designed in order to allow only
authorized users to access the underlying data. However, designing authentication protocols is a complex process: security designers
should carefully select the technologies to involve and integrate them properly in order to prevent potential vulnerabilities. In addition,
these choices are usually restricted by further factors, such as the requirements associated with the scenario, the regulatory
framework, the dimensions to balance (e.g., security vs. usability), and the standards to rely on. We come to the rescue by presenting
an automated multi-layered methodology we have developed to assist security designers in this phase: by repeatedly evaluating their
protocols, they can select the security mitigations to consider until they reach the desired security level, thus enabling a
security-by-design approach. For concreteness, we also show how we have applied our methodology to a real use case scenario in the
context of a collaboration with the Italian Government Printing Office and Mint.

Index Terms—Authentication, risk analysis, security analysis, security methodology.

✦

1 INTRODUCTION

THE National Institute of Standards and Technology
(NIST) defines authentication protocols as «a defined

sequence of messages between a claimant and a verifier
that demonstrates that the claimant has possession and
control of one or more valid authenticators to establish their
identity» [1]. Authenticators represent the core elements
within the authentication procedures, and can attest one
or more authentication factors: something that the claimant
knows (knowledge factors), owns (ownership factors), or is
(inherence factors).

Considering that authentication potentially allows to
access sensitive information and perform restricted opera-
tions, malicious agents frequently target this phase: in the
first quarter of 2022, almost 113 million attacks have been
performed against multi-factor authentication systems, with
the main objectives being staffing/recruiting (4.45%), public
(3.99%), and financial (3.86%) services [2]. This trend is
confirmed when we focus on financial services: 80% of the
organizations have suffered from at least one cyber breach
due to authentication weaknesses, and 95% of total breaches
could be presumedly ascribable to credential misuse or
authentication vulnerabilities [3].

Given the considerable number of attacks, authentication
protocols should be designed in order to be sufficiently
resistant and guarantee a significant level of security. How-
ever, designing security protocols is not trivial: first of all,
security designers need to understand the scenario in which
the authentication protocol is deployed, as it usually im-
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poses some constraints regarding the environment and/or
the legal framework to comply with. Then, many other
choices have to be made: the proper balance between differ-
ent dimensions (e.g., usability and privacy), the standards
to rely on, and the authenticators to use in the protocol,
which must be properly configured and integrated between
each other without exposing the protocol to vulnerabilities.
During the process, security designers usually need to anal-
yse the security of several configurations of the system to
identify the most appropriate one. However, performing
a manual analysis of each configuration would lead to
greater efforts, longer development lifecycles and a higher
probability of missing some vulnerabilities [4], [5]. Auto-
mated techniques can greatly support the analysis process of
authentication protocols due to their reliance on advanced
methods such as model checkers, which can turn the se-
curity analysis into large satisfiability problems [6]. As a
consequence, these techniques are fundamental in detecting
complex, uncovered vulnerabilities that affected common
security protocols [7]. Unfortunately, such techniques are
computationally very intensive as they suffer the state space
explosion problem and may be difficult to exploit to quickly
evaluate alternative configurations of a design.

To alleviate this problem and allow the usage of formal
techniques during the design phase, we have developed a
multi-layered methodology that supports security experts
in the design of authentication protocols, thus fostering
a security-by-design approach. Our methodology can be
repeatedly employed as an oracle in the design process, with
security designers giving in input different configurations
of the protocols until they reach the desired security level.
The multiple layers allow to satisfy some requirements that
we have identified from our experience in protocol design
and analysis: (i) Efficiency, to support security experts in rea-
sonable time; (ii) Classification, to understand the riskiness
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of the successful attackers. In particular, the combinatorial
analysis performs a fast, yet incomplete, high-level analysis
to reduce the number of invocations of the symbolic analysis,
which relies on formal frameworks and is connected with
a higher computational complexity; this complies with the
first requirement. Finally, to meet the second requirement,
the risk analysis complements the list of attackers that are
able to violate the protocols with the related risk, to under-
stand which of them represent the most relevant threats.

For the sake of concreteness, we also show how we have
applied our methodology to a real use case scenario: an
authentication procedure based on QR codes and electronic
documents that currently represents one of the main authen-
tication procedures to access Italian Public Administration’s
online services. This activity has been performed in the con-
text of a long-standing collaboration with Poligrafico e Zecca
dello Stato Italiano (IPZS, the Italian Government Printing
Office and Mint) and has allowed them to gradually refine
the protocol until they reached the desired trade-off between
security and usability.

Structure of the Paper

Section 2 describes the methodology that we have devel-
oped to support the design of authentication solutions. Sec-
tion 3 introduces a concrete authentication protocol that we
use as a practical example. Section 4 shows the application
of the methodology to the use case scenario. Section 5 identi-
fies and discusses the role of security mitigations along with
their implications from security and usability perspectives.
Section 6 presents related works. Section 7 draws some
conclusions and hints future works.

2 SECURITY ANALYSIS METHODOLOGY

To support the design of authentication protocols, we have
developed a methodology – displayed in Fig. 1 – that aims
at detecting all the (combinations of) attackers A1 that are
able to violate the security goal G:

A = {A ⊆ T M | MP , µ (A) ̸|= G} (⋆)

with the following specifications required as input:
• a model of the protocol (MP ) derived from the Message
Sequence Chart (MSC, in blue), a detailed represen-
tation of the protocol to be analysed from which we
can extract the authentication factors used, the entities,
their initial knowledge, the messages they exchange,
the communication channels used, and the security
assumptions;

• a model of the attackers (MA) obtained by using a list
of potential attackers (i.e., a threat model T M) equipped
with a set of capabilities (in orange). In Section 4.2, we
provide a reference model that can be extended by a
security expert according to the needs. This model takes
inspiration from the Authenticator Threats introduced

1. It is worth underlining that A can represent either single attackers
or combinations of attackers: in the first case, attackers are successful
by relying on their own capabilities; in the second case, they need to
collude and combine their capabilities. For readability, single attackers
A = {a} can be denoted as {a} or a; combinations of attackers A =
{a1, . . . , an} can be denoted as {a1, . . . , an} or a1+. . .+an.

by NIST [8]. To formalise the capabilities of a specific
attacker, we introduce a function µ : T M → MA,
which takes in input an attacker A ∈ T M and returns
the specification of the corresponding capabilities from
the model of the attackers MA.

In case of authentication protocols, G represents the
fact that the intended service (called Service Provider) must
authenticate the user with a given level of assurance, which
is specified by the service itself depending on many factors.

From our experience in the design and analysis of
authentication protocols, we have identified the following
requirements that our methodology should meet:

R1. Efficiency: the methodology should be efficient
enough to allow security experts to promply obtain
results during the design of authentication protocols;

R2. Classification: the methodology should provide a
clear classification of the successful attackers to allow
security designers to understand the related risk.

For this reason, we have structured our methodology
in multiple layers: combinatorial analysis, symbolic analysis,
and risk analysis; this way, we can enable security designers
to make informed decisions while maintaining the cost of
invoking automated security analysis techniques at a rea-
sonable level. In particular, the combinatorial layer requires
high-level specifications and performs a fast, yet incomplete,
analysis whose role is to reduce the number of attackers to
test in the following layer – which is more computationally
expensive – and comply with R1. To provide complete
results, the second layer is represented by the symbolic anal-
ysis, which relies on advanced frameworks requiring formal
specifications with cryptographic details; this analysis suf-
fers from the well-known state space explosion problem that
is common to several state-based techniques [9]. Finally, the
risk analysis collects the results of the previous analyses and
complements them with a risk assessment that provides a
basis to plan the mitigations, thus complying with R2.

2.1 Combinatorial Analysis
The first layer of our methodology aims at finding:

A
C
= {A

C
⊆ T M | MPC

, µ
C
(A

C
) ̸|=

C
G

C
} (⋆

C
)

with
µ

C
: T M → MAC

This is achieved through a high-level analysis based on
authentication factors: G

C
holds when attackers are not

able to compromise all the authentication factors involved
in the protocol. In fact, attackers who compromise all the
authentication factors cause a violation of the whole proto-
col, and are reported by the combinatorial analysis. In this
context, MPC

represents the list of authentication factors
involved in the protocol (inferred from the MSC), while
MAC

represents the attackers’ capabilities in terms of com-
promised authentication factors: we can consider them as a
table where rows represent attackers and columns represent
authentication factors: each pair (a, af ) specifies whether
attacker a is able or not to compromise the authentication
factor af . We may also use the notation a �−→ af , where af
can be a compromised authentication factor or ∅ in case the
attacker a has no effect on the protocol.
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Fig. 1. A graphical representation of our methodology

TABLE 1
Attackers’ capabilities (MAC

) in Example 1

Attackers
Authentication Factors

Password Smartphone

Thief � �
Social Engineer � �

Thief + Social Engineer � �
Thief + Social Engineer + Any � �

� = safe � = compromised

In particular, A
C

is reported by the combinatorial analy-
sis (and thus is a solution of ⋆

C
) iff for each authentication

factor af ∈ MPC
there exists an attacker a ∈ A

C
so

that a �−→ af . These attackers, resulting from an explicit
violation of the authentication factors, are called explicit.

Example 1. Let us consider an authentication protocol in which
users need to insert a password and scan a QR code through
an application on their smartphone (on which they must already
be authenticated). The protocol is composed of two authentication
factors: the password (i.e., a knowledge factor) and the smartphone
(i.e., an ownership factor). Let us consider two attackers: thieves,
who physically steal devices, and social engineers, who deceive
people into performing operations or revealing secrets; therefore,
T M = {Thief ,Social Engineer}. Thieves manage to steal the
smartphone, but they do not know the password, so they cannot
compromise the protocol. Social engineers manage to know the
password, but they do not possess the smartphone, so they cannot
compromise the protocol. The only way they have to compromise
the protocol is by combining their capabilities: together, they
can both know the password and possess the smartphone, thus
violating the protocol (all the padlocks are open in Table 1).

Following Example 1, once we detect Thief + Social
Engineer as successful, any wider combination involving
these attackers would be trivially successful too, as attackers
colluding together result in an enrichment of the origi-
nal capabilities. As a consequence, to avoid redundancy,
we only consider minimum sets of attackers throughout our
analyses: when a set of attackers is detected as successful,
we never consider any larger combination involving the
already detected attacker. Formally, given a non-empty set
A

C
∈ A

C
, no combination A

C
′ ⊋ A

C
will be considered.

Given a successful violation, we observe that the follow-
ing two properties hold for the combinatorial analysis:

• it never reports false positives, meaning that the at-

tackers detected by the analysis do manage to violate
the security goal. Therefore, the combinatorial analysis
is sound w.r.t. ⋆

C
;

• it may miss some advanced attacks yielding to false
negatives, thus it is incomplete w.r.t. ⋆

C
.

These properties allow us to (dramatically) reduce the
number of invocations of the precise and resource-intensive
security analysis in the next layer.

2.2 Symbolic Analysis

From the combinatorial analysis, we obtain the list of all the
explicit attackers violating the protocol (A

C
). As a second

layer of our methodology, we rely on the symbolic analysis
that aims at finding:

A
S
= {A

S
⊆ T M \A

C
| MPS

, µ
S
(A

S
) ̸|=

S
G

S
} (⋆

S
)

with
µ

S
: T M → MAS

The symbolic analysis can also discover complex attacks
where the attackers do not need to compromise all the
authentication factors to violate the protocol, as they de-
ceive the victim into implicitly compromising the remaining
factors on their behalf; we have defined them as implicit
attacks [10].

Example 2. Let us consider the protocol in Example 1. Social
engineers could launch an authentication request, insert the user’s
password (which they do know), and send the QR code to the
user, claiming that she might win a cruise by scanning it. As
a consequence, although they cannot explicitly compromise all
the authentication factors involved (they cannot possess the user’s
smartphone, as per Table 1), they anyway manage to implicitly
compromise them as soon as the user scans the QR code.

By relying on the soundness of the combinatorial anal-
ysis, we employ the symbolic analysis only to evaluate the
attackers who have not been detected by the combinatorial
analysis (i.e., T M \ A

C
); for this reason, the combinatorial

analysis shares the list of successful explicit attackers.
Given our expertise and past experience, for the sym-

bolic analysis we have chosen to leverage ASLan++ [11] –
the specification language of the AVANTSSAR Platform [6] –
in combination with SATMC [9] – a model checker for secu-
rity protocols relying on advanced SAT solvers. Anyway, the
protocol could also be modelled in different formal specifi-
cation languages and given in input to other model checkers
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(e.g., ProVerif [12] or Tamarin [13]). With respect to the com-
binatorial analysis, here the inputs described in Section 2
have to be expressed in more refined specifications based
on ASLan++. As a consequence, MPS

does not represent
just the authentication factors involved in the protocol, but
consists in a refined model of the messages exchanged by
the entities. G

S
is modelled by specifying the security prop-

erties that must hold on the channel that gets established
between the user and the Service Provider. Moreover, while
MAC

was specified in terms of compromised authentication
factors, MAS

is modelled in terms of channels’ properties
that get violated and knowledge that is acquired during
the protocol. The Dolev-Yao model (MDY ) [14] supported
in SATMC can thus be extended by specifying custom
attackers with additional capabilities (e.g., those belonging
to our threat model), so that MAS

=
(
MDY ∥ M∗

AS

)
.

Example 3. From Example 2, social engineers can threaten the
confidentiality between the user and the mobile application (and
viceversa), as they can deceive the user into revealing whichever
value she inserts in (or reads from) the application. Moreover,
they can compromise the authenticity between the browser and
the user, as the QR code that she scans would not really come
from the browser (even though the user may think so).

Once the model checker receives MPS
and MAS

, it
verifies that they satisfy the security goal, reporting details
about the attack in case a violation is found. We observe
that the symbolic analysis is both sound and complete with
respect to ⋆

S
under suitable assumptions.

2.3 Risk Analysis

At the end of the combinatorial and symbolic analyses, a
list of explicit (A

C
) and implicit (A

S
) attackers is generated

and shared with the risk analysis layer, which evaluates
the risks of each attacker as a combination between the
likelihood and impact, according to some factors. Let ρL
and ρI be two functions that, given an attacker in T M,
return tuples containing parameters that once combined
together yield the likelihood or impact values, respectively;
these values are defined by the security expert for each
single attacker. Moreover, let R be a function that computes
the risk, by suitably combining the likelihood and impact.
Although different methodologies can be used, we rely on
an extended version of the OWASP Risk Rating Methodol-
ogy [15]: R computes the overall likelihood and impact by
computing the average of the values returned by ρL and
ρI , respectively; each of them is then assigned a label (Low,
Medium, High). Finally, the likelihood and impact labels
are combined according to a risk matrix (described in [15])
to obtain the overall risk.

Below, for concreteness, we consider that ρL returns five
factors and ρI four factors, as specified in Table 2. We ob-
serve that the following discussion can be easily adapted to
other methodologies considering different tuples of factors
to characterise likelihood (ρL) and impact (ρI ).

Depending on the considered attacker A, we now distin-
guish two cases: A is a single attacker, i.e., |A| = 1; or A is a
combination of attackers, i.e., |A| > 1.

Single attacker: A = {a}
Given the set of factors that we have adopted:

ρL (A) = ρL (a) = ⟨va
TD

, va
O
, va

AV
, va

UI
, va

SA
⟩

ρI (A) = ρI (a) = ⟨va
LSP

, va
AS

, va
AD

, va
AP

⟩

where vaf = [0, 9] corresponds to the value assigned to the
factor f for the attacker a.

Finally, the risk can be computed by combining the
likelihood and impact through a suitable function R:

Risk (A) = Risk (a) = R (ρL (a) , ρI (a))

Combination of attackers: A = {a1, . . . , an}
When considering a combination of attackers, each ak ∈ A
(with k = 1, . . . , n) is associated with a set of likelihood and
impact values:

ρL (ak) = ⟨vak

TD
, vak

O
, vak

AV
, vak

UI
, vak

SA
⟩

ρI (ak) = ⟨vak

LSP
, va1

AS
, vak

AD
, vak

AP
⟩

As a consequence, for each likelihood and impact factor,
we have n values. We now explain how to derive a single
tuple for likelihood and one for impact from the n available
tuples, respectively, so to apply the function R to derive the
risk value. For this, we define a function C taking as input n
values belonging to a given factor f :

V A
f = C

(
va1

f , . . . , van

f

)
With respect to the case of the single attacker, the func-

tions ρL and ρI have to be redefined accordingly:

ρL (A) = ⟨V A
TD

, V A
O
, V A

AV
, V A

UI
, V A

SA
⟩

ρI (A) = ⟨V A
LSP

, V A
AS

, V A
AD

, V A
AP

⟩

Finally, the risk can be computed as follows:

Risk (A) = R (ρL (A) , ρI (A))

In our analysis, we have defined C as follows:
• In general, we consider the minimum between all the
values for the considered factor. For instance, a com-
bination of a physical thief (which must act physically,
thus v

AV
= 1) and a remote malware (which can act

remotely, thus v
AV

= 9) needs a physical intervention
anyway, hence the former value will be considered.
Considering f ∈ {TD,AV,UI, LSP,AS,AP}:

C
(
va1

f , . . . , van

f

)
= min

{
va1

f , . . . , van

f

}
• Beyond the previous consideration, when considering
some particular factors such as the Opportunity and
the Spread of Attack, the likelihood decreases as the
number of attackers involved n increases. Considering
f ∈ {O,SA}:

C
(
va1

f , . . . , van

f

)
= min

{
va1

f , . . . , van

f

}
− (n− 1)

• In addition, we can distinguish two classes of attack-
ers: physical and remote (according to how they per-
form the attack). When attackers from both the classes
are involved in a combination, they need not only to
perform physical operations, but also to act remotely
on the same user’s devices, thus further reducing both
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the Opportunity and the Spread of Attack. Considering
f ∈ {O,SA}:

C
(
va1

f , . . . , van

f

)
= min

{
va1

f , . . . , van

f

}
− (n− 1)− 2

• Finally, as far as the Attack Detection is concerned,
the number of physical devices stolen must be taken
in consideration, since a higher number results in an
easier detection of the attack. However, this consider-
ation only applies when more than a single device is
stolen. Therefore, given a combination of attackers that
manage to physically steal k devices:

C
(
va1

AD
, . . . , van

AD

)
={

min
{
va1
AD

, . . . , van
AD

}
if k = 0

min
{
va1
AD

, . . . , van
AD

}
− (k − 1) if k ≥ 1

Remind that, in any case, values range from 0 to 9.

2.4 Relationship Between the Analyses
Our methodology involves two different layers for the secu-
rity analysis (i.e., the combinatorial and symbolic analyses),
which aim at identifying the explicit and implicit attackers
that are able to compromise the considered protocol. The list
of successful attackers is then shared with the risk analysis
layer, which assigns a risk value to each of the attackers
detected by the previous analyses.

The combinatorial and symbolic analyses are connected
by a strong relationship that must be taken in consideration
when providing the related models: MAS

extends MAC
,

i.e., MAS
models in the specification language at least the

same capabilities on the authentication factors represented
by MAC

. To ensure consistency between the two analyses,
these models should be provided by a security expert.

Due to this relationship, the combinatorial analysis is not
strictly necessary, as the symbolic analysis would be able to
detect both explicit and implicit attackers by itself. In par-
ticular, for each attacker A

C
detected by the combinatorial

analysis, there exists a corresponding attacker A
S

detected
by the symbolic analysis, with A

C
= A

S
; therefore, the

combinatorial analysis is sound with respect to the symbolic
analysis. Consequently, we rely on the combinatorial analysis
to reduce the set of attackers to test in the symbolic analysis,
so as to reduce the overall complexity of the process.

On the contrary, the symbolic analysis is mandatory: for
each attacker A

S
, there not always exist a corresponding

attacker A
C

, with A
S

= A
C

; therefore, the combinatorial
analysis is incomplete with respect to the symbolic analysis.

2.5 Computational Considerations
The symbolic analysis requires advanced computational
capabilities, which result in a higher time of execution. On
the other hand, it provides a higher level of confidence on
the results, meaning that it reports also complex attacks that
may have been missed during the combinatorial analysis.
If we performed the symbolic analysis for all the n attack-
ers (and combinations) belonging to the threat model, we
would have to run it 2n − 1 times. We can considerably
reduce the set of attackers to test thanks to the following
considerations:

C1. Explicit attacks from the combinatorial analysis: the
main goal of the combinatorial analysis is to prune
the set of attackers to test, given its speed in detect-
ing explicit attackers. Consequently, by relying on its
soundness, we check neither already detected attackers
nor larger combinations involving sets of successful
attackers.

C2. Physical thieves: when they steal a device, users can-
not be deceived into approving a malicious authenti-
cation attempt on that device, because they no longer
own it. Therefore, these attackers cannot be involved in
implicit attacks.

C3. Non-minimum combinations of implicit attacks: once
the symbolic analysis detects successful attackers, we
do not consider further combinations with them (see
Section 2.1 for a formal definition).

More details will be provided in Section 4.5.

2.6 Application Scenarios

In the next section, we describe a concrete authentication
protocol to which we apply our methodology. This use case
scenario just aims to provide a concrete example of how
our methodology can be applied and how the results can be
used to support the design phase. In fact, our methodology
can be employed to analyse authentication protocols in
many more scenarios. For example, in the financial sector,
to highlight the differences between online banking authen-
tication protocols before and after the PSD2 regulation on
payment services [16]; in the corporate sector, to support the
design of new authentication schemes or analyse existing
ones according to internal needs.

3 USE CASE SCENARIO

We have a long-standing collaboration with Poligrafico e
Zecca dello Stato Italiano (IPZS), the Italian Government
Printing Office and Mint that is responsible for produc-
ing the Italian eID card, called Carta d’Identità Elettronica
(CIE 3.0) [17]. This collaboration aims at developing and
analysing cutting-edge identity management solutions to
fully benefit from the capabilities of eID cards, which are
equipped with a microchip that communicates through a
contactless NFC interface. They are also provided with an
X.509 certificate [18] containing the personal data of the
owner, whose trustworthiness is ensured by the competent
authorities through a digital signature. As a consequence,
each card has a pair of keys that can be used for public-key
cryptography (following the IAS ECC specifications [19]),
whose use can be unlocked by inserting a PIN.

Involving eID cards in an authentication workflow may
provide several benefits from a security perspective. In this
context, we focused on hybrid scenarios allowing users to
authenticate from a personal computer by leveraging their
smartphone as an eID card reader. In particular, we now
describe a concrete protocol that is currently used in the
Italian ecosystem as one of the main authentication proce-
dures to access Public Administration’s online services. This
protocol requires users who wish to authenticate themselves
to launch a request from their personal computer’s browser,
which then displays a QR code. Once users scan the QR code
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TABLE 2
Factors considered for the Risk Analysis

Likelihood

Technical Difficulty TD
Deals with the technical difficulty to perform the attack from a technical perspective, with lower scores
representing higher levels of difficulty. For instance, reading a password from a screen is not technically
difficult (higher value), in contrast to programming a rooting malware (lower value).

Opportunity O

Time or space restrictions limiting the attackers’ opportunity to carry the attack out, with more
restrictions resulting in lower scores. For instance, assuming that mobile devices are protected by
security mechanisms, thieves need to steal them when they are unlocked, otherwise they become
unusable (lower value). On the other hand, deceiving users into revealing their password is not subject
to particular limitations (higher value).

Attack Vector AV The vector which the attack is carried out through. Attacks requiring a physical intervention result in a
rating of 1, while those requiring only a network access result in 7.

User Interaction needed UI

Whether the victims need to interact in order to make the attack successful, with lower scores (1 or 2)
assigned when an interaction is needed in a specific interval of time, 4 when an interaction is needed
with no time constraints, 7 when the attack can be carried out without any interaction with the users.
For instance, in case the victim needs to authorize the attacker’s malicious attempt in a few minutes
(before the operation expires), this results in a lower score.

Spread of Attack SA Provides a measure of the popularity of an attack, based on official statistics concerning the specific
(combination of) attackers analysed. Common attacks result in higher scores.

Impact

Loss of Security Properties LSP

Refers to the effects of the attack in terms of violated security properties. While OWASP suggests
four different factors to estimate the loss of confidentiality, integrity, availability and accountability
respectively, we chose to consider them jointly. As our protocols aim at authenticating users onto an
external SP, we are not aware of the impact of a potential violation on the security properties, therefore
we adopt a worst-case approach and always rate this factor with 9.

Attack Scale AS
Depends on the number of users which could potentially be compromised, with more users leading to
higher values. In particular, we assign 2 when only a specific target can be threaten, while we use 8
when everyone can be affected.

Attack Detection AD

Whether (and how easily) the attack can be detected by the victims after it has been successfully carried
out, with easy-to-detect attacks resulting in lower scores. For instance, if every successful authentication
cause a notification to be sent to the legitimate user, a potential account violation will be discovered
easily, thus resulting in lower scores.

Attack Persistence AP

Provides a measure of the time exposure of the user’s account in case it was compromised. For instance,
if an attacker manages to steal the OTP or the response connected with the ongoing attempt, he can
compromise only that specific authentication; on the other hand, if he steals the eID card and its PIN he
can authenticate on the user’s behalf until the theft is reported and the eID card blocked. In the former
case we rate this factor with 2, while in the latter with 8.

via a custom mobile application (namely, eIDApp) on their
smartphone, they are guided through the interaction with
their eID card and finally authenticated on their personal
computer. Therefore, the authentication factors involved are
the eID card (è ) and the PIN ( ).

3.1 Entities

The protocol involves the following set of entities:

• User: the claimant, who wants to authenticate on a spe-
cific service. Each user is supposed to have a userId,
which is a uniquely identifying value that is contained
in the eID card’s certificate.2

• eID card: the eID card belonging to the user.
• eIDApp: the mobile application responsible for se-
curely interacting with the eID card.

• Identity Provider (IdP): responsible for managing users’
online identities and ensuring proper authentication. It
is composed of a front-end interface (accessible through
a browser) and a back-end server (IdPServer).

2. In the Italian scenario, the serial number of the eID card is used as
userId.

• Service Provider (SP): any online service where users
can authenticate. It is composed of a front-end interface
(accessible through a browser) and a back-end server
(SPServer).

• Browser: a web browser that users can interact with
in order to access front-end interfaces of both the SP
and the IdP. This browser runs on a personal computer
belonging to the user.

The IdPServer and the SPServer are part of a trust
relationship, obtained after a federation procedure [20].

3.2 Flow
Fig. 2 shows the message sequence chart of the protocol,
which is composed of the following phases:

1) Authentication request: the user visits the SP webpage
and launches a new authentication request, thus being
redirected to the IdP. The IdPServer generates some
fresh values associated with the authentication attempt:
an identifier opId and an associated cookie IdP-
SessionCookie that will be used during any commu-
nication between the browser and the IdPServer. After
storing these values, the IdPServer displays the login
page.
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Fig. 2. Message Sequence Chart of the protocol

2) User info: the user fills her identifying information
(userId) in the login page. The browser retrieves this
value and sends it to the IdPServer.

3) Challenge: the IdPServer generates the challenge and
displays it on the browser as a QR code, which the user
is required to scan through the eIDApp to extract the
plain challenge.

4) Response: after providing the PIN, the user is required
to place her eID card near the mobile device for NFC
scanning. In case the PIN is correct and has been
provided within a fixed number of attempts, the eID
card signs the challenge through its private key, thus
generating the response that is finally sent back to
the IdPServer through the eIDApp along with the eID

card’s certificate.
5) OTP verification: the IdPServer generates a fresh OTP

and associates it with the current opId. The OTP, which
is displayed to the user through the eIDApp, needs to
be written back to the IdP login page on the browser.
Finally, it is sent to the IdPServer.

6) Redirection: the IdPServer redirects the user to the
SPServer with an authentication assertion.

During the protocol, the IdPServer verifies that:

• Step 10: the incoming IdPSessionCookie matches
the one generated at step 5.

• Step 23: (i) the eID card’s certificate has not been
revoked; (ii) the userId previously inserted matches
the one stored in the eID card’s certificate; (iii) the value
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obtained after applying the eID card’s public key to
response matches the challenge.

• Step 29: (i) the incoming IdPSessionCookie matches
the one generated at step 5; (ii) the OTP inserted by
the user on the browser at step 27 matches the one
generated by the IdPServer at step 24; (iii) the OTP
has been provided within a fixed number of attempts;
(iv) the operation has been completed in a fixed time
interval.

In case one of these checks fails, the authentication proce-
dure ends with an error.

3.3 Challenge
During authentication, the IdPServer needs to be sure that
the involved eID card really belongs to the user who is going
to be authenticated. To this end, a challenge–response pro-
cedure [1] occurs between the IdPServer and the eID card.
In the considered protocol, the challenge is composed of
the following parameters:

• opId: the operation identifier, which is randomly gen-
erated and represents the authentication attempt;

• userId: the user identifier, which the user fills in
during the procedure;

• IdPName: the name of the IdP used for the authenti-
cation;

• SPName: the name of the SP which the user wishes to
authenticate onto;

• opText: a textual description of the current operation,
displayed on the mobile device before the approval.

4 APPLICATION OF THE METHODOLOGY

In this section, we show how we have applied our method-
ology to the use case scenario defined in Section 3.

4.1 Security Setup
In this section, we set the analyses up for our use case
scenario by defining the security assumptions (Section 4.1.1)
and the attackers’ capabilities (Section 4.1.2).

4.1.1 Security Assumptions
During the analyses, we consider the security assumptions
that are described in Table 3. We categorize them in: eID
cards Assumptions (EA), ensuring that the authenticator has
been properly activated; Procedural Assumptions (PA), deal-
ing with the authentication procedure itself; Trust Assump-
tions (TA), related to the trust between the entities involved
in the protocol; and Channels Assumptions (CA), regarding
the properties of the communication channels.

4.1.2 Threat Model and Attackers’ Capabilities
In order to analyze the security of the protocol, we have
identified from [8] the Authenticator Threats that can violate
it. Then, we have expanded and contextualized the related
attackers to obtain the threat model in Table 4:

T M = {PCT,MDT,CT,D,ES,SS,SE,MB,MM}

The relationship between the Authentication Threats iden-
tified by NIST and our threat model is detailed in the

complementary website [21]. In particular, we have not con-
sidered: “Assertion Manufacture or Modification” (since the
authentication assertion is digitally signed by the IdPServer
and cannot be tampered with); “Offline Cracking” and
“Online Guessing” (due to the restricted number of possible
attempts while inserting the eID card’s PIN); “Side Channel
Attack” (as in EA4 we assume that the eID card’s private
key is particularly difficult to extract); and “Unauthorized
Binding” (as eID cards can be associated only to their
legitimate owners, due to EA1).

Once defined the attackers, we have also defined their
capabilities in terms of compromised authentication fac-
tor(s) in our scenarios (Table 5): closed padlocks (� ) denote
non-compromised factors, while open padlocks (� ) repre-
sent compromised factors. In addition, we use an asterisk
(�∗ ) to indicate a possession factor that is compromised
indirectly. For instance, a malicious application does not
physically violate eID cards, yet it manages to deceive
victims into interacting with their eID cards, thus compro-
mising that factor without physically possessing it.

4.2 Combinatorial Analysis
The combinatorial analysis, described in Section 2.1, discov-
ered 5 attackers that are able to compromise the protocol
explicitly:

A
C
= {{MM} , {CT,D} , {CT,ES} , {CT,SS} , {CT,SE}}

where the first corresponds to a malicious application, while
the others correspond to a card thief combined with another
attacker able to discover the user’s eID card’s PIN.

For instance, considering the combination CT+SS: CT
manages to obtain the victim’s eID card (è ) by physically
stealing it, while SS can compromise the PIN of the eID
card ( ) by looking at the victim while typing it. As a
consequence, the combination violates all the authentication
factors involved in the QR protocol and thus is able to
authenticate onto an online service as the victim.

4.3 Symbolic Analysis
As explained in Section 2.2, we need to provide SATMC
with all the parameters in input, which have been mod-
elled in ASLan++ following the work in [22]. To better
understand the formalisation, Table 6 shows some relevant
predicates in ASLan++. The complete ASLan++ models
are available on the complementary website [21].

4.3.1 Protocol (MPS
)

The model of the protocol formally describes the entities
involved and the communications between them over the
communication channels. This model should be as consis-
tent as possible with the protocol it describes, in order
to obtain a proper analysis; however, as often happens,
models can also contain some approximations to reduce the
computational complexity of the analysis, though without
losing crucial details. For space reasons, the approximations
adopted in our models are described on the complementary
website [21].

Legitimate entities may be required to know specific
information before the protocol execution. ASLan++ re-
quires these values to be passed as arguments to the related
entities. In the considered protocol:
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TABLE 3
Security Assumptions

# Assumptions

EA1 eID cards are released by a specific municipality to their right owners, after a proper identification.

EA2 The eID cards’ PIN has not been disclosed before being given to the citizen.

EA3 eID cards are provided with anti-tampering features, thus they cannot be altered or cloned.

EA4 The private keys of eID cards, related to their X.509 certificate, are safely protected and cannot be disclosed.

PA1 Users cannot have their physical devices (i.e., personal computer, mobile device or eID card) stolen during the authentication process.
Attackers can hence possess such devices either for the whole protocol or not at all.

TA1 The IdPServer is recognized as an official IdP, thus releasing only valid and correct identity assertions and protecting secret values.

CA1 The browser and the IdPServer communicate over a unilateral TLS channel, established thanks to a valid certificate of the latter.

CA2 The browser and the SPServer communicate over a unilateral TLS channel, established thanks to a valid certificate of the latter.

CA3 The eIDApp and the IdPServer communicate over a unilateral TLS channel, established thanks to a valid certificate of the latter.

CA4 The eIDApp and the eID card occurs over a unilateral secure channel, established via NFC thanks to a valid certificate of the latter.

TABLE 4
Attackers belonging to the Threat Model

Personal Computer Thief PCT Steals the users’ personal computer.

Mobile Device Thief MDT Steals the users’ mobile device.

Card Thief CT Steals the users’ eID card.

Duplicator D Copies or duplicates a legitimate authenticator or authentication factor.

Eavesdropping
Software ES

Intercepts the data exchanged between the claimant and the authenticator. Keyloggers are typical
examples of this kind of attacks, since they either capture what users type or take screenshot while
passwords are being filled in.

Shoulder Surfer SS
Obtains secrets by physically looking at the claimant performing authentication operations. This attack
can be implemented either by directly looking over the claimant’s shoulder or by using longer-range
tools like binoculars, video surveillance systems or hidden cameras.

Social Engineer SE Exploits human gullibility and confidence in others. Attackers deceive the claimant into revealing
secret information or performing actions to their advantage.

Man in the Browser MB
Manages to take full control of the claimant’s browser, due to malware or malicious browser extensions
which have previously been installed. By lying on the user’s browser, these applications are thus able
to read and tamper with every webpage and transaction, without the claimant’s awareness.

Man in the Mobile MM
As the previous attacker, but related to mobile devices. Whether malicious programs are able to obtain
root privileges, they totally compromise the device: they are therefore able to read in other applications’
sandboxes, overlay the interface with custom phishing windows and a lot more.

TABLE 5
Attackers’ capabilities in the combinatorial model

Attackers
Authentication Factors

è

PCT, MDT, MB � �
CT � �
D, ES, SS, SE � �
MM �∗ �

� = safe � = compromised �∗ = indirectly compromised

• the user knows the PIN of the eID card and the
userId;

• the eID card knows its PIN.

In addition to honest entities, also attackers (which in
ASLan++ are referred to as intruders and indicated with
i) may have some preliminary knowledge. In ASLan++,
an initial knowledge k is given to the intruder by using

the expression iknows(k). However, since attackers’ initial
knowledge depends on their capabilities, it will be specified
directly in the attackers’ model M∗

AS
.

Beyond modelling the protocols, we also had to for-
malise the security assumptions that we have identified in
Table 3. The formal specification of such assumptions can
be found in Table 7, while the description of the predicates
used is provided in Table 6.

4.3.2 Model of the attackers’ capabilities (M∗
AS

)

To model the attackers’ capabilities for the symbolic anal-
ysis, we modify some parts of the specifications according
to the attacker that we are considering in the specific run
of the symbolic analysis. Below you can find a description
of how each attacker affects the protocol; the numbers in
parentheses refer to Table 8, which displays the correspond-
ing changes to make in the ASLan++ model. We also show
the relationship between the symbolic and the combinatorial
models of the attackers’ capabilities, to underline that the
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TABLE 6
Relevant predicates in ASLan++

Predicate Description

weakly_authentic(ch) A channel ch is weakly authentic if its input can be accessed by a single, but unknown, sender.

weakly_confidential(ch) A channel ch is weakly confidential if its output can be accessed by a single, but unknown, recipient.

confidential_to(ch, R)
A channel ch is confidential if its output can be accessed only by the specified recipient R. Therefore,
this predicate is a strengthened version of weakly confidential.

link(ch_A2B, ch_B2A)
Two channels ch_A2B and ch_B2A are linked if the agent sending messages over the former is the
same receiving messages on the latter.

unilateral_conf_auth(ch_A2B,
ch_B2A, B)

The property of unilateral confidentiality and authenticity can be used to model a run of SSL/TLS in
which an agent has a valid certificate, while the other has not. Specifically, this property implies that:
ch_A2B is confidential to B and weakly authentic; ch_B2A is weakly confidential and authentic for B;
ch_A2B and ch_B2A are linked.

bilateral_conf_auth(ch_A2B,
ch_B2A, A, B)

The property of bilateral confidentiality and authenticity can be used to model a run of SSL/TLS in which
both agents have a valid certificate. Specifically, this property implies that: ch_A2B is confidential to B
and authentic for A; ch_B2A is confidential to A and authentic for B; ch_A2B and ch_B2A are linked.

TABLE 7
Security assumptions in the symbolic model

Ass. Formal Specification

EA1 Unless CT is considered, users possess their own eID card that will be used for proper identification.

EA2 The PIN of the eID card is set as nonpublic.

EA3 No attacker can tamper with an eID card.

EA4 Private keys are automatically kept confidential unless otherwise declared.

PA1 link(ch_User2Browser, Ch_Browser2User)
link(ch_User2EICApp, Ch_EICApp2User)

TA1 The intruder i cannot impersonate the IdPServer in any session.

CA1 unilateral_conf_auth(ch_Browser2IdPServer, ch_IdPServer2Browser, IdPServer)

CA2 unilateral_conf_auth(ch_Browser2SPServer, ch_SPServerS2Browser, SPServer)

CA3 unilateral_conf_auth(ch_EICApp2IdPServer, ch_IdPServer2EICApp, IdPServer)

CA4 unilateral_conf_auth(ch_EICApp2EIC, ch_EIC2EICApp, EIC)

former (MAS
) can always be reduced to the latter (MAC

);
this leads to the discussion in Section 2.4.

It is important to notice that we provide instructions
to model both how to consider and how not to consider
a specific attacker. Therefore, a dash (—) means that the
predicate in the other column of the same row does not
apply.

PCT, MDT, CT Before the attacker steals the user’s de-
vice (personal computer, mobile device or eID card),
every interaction with it is surely made by the user
herself, thus the channel between the user and the
browser (1), the eIDApp (5) or the eID card (9) is
authentic. Moreover, the fact userOwnComputer (2),
userOwnSmartphone (6) or userOwnEIC (10) needs
to be accordingly set to true, since the user physically
owns its device.
On the contrary, when the user’s device is possessed by
the attacker, all the interactions are made by the same
entity (the attacker himself). Therefore:

• since the browser (3), the eIDApp (7) and the eID
card (11), respectively, do not have any guarantee
on this entity’s identity, the related channel is only
weakly authentic;

• since the attacker is the only entity who can inter-
act with the browser (4), the eIDApp (8) or the eID
card (12), he uses the same communication channel
in every session.

This corresponds to violating the personal computer,
mobile device, or eID card, respectively. However, in
our protocol, only the eID card is considered as an
authentication factor (PCT ,MDT �−→ ∅; CT �−→ è ).

D The attacker manages to copy the eID card’s PIN that
may be written on paper (D �−→ ), thus getting to
know this value (13).

ES, SS Without considering these attackers, the follow-
ing information can be known only to the intended
recipient, thus the considered communication channels
are confidential:

• what the user types in the eIDApp/browser can
be known only by the eIDApp (14)/browser (15);
• what the browser shows to the user can be known

only by the user (16).
Property (15) corresponds to violating the PIN,
which the user is required to insert in the eIDApp
(ES ,SS �−→ ). Instead, properties (15) and (16) are
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TABLE 8
Attackers’ capabilities in the symbolic model

Att. Formal Specification
Without Attacker With Attacker

PCT

(1) authentic_on(Ch_U2B, User); —
(2) userOwnComputer; —

— (3) weakly_authentic(Ch_U2B);
— (4) Use same channel ch_U2B in sessions

MDT

(5) authentic_on(Ch_U2EICApp, User); —
(6) userOwnSmartphone; —

— (7) weakly_authentic(Ch_U2EICApp);
— (8) Use same channel ch_U2EICApp in sessions

CT

(9) authentic_on(Ch_U2EIC, User); —
(10) userOwnEIC; —

— (11) weakly_authentic(Ch_U2EIC);
— (12) Use same channel ch_U2EIC in sessions

D — (13) iknows(PIN);

ES, SS
(14) confidential_to(Ch_U2EICApp, EICApp); —
(15) confidential_to(Ch_U2B, Browser); —
(16) confidential_to(Ch_EICApp2U, User); —

SE

(17) confidential_to(Ch_U2B, Browser); —
(18) authentic_on(Ch_B2U, Browser); —

— (19) iknows(PIN);
— (20) iknows(OTP);

MB — (21) Replace browser with i in one session

MM
(22) authentic_on(Ch_EICApp2U, EICApp); —
(23) authentic_on(Ch_EICApp2EIC, EICApp); —

— (24) Replace eicapp with i in one session

needed because users are displayed an OTP on the
mobile application and have to insert this OTP on the
personal computer’s browser, thus the corresponding
channels need to be confidential when the attacker is
not considered.
All the properties above are no longer true when the at-
tackers become effective, since they manage to intercept
all these values.

SE Without considering this attacker, the communica-
tions between the user and the browser are protected
by the following properties:

• what the user types in the browser can be known
only by the browser, thus the channel is confidential
(17);
• the user is sure that whatever the browser shows

to her really comes from the original browser, thus
the channel is authentic (18).

Properties (17) and (18) are needed because users
are displayed a QR code on the personal computer’s
browser and at the end of the operation they have
to insert an OTP on the personal computer’s browser,
thus the corresponding channels need to be confidential
and authentic, respectively, when the attacker is not
considered.
When SE becomes effective, instead, these properties
are no longer valid: the attacker can both deceive users
into revealing what they typed in the browser, and pro-
vide them with some malicious values by pretending
to be the browser (e.g., the QR code containing the
challenge). Moreover, the attacker manages to make
the user reveal the PIN of the eID card (19) and the

OTP generated by the eIDApp (20), thus compromising
these values (SE �−→ ).

MB This attacker can take full control of the user’s
browser and perform any operation he wishes, thus
we model MB by making the attacker impersonate
the browser (21). However, it does not violate any
authentication factor in our protocol (MB �−→ ∅).

MM This attacker can take full control of the user’s
mobile device and perform any operation he wishes.
Therefore, we model MM by explicitly making the
attacker impersonate the eIDApp (24). However, we
need to restrict other attackers’ capabilities when the
MM is not to be considered, otherwise they could be
too powerful than how we have really modelled them.
To this end, when MM is not considered:

• the user is sure that whatever the eIDApp shows
to her really comes from the original eIDApp, thus
the channel is authentic (22);
• the eID card is sure that whatever the eIDApp

sends to her really comes from the original eIDApp,
thus the channel is authentic (23).

When considering MM, there is no need to remove
instructions (22) and (23), as the channels do remain
either authentic or confidential. However, by imperson-
ating the eIDApp due to (24), MM can deceive the user
into interacting with her eID card (MM �−→ è ), as well
as know the PIN when the user types it (MM �−→ ).

4.3.3 Security goal (G
S

)
In ASLan++, a channel goal has the following form:
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name:(_) Sender Channel Receiver

We can rely on this syntax to model the security goal
(identified in Section 2) as follows:

User_authn_to_SP:(_) User *->> SPServer;

This represents a goal called User_authn_to_SP that
must be satisfied in the run(s) of the protocol. Specifically,
the goal requires that a communication channel between the
user (sender) and the SPServer (receiver) gets established
at the end of the protocol; on this channel, the following
properties (represented by *->>) must hold:

• authenticity: guarantees that any incoming message on
this channel indeed comes from the user;

• directedness: guarantees that any incoming message on
this channel was indeed intended for the SPServer;

• freshness (or replay protection): guarantees that any mes-
sage sent on this channel can be received only once.

4.3.4 Number of sessions
For each analysis, we run two parallel sessions of the
protocol. This way, we can evaluate an attacker leveraging
a parallel session launched by the users themselves to
finalise the attack, which represents how implicit attacks are
usually performed. The two sessions share the same inputs,
though the communication channels used are different (ex-
cept when modelling some attackers, as detailed above).

4.3.5 Results
The symbolic analysis tested the following attackers: D, ES,
SS, SE, MB, D+ES, D+SS, ES+SS, D+ES+SS (see Section 4.5
for more details).and detected two attackers:

A
S
= {{SE} , {MB}}

For both of them, the analysis reported the attack trace,3

which is a graphical representation of the messages ex-
changed between the entities taking part in the protocol,
by using arrows labelled with the content of the message.
Messages consisting in the concatenation of more values are
joined by a dot, while fresh values f are represented by the
expression n(f). In addition to the entities taking part in the
protocol, attack traces usually display an additional entity i
representing the intruder (i.e., the attacker). In case the at-
tacker impersonates another entity e, this fact is represented
by the expression i(e) placed inside a box.

Considering MB, the attack trace in Fig. 3 shows that
when the victim tries to authenticate on an SP (through
request1) and inserts her userId, the attacker can initiate
an authentication process on the same SP by using the same
userId and obtain a challenge in the form of a QR code.
Following the authentication process, the victim should be
displayed a QR code as well, but – since the attacker has
full control of the victim’s browser – he can tamper with
the victim’s authentication page and replace the original QR
code with that obtained in his parallel authentication ses-
sion. The user will be deceived into scanning the malicious
QR code with the eIDApp, inserting the PIN and reading
the eID card through NFC. At the end, she will be displayed

3. To enhance readability, the attack traces displayed in this paper are
a simplified version of those generated by SATMC.

an OTP on the eIDApp to insert on her personal computer’s
browser; however, having control of the browser, MB can
intercept the OTP and insert it in his own authentication
page. As a result, the attacker will be authenticated on his
own personal computer with the victim’s credentials, as the
QR code scanned by the user had been originally issued in
the context of the attacker’s authentication session.

The second implicit attack, performed by SE, is similar
to the previous one. However, SE does not need to alter
the victim’s browser, since he can provide her with the QR
code through other means (e.g., via email or a social media)
and deceive her into scanning it through social engineering
techniques (e.g., «Scan the QR code and use your eID card
to win a wonderful cruise!»). Then, the attacker can – again
– deceive the victim into revealing the OTP, so that he can
finalise the authentication by impersonating the user.

4.4 Risk Analysis
Table 9 shows the results of the risk analysis applied to
our use case scenario, where we can identify three attackers
associated with a low risk (MM, CT+ES and CT+SE), three
with a medium risk (CT+D, CT+SS and SE) and one with
a high risk (MB). MB is a powerful attacker that requires
a specific technical preparation to infect the browser, can
be performed fully remotely, does not need any interaction
with the user, is difficult to detect, and can perform large-
scale attacks.

4.5 Computational Considerations
In Section 2.5 we have proposed some considerations to re-
duce the computational complexity of the symbolic analysis.
Table 10 displays the number of attackers that our consid-
erations exempted us from testing in the use case. When
applied in sequence, each consideration further improves
the set of attackers excluded by the previous ones. As a
result, the symbolic analysis needed to test only 9 attackers
in our use case scenario (1.8%), thus considerably optimising
the analysis flow.

5 SECURITY MITIGATIONS

The role of security mitigations is extremely important to
reduce risks: they play a fundamental role in shortening
the list of successful attackers or reducing the likelihood
and/or impact of certain attackers. As a consequence, the
selection of which mitigations are worth implementing is
a crucial phase during protocol design. However, compa-
nies or governmental agencies implementing authentication
procedures could have custom requirements; that imposes
trade-offs between usability and security when choosing
mitigations. Table 11 displays the mitigations that are im-
plemented in our use case scenario. In addition to security,
we focus on usability that is one of the most important
dimensions to consider when selecting mitigations, as users
are more willing to accept simple protocols rather than
cumbersome ones. We now discuss each mitigation along
with their effects.

M1 Since rooted devices are known to be extremely
vulnerable to common attacks, preventing the use of
the eIDApp on such devices brings many advantages
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Fig. 3. Trace of the implicit attack performed by MB

TABLE 9
Results of the risk analysis

Attackers Likelihood Impact Risk
TD O AV UI SA Overall LSP AS AD AP Overall

MM 2 2 7 1 2 2.80 Low 9 8 3 2 5.50 Medium Low
CT+D 8 1 1 7 4 4.20 Medium 9 2 3 8 5.50 Medium Medium
CT+ES 5 0 1 4 2 2.40 Low 9 2 3 8 5.50 Medium Low
CT+SS 8 4 1 2 5 4.00 Medium 9 2 3 8 5.50 Medium Medium
CT+SE 4 2 1 4 3 2.80 Low 9 2 3 8 5.50 Medium Low

SE 4 9 7 1 4 5.00 Medium 9 5 7 2 5.75 Medium Medium
MB 3 5 7 1 4 4.00 Medium 9 8 7 2 6.50 High High

TABLE 10
Computational effects of our considerations during our analyses

Considerations
Attackers not to be tested in the

symbolic analysis (out of
29 − 1 = 511)

C1 376 (73.6%)

C2 104 (20.3%)

C3 22 (4.3%)

Total 502 (98.2%)

in terms of security. On the other hand, it may result in
usability issues since people who rooted their devices
on purpose would not manage to use the application.

M2 Restricts the attack surface: attackers cannot just
send malicious QR codes to random people, but they
need to choose a precise victim as the userId is part of
the challenge. Although we do not require the userId
to be a secret value (like a password), it should not
be commonly known (like the name of the user) to
reduce the possibility of a general attack. Given the
additional value users have to insert, this mitigation
slightly reduces usability.

M3 Restricts the ability of attackers to deceive users
by sending improper QR codes, since the operation
must be completed within a certain time interval. This
mitigation partially affects usability as well, consider-

ing that expired authentication attempts have to be
launched again.

M4 By restricting the possible attempts, prevents guess-
ing and brute-force attacks on secret values. The num-
ber of available attempt should be carefully set in
order to find a trade-off between security and usability
(i.e., neither too tight, nor too loose).

M5 Restricts the possibility of an attack, since the at-
tacker would also need to obtain the OTP associated
with that specific authentication attempt. Specifically,
we have decided to display the OTP on the mobile ap-
plication in order to reduce phishing attacks carried out
via email: in case users do not have an authentication
attempt currently ongoing on the personal computer’s
browser, they would not know where to insert the OTP.
Given the additional value users have to insert, this
mitigation slightly reduces usability.

M6 Reminds users of verifying that QR codes are dis-
played on an official website, thus reducing the like-
lihood of attackers sending improper QR codes on
phishing websites (such as SE and MB). However, since
the warning is always displayed within the mobile
application, users could ignore or get used to it. This
mitigation has no impact on usability, as it does not
restrict users’ attempt nor it requires users to perform
additional operations.

M7 Helps the user distinguish between legitimate and
malicious authentication attempts. This mitigation is
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TABLE 11
List of possible mitigations

# Mitigations Security Usability

M1 Implement root detection mechanisms on the eIDApp in order to prevent its use on rooted devices. ○ ○ ○ ○ ○ ○ ○ ○

M2 Require the input of a uniquely identifying information (namely, the userId) during authentication. ○ ○ ○ ○ ○ ○ ○ ○

M3 Restrict the validity of authentication attempts only to a certain interval of time, thus rejecting those
completed after the fixed threshold. ○ ○ ○ ○ ○ ○ ○ ○

M4 Restrict the number of possible attempts to provide the correct secret values (i.e., eID cards’s PINs and OTPs). ○ ○ ○ ○ ○ ○ ○ ○

M5 At the end of the authentication procedure, display an OTP on the mobile device and require users to insert
it in the personal computer’s browser. ○ ○ ○ ○ ○ ○ ○ ○

M6
During potentially dangerous operations (e.g., reading the QR code through the mobile application), advise
users to verify the trustworthiness of the source, for instance by checking that the connection is protected
through TLS or by verifying that the URL really belongs to the IdPServer.

○ ○ ○ ○ ○ ○ ○ ○

M7 During the authentication process, always inform users of the ongoing operation. ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ = minimum ○ ○ ○ ○ = maximum

extremely effective in authorization contexts, as precise
details about the ongoing operation to authorize are
displayed to the user. When dealing with authentica-
tion, instead, it is difficult to find suitable details to
uniquely identify the ongoing attempt, thus the security
benefits are slightly lower. In general, the information
displayed to the user should be relevant and uniquely
identify the operation, otherwise some attacks could
anyway be performed. The information can be shown
either without affecting the procedure (e.g., in the same
window where the user inserts the PIN) or by intro-
ducing an ad hoc activity, which would slightly affect
usability. When rating usability in Table 11, we consider
the former case.

What if. . . ?
In Section 4, we have analysed the use case scenario that
implements all the mitigations listed in Table 11. However,
it may be interesting to understand the effects of removing
some mitigations, e.g., to improve the usability level of
the designed protocol. To this end, let us now consider
the protocol in Fig. 2 only implementing mitigation M4,
which is already enforced by eID cards themselves (as far
as their PIN is concerned). Table 12 displays the results of
the new risk analysis, highlighting a significant worsening
of the situation: SE becomes a critical attacker, MM is now
associated with a high risk, and the combination CT+SE
increases to a medium risk. These results show that carefully
selecting the mitigations to implement during the design
phase brings many improvements to the security level of
the protocol.

In general, SE, MB and MM are clearly the most power-
ful attackers, as they can deceive users through social engi-
neering techniques or compromise users’ devices. Therefore,
most of the mitigations aim at targetting these attackers.
As a result, the risk of these powerful attackers can be
significantly reduced.

6 RELATED WORK

The scientific literature contains many approaches to the
security analysis of authentication protocols. For the sake

of brevity, we discuss only the approaches that are more
relevant for our work.

A first approach consists in proposing a new authenti-
cation scheme and performing a formal analysis to demon-
strate its compliance with a given set of requirements and
security goals. Many scientific works follow this approach in
different contexts: healthcare [23], [24], generic [25] and in-
dustrial [26], [27] IoT environments, smart homes [28], [29],
wireless sensor networks [30], [31], and many more. How-
ever, several security analyses have been found flawed [32],
thus leading to potentially incorrect results.

Another approach aims at analysing the security of exist-
ing authentication protocols or standards, such as FIDO [33],
[34], OAuth2.0 [35], 5G EAP-TLS [36] and Single Sign-
On [22]. In this case, the analysis aims at validating a third-
party authentication scheme that is widely used.

In general, most of the analyses rely on formal frame-
works, which requires security experts to model the con-
sidered scenario; then, they use formal provers or model
checkers (such as ProVerif [12] or Tamarin [13]) to assess
the security of the protocol, finally obtaining a list of the at-
tackers that can violate the security goals. These techniques
usually analyse all the attackers contained in the threat
model, thus resulting in a high execution time associated
with the computational complexity of the process.

Moreover, the mere list of successful attackers may not
be enough: in a corporate scenario, for instance, security
designers could need to have clear indications on the risks
associated with the successful attackers, in order to prioritise
them and understand which ones need to be mitigated more
urgently and which of them can be ignored.

By combining different level of analysis, our methodol-
ogy provides several benefits: the combinatorial analysis can
be performed even by less-expert users, and provides a list
of explicit attacks; the symbolic analysis still needs to be set
up by security experts, but is performed on a smaller set
of attackers as it only searches for implicit attacks, thus
reducing the computational complexity of the analysis; the
risk analysis complements the list of attackers by associating
the related risks. Security designers are thus provided with
a methodology that they can customise according to their
needs (e.g., they can skip the symbolic analysis if they need
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TABLE 12
Results of the risk analysis with only M4 applied

Attackers Likelihood Impact Risk
TD O AV UI SA Overall LSP AS AD AP Overall

MM 2 2 7 4 2 3.40 Medium 9 8 7 2 6.50 High High
CT+D 8 1 1 7 4 4.20 Medium 9 2 3 8 5.50 Medium Medium
CT+ES 5 0 1 4 2 2.40 Low 9 2 3 8 5.50 Medium Low
CT+SS 8 4 1 2 5 4.00 Medium 9 2 3 8 5.50 Medium Medium
CT+SE 6 2 1 4 3 3.20 Medium 9 2 3 8 5.50 Medium Medium

SE 6 9 7 4 4 6.00 High 9 8 7 2 6.50 High Critical
MB 5 5 7 4 4 5.00 Medium 9 8 7 2 6.50 High High

for quick, yet possibly incomplete, results).

7 CONCLUSIONS

In this paper, we have presented a multi-layered security
methodology to analyse multi-factor authentication proto-
cols. In addition to identifying the list of attackers that are
able to compromise the protocol, our methodology provides
information about the associated risks. For concreteness, we
have showed how we applied the methodology to a real
use case scenario: an authentication procedure based on QR
codes and electronic documents that currently represents
one of the main authentication procedures to access Italian
Public Administration’s online services. This activity, per-
formed in the context of a long-standing collaboration with
Poligrafico e Zecca dello Stato Italiano (the Italian Government
Printing Office and Mint), supported the design of the
authentication protocol by highlighting which mitigations
reached the best trade-off between security and usability.

Future Work

Given the rising importance of eID cards, we plan to elabo-
rate on how they can be involved in other authentication
contexts such as those dealing with OpenID Connect or
FIDO2, in order to understand the advantages they could
bring in terms of security. We are also going to refine the
formal models of our use case scenario, possibly moving
to more supported model checkers such as Tamarin [13],
which would allow us to benefit from the active community
of users. Finally, we would like to improve our risk analysis
procedure by enhancing its flexibility, for instance by adapt-
ing the risk factors’ values to the context in order to allow
for more granular what-if analyses.
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