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Abstract: Insulators installed outdoors are vulnerable to the accumulation of contaminants on their
surface, which raise their conductivity and increase leakage current until a flashover occurs. To
improve the reliability of the electrical power system, it is possible to evaluate the development of
the fault in relation to the increase in leakage current and thus predict whether a shutdown may
occur. This paper proposes the use of empirical wavelet transform (EWT) to reduce the influence
of non-representative variations and combines the attention mechanism with a long short-term
memory (LSTM) recurrent network for prediction. The Optuna framework has been applied for
hyperparameter optimization, resulting in a method called optimized EWT-Seq2Seq-LSTM with
attention. The proposed model had a 10.17% lower mean square error (MSE) than the standard LSTM
and a 5.36% lower MSE than the model without optimization, showing that the attention mechanism
and hyperparameter optimization is a promising strategy.

Keywords: attention mechanism; empirical wavelet transform; fault prediction; insulators; long
short-term memory; seasonal decomposition; time series forecasting

1. Introduction

Insulators that are installed outdoors are exposed to environmental variations such as
the accumulation of contaminants on their surface, which are mainly from industrial waste,
salinity in coastal regions, or dust from unpaved roads [1]. These contaminants increase
the surface conductivity of the network’s insulating components, causing higher leakage
currents until a flashover occurs. The power grid is monitored through inspections of the
electrical power system by specialized personnel, however, it is difficult to determine the
specific location of failure when the faults are not visibly distinguishable [2].

Since there is little visual difference between faulty and non-faulty contaminated
insulators, the classification of adverse conditions regarding this condition is a challenging
task [3]. When there is a missing or partially broken insulator, this can be easily noticed,
and finding the location of a fault in which the insulator is complete is more difficult; for this
reason, specific types of equipment are used such as ultrasound detector, radio interference,
ultraviolet camera, among others. One way to assess the impact of contamination on the
grid insulation is the leakage current [4].

Although leakage current is a direct measurement method in which it is necessary
to be connected to the electric potential, and this potential can be in high-voltage, this
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method is one of the most efficient to determine the supportability of an insulator to adverse
conditions [5]. For this reason, the leakage current values from contaminated insulators
will be used for the evaluation presented in this paper. Therefore, the data used are from a
high-voltage laboratory experiment under controlled conditions.

The basic sequence-to-sequence (Seq2Seq) long short-term memory (LSTM) model for
time series forecasting comprises an encoder LSTM that processes the input time series
data and generates a context vector of fixed length, and a decoder LSTM that generates the
forecasted values. This approach may not be optimal, however, when the time series data
are lengthy or contain intricate patterns that are difficult to capture with a context vector of
the specified length [6].

Attention mechanisms can circumvent these limitations by enabling the model to
selectively concentrate on the most significant portions of the input time series data at
each stage of decoding. In particular, the attention mechanism computes a set of attention
weights for each input time step, indicating how much attention the model should pay to
that time step when generating the output forecast [7].

By employing attention, the model can selectively focus on the most pertinent portions
of the input time series data, such as the time steps that contain significant patterns or
trends, and disregard the less pertinent portions of the data. This can enhance the model’s
capacity to identify complex patterns in time series data and produce accurate forecasts [8].

On the other side, the empirical wavelet transform (EWT) is a mathematical tool that
can be used to decompose time series data into various frequency bands with the goal of
capturing the data’s essence and reducing the impact of noise or irrelevant information.
EWT has been utilized in a variety of time series analysis applications, such as signal
processing, image analysis, finance, and energy [9].

The EWT is founded on the concept of wavelets, which are functions that can represent
data in both the time and frequency domains. In contrast to conventional Fourier analysis,
which decomposes data into sinusoids with fixed frequencies, wavelets can represent data
in terms of localized oscillations of varying frequencies and scales. This permits EWT to
capture both short-term and long-term patterns in time series, making it more effective
than techniques that solely rely on Fourier analysis to capture the essence of the data [10].

Thus, given the promising outcomes of the attention mechanism and the improvement
in time series forecasting by the trend analysis with the EWT technique, this paper proposes
a modified long short-term memory network model, named optimized EWT-Seq2Seq-LSTM
with attention, wherein the Seq2Seq evaluation is based on two insulators.

The main contributions of this paper are:

• The use of two separate experiments (measuring the leakage current rise of con-
taminated high-voltage power grid insulators) for Seq2Seq evaluation enhances the
generalizability of the analysis. This contribution addresses the need for robustness in
forecasting models, as it ensures that the model can generalize well to unseen data.

• Model optimization using Optuna improves the selection of appropriate hyperpa-
rameters for the model, and the attention mechanism improves the model’s ability to
predict forward values, thereby achieving an optimized structure. This contribution
addresses the need for improved accuracy in forecasting models, as it ensures that the
model is optimized to perform well on the given dataset.

• The use of empirical wavelet transform reduces signal variations that are not represen-
tative and maintains the trend variability, which is the focus of the failure prediction
analysis evaluated in this paper. This contribution addresses the need for improved
data-preprocessing techniques, as it ensures that the model is trained on meaningful
features that capture the underlying patterns in the data.

The remainder of this paper is organized in the following way: Section 2 presents
related works regarding time series analysis for fault prediction, and the proposed method
is explained in Section 3. Section 4 is focused on the discussion of the results, and in
Section 5, a conclusion and future directions of research are drawn.
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2. Related Works

Fault prediction in insulators is a process of detecting potential faults or failures in
electrical insulation systems before they occur. This helps prevent unplanned outages,
equipment damage, and improves the overall power system reliability [11]. There are
several techniques used for fault prediction in insulators, including a partial discharge
measurement [12], thermal imaging [13], acoustic analysis [14], and online monitoring
systems [15]. Using these techniques, it is possible to effectively predict faults in insulators
and prevent them causing unplanned outages and equipment damage [16].

One means of monitoring that is rather promising is the evaluation of leakage current,
which can be analyzed in the laboratory during an experiment, or after a controlled test is
conducted [17]. An insulator leakage current refers to the flow of electrical current through
an insulator that is intended to be an electrical barrier. This flow of current is usually due
to defects or damages in the insulation system, which can result in partial discharge or the
complete failure of the insulation [18].

By the controlling the current leakage levels, power system operators can improve
the reliability, efficiency, and longevity of their equipment, reducing the risk of unplanned
outages and equipment damage [19]. The leakage current prediction through time series
analysis might be a means of helping in the monitoring of the electrical power system,
which is the focus of the research presented in this paper.

Time Series Forecasting Using LSTM with Attention

Time series forecasting is a common problem in many fields, including finance, health-
care, weather, transportation, and energy [20]. The appropriate forecasting of these series
is important for making informed decisions and achieving optimal results. Learning to
correctly predict time series can be challenging, but with the use of advanced machine
learning models, such as LSTM, this has become more feasible [21].

LSTM is a recurrent neural network developed to handle complex time series. It is
capable of handling long-term information and mitigating the forgetting of relevant infor-
mation, making it more effective than other traditional machine learning techniques [22].
When training an LSTM model to forecast a time series, the model learns to identify patterns
and trends in the series, including both short- and long-term trends. This enables the model
to predict future values more accurately than if a simple forecasting technique, such as a
moving average, were used [23].

In summary, using the LSTM for time series forecasting is a powerful and effective
approach [20]. However, it is important to keep in mind that achieving reliable time series
forecasting requires a combination of advanced machine learning approaches, reliable
data, and technical skills to correctly adjust the model parameters. Several authors have
presented promising works using the LSTM for time series forecasting [24].

A day-ahead residential load forecasting model based on feature engineering, pooling,
and a hybrid model combining LSTM with a self-attention mechanism was proposed by
Zang et al. [25]. The case studies were made on a dataset containing multiple residential
users. The results showed the superiority of the proposed load forecasting model through
comparison with other models. The volatility and intermittence of solar energy influence
the accuracy of photovoltaic power prediction.

To improve the forecasting of this field, Qu et al. [26] proposed an attention-based
long-term and short-term temporal neural network prediction model assembled using the
convolutional neural network, LSTM, and an attention mechanism under the multiple
relevant and target variables prediction pattern. The proposed model was superior when
compared to classical models. Important parameters affecting the forecasting range of the
model were analyzed, and suggestions were provided.

A univariate deep-LSTM-based stackable autoencoder model, fitted with a multi-
stage attention mechanism for short-term load forecasting (15 and 30 min ahead) was
proposed by Fazlipour et al. [27]. The model performance was evaluated by several tests
employing realistic New England energy market data across three indices, demonstrating
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the superiority of the model and its strength in offline and online load forecasting. An
attention mechanism was able to capture the temporal merit features lying in the LSTM unit.

Lin et al. [28] applied dual-stage attention based on LSTM for short-term load forecast-
ing. Firstly, a feature attention-based encoder was constructed to calculate the correlation of
the input features with the electricity load at each time step. Secondly, a temporal attention-
based decoder was developed to mine the time dependencies. An LSTM model integrated
these attention results and probabilistic predictions were obtained using a pinball loss
function. The efficacy of the model was verified on the GEFCom2014 dataset, showing a
higher generality capability compared to other state-of-the-art forecasting models.

An LSTM model enhanced by a dual-attention mechanism was proposed by Zhu et al. [29],
which was inserted into the encoder–decoder to take into account the effects of different
factors and time nodes to simultaneously analyze the characteristics of daily peak load
to achieve more accurate prediction results. Experiments on a dataset of one city in eastern
China showed that the proposed methodology provided promising results.

A deep learning-based interval prediction model combining fuzzy information granu-
lation, attention mechanism, and LSTM was proposed by Li et al. [30] to predict the building
energy consumption presenting future uncertainties in the form of ranges. A real-building
dataset was used showing that attention-based LSTM provides better an interval prediction
performance than conventional LSTM. Thus, the attention mechanism gains significant
advantages by increasing the efficiency with which the model uses the information.

Meng et al. [31] applied the empirical wavelet transform to decompose the input
features into multiple components after a hybrid attention mechanism-based LSTM was
proposed as the forecasting model. The attention mechanism was used to dynamically
investigate the importance of different input features, for example, the effect of renewable
energy (wind and solar power generation) on the electricity price prediction. The model
was validated on the datasets of the Danish electricity market with a high quantity of
renewable energy, showing that the proposed model is superior to other hybrid models.

For simultaneously predicting both the active and reactive power, a new multi-task
regression was proposed by Qin et al. [32] based on LSTM supported by the attention
mechanism, to prevent performance deterioration, which was employed to accurately pre-
dict loads of a substation. The model was compared with other single-task load forecasting
models achieving superior accuracy on both subtasks.

Dai et al. [33] proposed a novel combined short-term power load forecasting model,
employing the weighted gray relational projection algorithm to distinguish the holidays
and non-holidays, using the attention mechanism and extreme gradient boosting (XGBoost)
to improve the LSTM model. The datasets from Singapore’s and Norway’s power mar-
kets were used to evaluate the prediction model by comparing it with six other models,
outperforming in effectiveness, accuracy, and practicability.

Using an upgraded stacked gated recurrent unit–recurrent neural network for both
uni-variate and multi-variate situations, Xia et al. [34] introduced a unique method for the
prediction of renewable energy generation and electrical load. The suggested method is
tested in two tests that anticipate the electricity load based on the historical energy con-
sumption data and wind power generation utilizing a variety of meteorological conditions.

The ultrasound device is a piece of equipment used for the examination of the electric
power system. It produces an audible noise based on a time series that is used to spot
potential problems. A hybrid approach was suggested by [35] that employs the group
method of data handling model for time series prediction and the wavelet energy coefficient
for feature extraction. In comparison to LSTM and adaptive neuro-fuzzy inference systems,
the proposed method demonstrated accuracy and was found to be considerably faster.

Three deep learning classification and regression models for fault region identification,
classification, and location prediction were introduced by [36]. To model the spatiotemporal
sequences of high-dimensional multivariate features and produce reliable classification
and prediction results, deep sequential learning is used in conjunction with long short-term
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memory. Data for training and testing are gathered while various sorts of transmission line
faults are introduced at various sites throughout various areas.

To find the best transformer model and locate various power system problems and
unpredictable conditions, Thomas and K. V. [37] suggested a neural architecture search
approach. To automatically construct ideal Transformer architectures with a lower search
time cost, the authors applied the differential architecture search algorithm. The suggested
fault analysis was performed using the VSB power line fault detection database and the
industry-standard IEEE 14 bus distribution system. The real-world power line data for fault
detection was used to examine the transferability of the suggested method’s architecture.

An overview and investigation of the fault prediction and fault location areas were
presented in [38]. To achieve this, the methods and viewpoints currently in use in the
context of fault prediction are first evaluated, followed by an analysis of fault location.
In conventional distribution networks, smart grids, and microgrids, this paper examines
numerous systems, their benefits and drawbacks, technical reports, and patents.

The diagnosis of power system faults using machine learning was thoroughly re-
viewed by [39]. The success of machine learning approaches was first attributed to attempts
to include the problems with traditional fault diagnosis. Then, several fault diagnosis
methods, including supervised and unsupervised learning approaches, were individually
addressed. The benefits and drawbacks of each fault detection method were also covered,
which will aid readers in choosing the best method for their own research.

Considering the high capabilities of the LSTM with the attention mechanism [40],
in this paper, this model is used to forecast the increase in leakage current in contaminated
insulators, as will be explained in detail in the next section. Besides the model employed,
the considered dataset and the EWT technique used for signal preprocessing and denoising
(noise reduction) will be explained. A summary of LSTM applied to forecasting works
discussed in this chapter is presented in Table 1.

Table 1. Summary of LSTM for time series forecasting.

Author(s) Methodology

Zang et al. [25] LSTM with a self-attention mechanism for day-ahead residential load
forecasting.

Qu et al. [26] Attention-based LSTM model for short-term prediction.

Fazlipour et al. [27] LSTM-based stackable autoencoder with attention mechanism for short-
term load forecasting.

Lin et al. [28] Dual-attention LSTM model for short-term load forecasting with proba-
bilistic predictions.

Zhu et al. [29] Dual-attention LSTM model for analyzing characteristics of daily peak
load simultaneously.

Li et al. [30] Deep learning-based interval prediction model combining attention
mechanism and LSTM.

Meng et al. [31] Attention mechanism for LSTM forecasting model with empirical wavelet
transform % for electricity price prediction.

Qin et al. [32] Multi-task LSTM model with attention mechanism for predicting loads
of a substation.

Dai et al. [33] Combined LSTM with attention mechanism and XGBoost for short-term
load forecasting.

3. Methodology

LSTM with attention is designed to handle such complex patterns and dependencies.
The attention mechanism in LSTM allows the model to focus on the most important inputs
at each time step when making predictions. This can improve the model’s performance
and stability compared to traditional LSTM models [41].
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In the LSTM with attention applied to time series forecasting, the input data are
typically divided into a series of time steps and processed through the LSTM. The attention
mechanism then provides a weighted sum of the hidden states of the LSTM units, which is
used as input to a fully connected layer for the final prediction [42].

3.1. Luong Attention Mechanism

The Luong attention mechanism is a method for calculating the attention weights
in a neural network, including but not limited to the Seq2Seq model [43]. Given a set of
hidden states h1, h2, . . . , hn, the attention mechanism computes a set of attention weights
α1, α2, . . . , αn that represent the relative importance of each hidden state in creating the
output [44]. Attention weights are calculated as follows:

αt =
exp(et)

∑n
k=1 exp(ek)

(1)

where et is a score that measures the compatibility between the target hidden state ht and
the decoder state st−1 at the previous time step. The score is calculated using one of several
functions, including dot-product, general, and concat. The dot-product function calculates
the dot-product of the target hidden state and the decoder state, as follows:

et = hT
t st−1 (2)

The general function calculates the dot-product of the target hidden state and a linear
transformation of the decoder state, as follows:

et = hT
t Wast−1 (3)

where Wa is a learned parameter. The concat function concatenates the target hidden state
and the decoder state, and passes the concatenation through a feedforward neural network
as follows:

et = vT
a tanh(Wa[ht; st−1]) (4)

where va is a learned parameter and [; ] denotes concatenation.
The attention weights are then used to compute a weighted sum of the hidden states,

which is used as input to the decoder at the current time step. The weighted sum is
computed as follows:

ct =
n

∑
k=1

αkhk. (5)

Notice that the function used to determine the score ei depends on the job and available
data. Typically, the dot-product function is employed when the dimensions of the hidden
states are identical, and the general function is used when the dimensions are different.
The concat function can capture more intricate interactions between the hidden and decoder
states, but it needs to learn more parameters. A general overview of the method is given in
Algorithm 1.
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Algorithm 1: Luong Attention Mechanism
Hidden states h1, h2, . . . , hn and decoder state st−1 at previous time step
Weighted sum of hidden states ct and attention weights α1, α2, . . . , αn
for i← 1 to n do

if dot-product function then
ei ← hT

i st−1;

else if general function then
ei ← hT

i Wast−1;

else
ei ← vT

a tanh(Wa[hi; st−1]); // Concat function

αi ←
exp(ei)

∑n
k=1 exp(ek)

; // Calculate attention weights

ct ← ∑n
k=1 αkhk; // Calculate weighted sum

return ct, α1, α2, . . . , αn

3.2. Encoder–Decoder LSTM

The encoder–decoder LSTM with attention is a form of neural network design that can
be used for forecasting time series. In time series forecasting, the objective is to predict the
future values of a time series using its historical values [45]. In this instance, the encoder
LSTM analyzes the input time series and compresses it into the encoding, a vector of
fixed length. The encoding serves as the network’s memory by summarizing the pertinent
information in the time series. Let us denote the input time series as x1, x2, . . . , xT , where T
is the length of the time series [46]. The hidden state of the encoder LSTM at time step t is
denoted as he

t . The encoding is calculated as the final hidden state of the encoder, he = he
T .

The decoder LSTM takes the encoding and generates the forecast, yT+1, yT+2, . . . , yT+M,
where M is the number of steps to forecast. The decoder LSTM also has an attention mech-
anism which allows it to focus on different parts of the encoding at each time step and
generate the forecast one step at a time [47]. At time step t, the decoder computes the
attention weights α1:T over the encoding and calculates the context vector ct as a weighted
sum of the encodings, as follows:

ct =
T

∑
k=1

αkhe
k (6)

The decoder then updates its hidden state st as a function of the previous hidden state
st−1, the current input yt−1, and the context vector ct, as follows:

st = f (st−1, yt−1, ct) (7)

where f is the LSTM function. Finally, the decoder generates the next forecast yT+t by
passing the hidden state st through a fully connected layer with a linear activation function,
as follows:

yT+t = Wost + bo (8)

where Wo and bo are learned parameters.
The encoder–decoder LSTM with attention is trained to minimize a loss function, such

as a mean squared error or mean absolute error, between the predicted and actual future
values. The network generates the forecast step-by-step until the appropriate number of
steps has been anticipated [48]. A general overview of the network architecture is shown in
Figure 1.
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Figure 1. General overview of the network architecture, including a Seq2Seq encoder–decoder and
attention mechanism.

3.3. Hypertuning

Selecting the ideal hyperparameters for a machine learning model’s optimal perfor-
mance is a process known as hyperparameter tuning or hypertuning. It entails experiment-
ing with hyperparameter combinations and evaluating their performance on a validation
set. In this context, Optuna [49] is a Python module for hyperparameter optimization that
provides multiple search algorithms for the hyperparameter space; the Tree-structured
Parzen Estimator (TPE) algorithm is one of these algorithms [50].

TPE starts with a prior distribution over the hyperparameters, and at each itera-
tion, it updates the prior and suggests new hyperparameters to try based on the model’s
performance with the previous hyperparameters. TPE employs a probabilistic model to
estimate the performance distribution of hyperparameters and to achieve a balance between
exploration and exploitation in the search process [51].

The algorithm models the distribution of the performance of the hyperparameters
using two probability density functions: l(x) for good hyperparameters (those that result
in low loss values) and g(x) for bad hyperparameters (those that result in high loss values),
where x is a hyperparameter configuration. The algorithm starts with a prior over these
density functions and at each iteration, updates them based on the observed performance
of the model to suggest the next hyperparameter configuration to try [52].

Let us denote the set of hyperparameters as x and the performance of the model with
hyperparameters x as y. At iteration t, TPE first calculates the Expected Improvement
(EI) function, which measures the trade-off between exploration and exploitation. The EI
function is defined as:

EI(x) =
l(x)
g(x)

(9)

where l(x) and g(x) are the probability density functions for good and bad hyperparame-
ters, respectively. Then, it suggests the next hyperparameter configuration to try as the one
that maximizes the EI function:

xt+1 = arg max
x

EI(x). (10)
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Finally, the algorithm updates the probability density functions based on the observed
performance of the model with the suggested hyperparameters:

l(x)← updated density for good hyperparameters (11)

g(x)← updated density for bad hyperparameters (12)

This procedure is repeated until a stopping requirement is satisfied, such as a maxi-
mum number of iterations or a minimum performance improvement [53]. In this paper, the
rectified linear unit (ReLU), exponential linear unit (ELU), and hyperbolic tangent (Tanh)
activation functions are evaluated.

3.4. Empirical Wavelet Transform

The Empirical Wavelet Transform (EWT) is an adaptive method for signal analysis, es-
pecially effective for time-varying signals. The procedure begins with signal preprocessing,
denoted by x(t), where t represents time. In this phase, the signal is cleaned by removing
any noise or trends that could affect the analysis.

The EWT process then assesses the signal’s frequency content and divides it into
distinct subbands. These subbands are represented by a set of filters denoted as ψi(ω),
where i ranges between 1 and N and ω is the angular frequency. The filters are designed
based on the characteristics of the signal, ensuring that they cover its entire frequency
spectrum. Once the filters have been designed, the EWT applies them to the signal in order
to determine the wavelet coefficients ci(t) for each filter [54,55].

4. Experiments and Results

In this section, the results of the evaluation of the proposed model are presented.
Initially, the influence of the data initialization is analyzed, explaining how the Seq2Seq
dataset was used. Then, the model is optimized with Optuna, the EWT filter is used for
noise reduction, and statistical analysis is presented. Finally, benchmarking is performed.
The best overall results from this section are highlighted in bold and the best results from
each comparison are underlined, with exception of the statistical analysis of the dataset.

4.1. Dataset

The experiments were performed in a saline chamber, using an applied voltage of
8.66 kV (RMS 60 Hz). The contamination was gradually increased until a flashover occurred
following the NBR 10621 (equivalent to IEC 60507) standard. The NBR 10621 defines the
characteristics of supportability under contamination for insulators in power grids. The
experiment was conducted under controlled conditions (humidity, temperature, pressure,
and contamination). The statistical characteristics of the dataset are presented in Table 2.
The mean, median, mode, range, variance, standard deviation (Std. Dev.), percentile (%ile),
interquartile range (IQR), skewness, and kurtosis are considered.

Table 2. Statistical characteristics of the dataset.

Insul. 1 Insul. 2 Insul. 3 Insul. 4 Insul. 5 Insul. 6

Mean 0.08947 0.11890 0.12323 0.06242 0.02737 0.04913
Median 0.13200 0.10400 0.11800 0.09500 0.03800 0.05000
Mode 0.00000 0.10300 0.11700 0.00000 0.00000 0.00000
Range 0.26400 0.22700 0.26600 0.19300 0.17100 0.75500

Variance 0.00594 0.00173 0.00186 0.00216 0.00058 0.00261
Std. Dev. 0.07710 0.04156 0.04309 0.04643 0.02403 0.05113
25th %ile 0.00000 0.10200 0.11200 0.00000 0.00000 0.00000
50th %ile 0.13200 0.10400 0.11800 0.09500 0.03800 0.05000
75th %ile 0.13800 0.13800 0.15300 0.10100 0.04200 0.09000

IQR 0.13800 0.03600 0.04100 0.10100 0.04200 0.09000
Skewness 0.20900 0.88310 0.17629 −0.31889 0.25156 2.92524
Kurtosis −1.05212 0.84858 0.36154 −1.45492 0.20065 36.47633
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In the salt chamber, six insulators (15 kV class) were evaluated, and two were selected
according to the phik correlation [? ] between the recorded leakage current values. This
relationship is presented in Figure 2.

Figure 2. Correlation of the samples based on their leakage current values.

The highest correlation between samples occurs between insulators 2 and 3, with 98%
correction, and for this reason, these insulators were considered in this paper. In these
insulators, the flashover occurred after 26.11 h of running the experiment. The records
were taken every second, and thus there were 9.4 × 104 records. To proceed with the
evaluation, a downsample of order 10 was applied to reduce the computational complexity,
and therefore values up to 940 records are evaluated (see Figure 3).
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Figure 3. Leakage current of the evaluated insulators.

4.2. Experiment Setup

The algorithm was written in Python using the keras framework and statsmodels,
the experiments were evaluated in Google Colaboratory (Colab), using a graphic processing
unit NVIDIA Tesla T4, a central processing unit Intel(R) Xeon(R) @2.30GHz, and 12GB of
random access memory.

To ensure that overfitting does not occur, the early stop criterion was used, which
stops training when there is no improvement in the model during training. This procedure
was based on the mean square error (MSE). For a comparative analysis of the models’
performances, the MSE, mean absolute error (MAE), and mean absolute percentage error
(MAPE) were evaluated, given by:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (13)
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MAE =
1
n

n

∑
i=1

(yi − ŷi) (14)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (15)

where n is the length of the signal, yi is the observed value, and ŷi is the predicted output.
For the final comparative analysis, the stacking ensemble learning method is evaluated.

The linear, radial basis function (RBF), and polynomial kernel functions were considered
using a support vector regression (SVR). Additionally, the quadratic programming (L1QP),
iterative single data algorithm optimization (ISDA), and sequential minimal optimization
(SMO) solver are compared.

4.3. Data Initialization

The way that the data are initialized might have consequences on the model’s perfor-
mance, and thus, with a bigger batch size, the model tends to be faster, since it loads more
data in a single step, and the percentage of data used for training can also have significant
results on the model’s performance, considering that a larger number of data for training
can make it have better performance. Table 3 shows a comparison between the percentage
ratio used for training and testing the model, as well as the batch size variation.

Table 3. Assessment of the influence of how the dataset is loaded.

Train/Test
(%)

Batch
Size MSE MAE MAPE Time (s)

70/30

8 1.55× 10−5 2.75× 10−3 2.04× 102 1117.92
16 1.48× 10−5 2.40× 10−3 1.50 × 102 330.82
32 1.57× 10−5 2.69× 10−3 1.91× 102 148.29
64 1.65× 10−5 2.71× 10−3 1.93× 102 90.23

80/20

8 1.38× 10−5 2.50× 10−3 2.33× 102 628.88
16 1.34× 10−5 2.31× 10−3 2.48× 102 281.13
32 1.38× 10−5 2.63× 10−3 3.18× 102 208.49
64 1.50× 10−5 2.73× 10−3 3.60× 102 60.34

90/10

8 1.74× 10−5 2.99× 10−3 2.95× 102 679.75
16 1.59× 10−5 2.74× 10−3 3.66× 102 352.54
32 1.17 × 10−5 2.16 × 10−3 2.44 × 102 208.50
64 1.61× 10−5 2.87× 10−3 3.73× 102 148.19

All results using a larger batch size were faster to converge, however, in this research,
the objective was to have a model with lower error and not one that simply faster; hence,
this criterion was not considered in defining the best way to load the data. The lowest MSE
and MAE were found using 90% of the data for training, showing that a larger dataset can
improve the model’s trainability.

Since the focus of this research was to evaluate the use of fewer data for training to
achieve a greater prediction horizon, 70% of the data were considered for training, with this
focus the best result in error reduction occurred using a batch size equal to 16 (regarding a
lower MSE, MAE, and MAPE); for this reason, this setup was defined as the default and
further analyses were based on this definition.

4.4. Denoising

To perform noise reduction, EWT was applied to the preprocessed leakage current
signals, considering that the detrend is used as a co-feature of the network, this being an
already filtered input signal to support training. The results of using EWT over the original
detrend are presented in Figure 4.
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Figure 4. EWT detrend results.

The noise that occurs in the measurements is due to the nonlinearity of the leakage
current. One of the reasons for the nonlinearity of the leakage current in contaminated
insulators is that pollution does not deposit linearly on the surface, and there are variations
in pressure and humidity caused by the discharge. Therefore, these variations can be
disregarded when the analysis is performed over a time series.

In the context of predicting leakage current, which is an indication that a further failure
is likely to occur possibly due to an increase in the surface conductivity of the insulator,
reducing the variations that are not a component of the increasing trend is promising, since
this does not affect the focus of the assessment and reduces the complexity of the analysis.

4.5. Hyperparameter Optimization

To obtain an optimized model that has a better performance for solving the problem
addressed in this paper, there is hypertuning, which defines the optimal hyperparameters to
be used in the model. For hyperparameter optimization, Optuna was used, which is a specific
framework for it. The use of 10–100 hidden units, the activation functions ReLU, ELU, Tanh,
and the learning rate from 0.001–0.1 were evaluated, the results are presented in Figure 5.

Figure 5. Hyperparameter optimization with Optuna.
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The optimization of the hyperparameters returned the value of 78 hidden units,
the ReLU activation function, and the learning rate of 1.36 × 10−2. These values were used
for all experiments for a fair evaluation. In this comparative analysis, the most important
hyperparameter for model optimization was the learning rate, which has an importance of
89.22% to achieve the objective result of performance optimization, whilst the hidden units
had an importance of 10.71% and the activation function had only 0.07%, this being the
least important variation in the model optimization.

Including co-features can aid in capturing additional information that may not be
included in the time series itself, or even guide the prediction in a trend as in the proposed
model. Relying only on the denoised signal could lead to missing important behaviors
in the original signal; thus, we opted to input both signals for both insulators as a way
to provide the model with enough information to keep the peculiarities of each insulator,
while trying to follow the trend based on the correlation existing between the signals.
Assuming the optimized hyperparameters, the use of the attention mechanism in the LSTM,
and using the EWT co-features, the prediction results are presented in Figure 6.
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Figure 6. Prediction results compared to the observed signal.

4.6. Benchmarking

In this subsection, the proposed optimized EWT-Seq2Seq-LSTM with the attention
method is compared to other models considering the characteristic of a Seq2Seq signal.
The results are presented in Table 4. The difference between the compared models is that the
standard model does not use the attention mechanism, EWT-Seq2Seq-LSTM with attention
is not optimized, and the proposed model uses hyperparameter optimization besides the
attention mechanism. For a fair comparison, all models use the same EWT-based input
signal, which means all signals are preprocessed.

Table 4. Model comparison analysis.

Model MSE MAE MAPE Time (s)

EWT-Seq2Seq-LSTM
Standard

1.18 × 10−5 2.32× 10−3 2.31× 102 239.89

EWT-Seq2Seq-LSTM
with Attention

1.12× 10−5 2.26× 10−3 2.33× 102 328.68

Proposed
Method

1.06× 10−5 2.08 × 10−3 2.11× 102 277.59
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An important observation is that hyperparameter optimization can make the model
converge considerably faster; therefore, special attention needs to be given to the early stop.
If the early stop has a weakly constrained criterion (with a reduced number of unimproved
epochs to stop the training), there might be an early stop precipitated.

The proposed optimized EWT-Seq2Seq-LSTM with attention was shown to have an
improvement in all error metrics evaluated, this being faster than the model without
optimization, and although the standard model is quicker to converge, its inferior results
regarding error do not justify its use. Based on these results, a statistical analysis was
performed to evaluate the reliability of the model over several experiments.

For comparative purposes, Table 5 presents the analysis using the stacking ensemble
learning method considering the variation of solvers and the kernel functions. It can be
observed that the MSE error values are higher using the ensemble method, but only the
MAPE was lower in the comparative analyses.

Table 5. Evaluation of stacking ensemble learning method.

Solver Function MSE MAE MAPE Time (s)

L1QP
Linear 1.50×10−3 2.99×10−2 1.67×101 3.59

RBF 6.25× 10−3 7.01× 10−2 4.11× 101 1.69
Polynomial 2.04× 10−1 1.71× 10−1 8.79× 101 1.67

ISDA
Linear 1.48×10−3 2.98×10−2 1.66×101 1.38

RBF 4.91× 10−3 6.11× 10−2 3.56× 101 0.53
Polynomial 4.35× 10−1 3.25× 10−1 1.65× 102 18.45

SMO
Linear 1.45×10−3 2.94×10−2 1.65×101 0.92

RBF 6.25× 10−3 7.01× 10−2 4.12× 101 0.47
Polynomial 2.59× 10−1 1.77× 10−1 9.05× 101 32.03

Other analyses using equivalent signals can be found in the work of Sopelsa Neto et al. [4].
One difference that should be noted, compared with our work, is that Sopelsa Neto et al. [4]
did not use the MAPE in percent to present the results. Comparatively, all the MSE results
were lower than the proposed optimized EWT-Seq2Seq-LSTM with the attention model.
This shows that the proposed model is superior to other methods even when the wavelet
transform is used.

4.7. Statistical Assessment of the Proposed Method

To evaluate the robustness of a time series model, it is typical to train the model
numerous times and compare its performance measures between runs. This can help
discover any potential sources of variability in the model’s performance, such as random
parameter initialization or changes in the training data utilized for each run. In this instance,
the proposed model was trained 50 times, with Gaussian noise being introduced in each
run, and the MSE, MAE, and MAPE for each run were recorded. Figures 7 and 8 show,
respectively, the histogram of the boxplot of the trained models.
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Figure 7. Histogram of MSE, MAE, and MAPE for 50 runs with Gaussian noise.

From the histogram and boxplot, it is clear that the model’s variance remains within
acceptable limits. This indicates that the model is resilient and capable of performing well
across a broad range of training data and parameter settings. In addition, the boxplot
reveals that the median performance measure values are consistent across all 50 training
runs with random Gaussian noise, further supporting the robustness of the model.

Figure 8. Violin of MSE, MAE, and MAPE for 50 runs with Gaussian noise.

5. Final Remarks and Conclusions

The increase in leakage current is related to the increase in surface conductivity, which
occurs in distribution power grid insulators due to the accumulation of contaminants
on their surface. When the leakage current becomes considerably high, flashovers occur,
resulting in power supply shutdowns. The prediction that the leakage current increases is
an indication that a discharge will occur and can therefore be used to evaluate the influence
of the environment on the performance of insulators over time.

There are several techniques that can be used to enhance a prediction model, such as
the empirical wavelet transform for noise reduction, the attention mechanism to improve
the predictive ability of the model, and the optimization of its hyperparameters. All these
techniques are combined in this paper to obtain the proposed optimized EWT-Seq2Seq-
LSTM with attention which proves to be superior in comparative analysis.

The proposed model optimized EWT-Seq2Seq-LSTM with attention had an MSE of
1.06 × 10−5, which was superior to the standard LSTM and the model without using
Optuna hypertuning, showing that it is promising to use the attention mechanism and the
optimization of the network hyperparameters.

Future work can be conducted to evaluate uncorrelated leakage current and determine
how well the model performs when uncorrelated data are used for training. The leakage
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current can also be evaluated in other components of the electrical distribution system,
and it is promising to evaluate the insulators manufactured from polymeric materials,
which are increasingly being used.

Author Contributions: Writing—original draft, A.C.R.K.; software, S.F.S.; methodology and formal
analysis, L.O.S.; writing—review and editing, V.C.M.; supervision, L.d.S.C. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors Mariani and Coelho thank the National Council of Scientific and Technologic
Development of Brazil-CNPq (Grants number: 307958/2019-1-PQ, 307966/2019-4-PQ, 308361/2022-9-
PQ, and 408164/2021-2-Universal) and Fundação Araucária PRONEX Grant 042/2018 for its financial
support of this work. The author Seman thanks the National Council of Scientific and Technologic
Development of Brazil-CNPq (Grants number: 308361/2022-9).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: For future comparisons, the proposed method and the considered
dataset are available at: https://github.com/SFStefenon/EWT-Seq2Seq-LSTM-Attention (accessed
on 10 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Branco, N.W.; Cavalca, M.S.M.; Stefenon, S.F.; Leithardt, V.R.Q. Wavelet LSTM for fault forecasting in electrical power grids.

Sensors 2022, 22, 8323. [CrossRef] [PubMed]
2. Souza, B.J.; Stefenon, S.F.; Singh, G.; Freire, R.Z. Hybrid-YOLO for classification of insulators defects in transmission lines based

on UAV. Int. J. Electr. Power Energy Syst. 2023, 148, 108982. [CrossRef]
3. Stefenon, S.F.; Yow, K.C.; Nied, A.; Meyer, L.H. Classification of distribution power grid structures using inception v3 deep neural

network. Electr. Eng. 2022, 104, 4557–4569. [CrossRef]
4. Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Fault prediction based on leakage current in

contaminated insulators using enhanced time series forecasting models. Sensors 2022, 22, 6121. [CrossRef] [PubMed]
5. Medeiros, A.; Sartori, A.; Stefenon, S.F.; Meyer, L.H.; Nied, A. Comparison of artificial intelligence techniques to failure prediction

in contaminated insulators based on leakage current. J. Intell. Fuzzy Syst. 2022, 42, 3285–3298. [CrossRef]
6. Masood, Z.; Gantassi, R.; Choi, Y. A multi-step time-series clustering-based Seq2Seq LSTM learning for a single household

electricity load forecasting. Energies 2022, 15, 2623. [CrossRef]
7. Zhou, K.; Wang, W.; Hu, T.; Deng, K. Time series forecasting and classification models based on recurrent with attention

mechanism and generative adversarial networks. Sensors 2020, 20, 7211. [CrossRef] [PubMed]
8. He, Y.L.; Chen, L.; Gao, Y.; Ma, J.H.; Xu, Y.; Zhu, Q.X. Novel double-layer bidirectional LSTM network with improved attention

mechanism for predicting energy consumption. ISA Trans. 2022, 127, 350–360. [CrossRef] [PubMed]
9. Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long

short-term memory. Energy 2022, 238, 121756. [CrossRef]
10. Peng, T.; Zhou, J.; Zhang, C.; Fu, W. Streamflow forecasting using empirical wavelet transform and artificial neural networks.

Water 2017, 9, 406. [CrossRef]
11. Stefenon, S.F.; Freire, R.Z.; Meyer, L.H.; Corso, M.P.; Sartori, A.; Nied, A.; Klaar, A.C.R.; Yow, K.C. Fault detection in insulators

based on ultrasonic signal processing using a hybrid deep learning technique. IET Sci. Meas. Technol. 2020, 14, 953–961. [CrossRef]
12. Xu, Y.; Cheng, J.; Liu, W.; Gao, W. Evaluation of the UHF method based on the investigation of a partial discharge case in post

insulators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3669–3676. [CrossRef]
13. Zheng, H.; Liu, Y.; Sun, Y.; Li, J.; Shi, Z.; Zhang, C.; Lai, C.S.; Lai, L.L. Arbitrary-oriented detection of insulators in thermal

imagery via rotation region network. IEEE Trans. Ind. Inform. 2022, 18, 5242–5252. [CrossRef]
14. Polisetty, S.; El-Hag, A.; Jayram, S. Classification of common discharges in outdoor insulation using acoustic signals and artificial

neural network. High Volt. 2019, 4, 333–338. [CrossRef]
15. Yeh, C.T.; Thanh, P.N.; Cho, M.Y. Real-time leakage current classification of 15kV and 25kV distribution insulators based on

bidirectional long short-term memory networks with deep learning machine. IEEE Access 2022, 10, 7128–7140. [CrossRef]
16. Stefenon, S.F.; Singh, G.; Yow, K.C.; Cimatti, A. Semi-ProtoPNet deep neural network for the classification of defective power grid

distribution structures. Sensors 2022, 22, 4859. [CrossRef]
17. Villalobos, R.J.; Moran, L.A.; Huenupán, F.; Vallejos, F.; Moncada, R.; Pesce, G.C. A new current transducer for on-line monitoring

of leakage current on HV insulator strings. IEEE Access 2022, 10, 78818–78826. [CrossRef]
18. Araya, J.; Montaña, J.; Schurch, R. Electric field distribution and leakage currents in glass insulator under different altitudes and

pollutions conditions using FEM simulations. IEEE Lat. Am. Trans. 2021, 19, 1278–1285. [CrossRef]

https://github.com/SFStefenon/EWT-Seq2Seq-LSTM-Attention
http://doi.org/10.3390/s22218323
http://www.ncbi.nlm.nih.gov/pubmed/36366021
http://dx.doi.org/10.1016/j.ijepes.2023.108982
http://dx.doi.org/10.1007/s00202-022-01641-1
http://dx.doi.org/10.3390/s22166121
http://www.ncbi.nlm.nih.gov/pubmed/36015882
http://dx.doi.org/10.3233/JIFS-211126
http://dx.doi.org/10.3390/en15072623
http://dx.doi.org/10.3390/s20247211
http://www.ncbi.nlm.nih.gov/pubmed/33339314
http://dx.doi.org/10.1016/j.isatra.2021.08.030
http://www.ncbi.nlm.nih.gov/pubmed/34493381
http://dx.doi.org/10.1016/j.energy.2021.121756
http://dx.doi.org/10.3390/w9060406
http://dx.doi.org/10.1049/iet-smt.2020.0083
http://dx.doi.org/10.1109/TDEI.2017.006779
http://dx.doi.org/10.1109/TII.2021.3123107
http://dx.doi.org/10.1049/hve.2019.0113
http://dx.doi.org/10.1109/ACCESS.2022.3140479
http://dx.doi.org/10.3390/s22134859
http://dx.doi.org/10.1109/ACCESS.2022.3191349
http://dx.doi.org/10.1109/TLA.2021.9475858


Sensors 2023, 23, 3202 17 of 18

19. Salem, A.A.; Abd-Rahman, R.; Al-Gailani, S.A.; Salam, Z.; Kamarudin, M.S.; Zainuddin, H.; Yousof, M.F.M. Risk assessment of
polluted glass insulator using leakage current index under different operating conditions. IEEE Access 2020, 8, 175827–175839.
[CrossRef]

20. Park, J.; Hwang, E. A two-stage multistep-ahead electricity load forecasting scheme based on LightGBM and attention-BiLSTM.
Sensors 2021, 21, 7697. [CrossRef]

21. Park, S.H.; Lee, B.Y.; Kim, M.J.; Sang, W.; Seo, M.C.; Baek, J.K.; Yang, J.E.; Mo, C. Development of a soil moisture prediction
model based on recurrent neural network long short-term memory (RNN-LSTM) in soybean cultivation. Sensors 2023, 23, 1976.
[CrossRef]

22. Hasan, F.; Huang, H. MALS-Net: A multi-head attention-based LSTM sequence-to-sequence network for socio-temporal
interaction modelling and trajectory prediction. Sensors 2023, 23, 530. [CrossRef] [PubMed]

23. Fernandes, F.; Stefenon, S.F.; Seman, L.O.; Nied, A.; Ferreira, F.C.S.; Subtil, M.C.M.; Klaar, A.C.R.; Leithardt, V.R.Q. Long
short-term memory stacking model to predict the number of cases and deaths caused by COVID-19. J. Intell. Fuzzy Syst. 2022,
6, 6221–6234. [CrossRef]

24. Jiang, J.R.; Lee, J.E.; Zeng, Y.M. Time series multiple channel convolutional neural network with attention-based long short-term
memory for predicting bearing remaining useful life. Sensors 2020, 20, 166. [CrossRef]

25. Zang, H.; Xu, R.; Cheng, L.; Ding, T.; Liu, L.; Wei, Z.; Sun, G. Residential load forecasting based on LSTM fusing self-attention
mechanism with pooling. Energy 2021, 229, 120682. [CrossRef]

26. Qu, J.; Qian, Z.; Pei, Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network
embedded with multiple relevant and target variables prediction pattern. Energy 2021, 232, 120996. [CrossRef]

27. Fazlipour, Z.; Mashhour, E.; Joorabian, M. A deep model for short-term load forecasting applying a stacked autoencoder based
on LSTM supported by a multi-stage attention mechanism. Appl. Energy 2022, 327, 120063. [CrossRef]

28. Lin, J.; Ma, J.; Zhu, J.; Cui, Y. Short-term load forecasting based on LSTM networks considering attention mechanism. Int. J. Electr.
Power Energy Syst. 2022, 137, 107818. [CrossRef]

29. Zhu, K.; Li, Y.; Mao, W.; Li, F.; Yan, J. LSTM enhanced by dual-attention-based encoder-decoder for daily peak load forecasting.
Electr. Power Syst. Res. 2022, 208, 107860. [CrossRef]

30. Li, Y.; Tong, Z.; Tong, S.; Westerdahl, D. A data-driven interval forecasting model for building energy prediction using
attention-based LSTM and fuzzy information granulation. Sustain. Cities Soc. 2022, 76, 103481. [CrossRef]

31. Meng, A.; Wang, P.; Zhai, G.; Zeng, C.; Chen, S.; Yang, X.; Yin, H. Electricity price forecasting with high penetration of renewable
energy using attention-based LSTM network trained by crisscross optimization. Energy 2022, 254, 124212. [CrossRef]

32. Qin, J.; Zhang, Y.; Fan, S.; Hu, X.; Huang, Y.; Lu, Z.; Liu, Y. Multi-task short-term reactive and active load forecasting method
based on attention-LSTM model. Int. J. Electr. Power Energy Syst. 2022, 135, 107517. [CrossRef]

33. Dai, Y.; Zhou, Q.; Leng, M.; Yang, X.; Wang, Y. Improving the Bi-LSTM model with XGBoost and attention mechanism: A
combined approach for short-term power load prediction. Appl. Soft Comput. 2022, 130, 109632. [CrossRef]

34. Xia, M.; Shao, H.; Ma, X.; de Silva, C.W. A stacked GRU-RNN-based approach for predicting renewable energy and electricity
load for smart grid operation. IEEE Trans. Ind. Inform. 2021, 17, 7050–7059. [CrossRef]

35. Stefenon, S.F.; Dal Molin Ribeiro, M.H.; Nied, A.; Mariani, V.C.; dos Santos Coelho, L.; Menegat da Rocha, D.F.; Grebogi, R.B.;
de Barros Ruano, A.E. Wavelet group method of data handling for fault prediction in electrical power insulators. Int. J. Electr.
Power Energy Syst. 2020, 123, 106269. [CrossRef]

36. Belagoune, S.; Bali, N.; Bakdi, A.; Baadji, B.; Atif, K. Deep learning through LSTM classification and regression for transmission
line fault detection, diagnosis and location in large-scale multi-machine power systems. Measurement 2021, 177, 109330. .
[CrossRef]

37. Thomas, J.B.; Shihabudheen, K.V. Neural architecture search algorithm to optimize deep transformer model for fault detection in
electrical power distribution systems. Eng. Appl. Artif. Intell. 2023, 120, 105890. . [CrossRef]

38. Dashti, R.; Daisy, M.; Mirshekali, H.; Shaker, H.R.; Hosseini Aliabadi, M. A survey of fault prediction and location methods in
electrical energy distribution networks. Measurement 2021, 184, 109947. . [CrossRef]

39. Vaish, R.; Dwivedi, U.; Tewari, S.; Tripathi, S. Machine learning applications in power system fault diagnosis: Research
advancements and perspectives. Eng. Appl. Artif. Intell. 2021, 106, 104504. . [CrossRef]

40. Li, F.; Gui, Z.; Zhang, Z.; Peng, D.; Tian, S.; Yuan, K.; Sun, Y.; Wu, H.; Gong, J.; Lei, Y. A hierarchical temporal attention-based
LSTM encoder-decoder model for individual mobility prediction. Neurocomputing 2020, 403, 153–166. [CrossRef]

41. Cao, M.; Yao, R.; Xia, J.; Jia, K.; Wang, H. LSTM attention neural-network-based signal detection for hybrid modulated
Faster-Than-Nyquist optical wireless communications. Sensors 2022, 22, 8992. [CrossRef]

42. Shi, B.; Jiang, Y.; Bao, Y.; Chen, B.; Yang, K.; Chen, X. Weigh-in-motion system based on an improved kalman and LSTM-attention
algorithm. Sensors 2023, 23, 250. [CrossRef]

43. Sehovac, L.; Grolinger, K. Deep learning for load forecasting: Sequence to sequence recurrent neural networks with attention.
IEEE Access 2020, 8, 36411–36426. [CrossRef]

44. Nadeem, A.; Naveed, M.; Islam Satti, M.; Afzal, H.; Ahmad, T.; Kim, K.I. Depression detection based on hybrid deep learning
SSCL framework using self-attention mechanism: An application to social networking data. Sensors 2022, 22, 9775. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/ACCESS.2020.3026136
http://dx.doi.org/10.3390/s21227697
http://dx.doi.org/10.3390/s23041976
http://dx.doi.org/10.3390/s23010530
http://www.ncbi.nlm.nih.gov/pubmed/36617127
http://dx.doi.org/10.3233/JIFS-212788
http://dx.doi.org/10.3390/s20010166
http://dx.doi.org/10.1016/j.energy.2021.120682
http://dx.doi.org/10.1016/j.energy.2021.120996
http://dx.doi.org/10.1016/j.apenergy.2022.120063
http://dx.doi.org/10.1016/j.ijepes.2021.107818
http://dx.doi.org/10.1016/j.epsr.2022.107860
http://dx.doi.org/10.1016/j.scs.2021.103481
http://dx.doi.org/10.1016/j.energy.2022.124212
http://dx.doi.org/10.1016/j.ijepes.2021.107517
http://dx.doi.org/10.1016/j.asoc.2022.109632
http://dx.doi.org/10.1109/TII.2021.3056867
http://dx.doi.org/10.1016/j.ijepes.2020.106269
http://dx.doi.org/10.1016/j.measurement.2021.109330
http://dx.doi.org/10.1016/j.engappai.2023.105890
http://dx.doi.org/10.1016/j.measurement.2021.109947
http://dx.doi.org/10.1016/j.engappai.2021.104504
http://dx.doi.org/10.1016/j.neucom.2020.03.080
http://dx.doi.org/10.3390/s22228992
http://dx.doi.org/10.3390/s23010250
http://dx.doi.org/10.1109/ACCESS.2020.2975738
http://dx.doi.org/10.3390/s22249775
http://www.ncbi.nlm.nih.gov/pubmed/36560144


Sensors 2023, 23, 3202 18 of 18

45. Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.d.S. Aggregating prophet and seasonal trend decomposition for time series
forecasting of Italian electricity spot prices. Energies 2023, 16, 1371. [CrossRef]

46. Yang, Z.; Liu, L.; Li, N.; Tian, J. Time series forecasting of motor bearing vibration based on informer. Sensors 2022, 22, 5858.
[CrossRef]

47. Wei, Y.; Liu, H. Convolutional long-short term memory network with multi-head attention mechanism for traffic flow prediction.
Sensors 2022, 22, 7994. [CrossRef]

48. Du, S.; Li, T.; Yang, Y.; Horng, S.J. Multivariate time series forecasting via attention-based encoder–decoder framework.
Neurocomputing 2020, 388, 269–279. [CrossRef]

49. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA,
4–8 August 2019; pp. 2623–2631. [CrossRef]

50. Du, L.; Gao, R.; Suganthan, P.N.; Wang, D.Z. Bayesian optimization based dynamic ensemble for time series forecasting. Inf. Sci.
2022, 591, 155–175. [CrossRef]

51. Nguyen, H.P.; Liu, J.; Zio, E. A long-term prediction approach based on long short-term memory neural networks with automatic
parameter optimization by Tree-structured Parzen Estimator and applied to time-series data of NPP steam generators. Appl. Soft
Comput. 2020, 89, 106116. [CrossRef]

52. Li, J.; Chen, Z.; Li, X.; Yi, X.; Zhao, Y.; He, X.; Huang, Z.; Hassaan, M.A.; El Nemr, A.; Huang, M. Water quality soft-sensor
prediction in anaerobic process using deep neural network optimized by Tree-structured Parzen Estimator. Front. Environ. Sci.
Eng. 2023, 17, 67. [CrossRef]

53. Rong, G.; Li, K.; Su, Y.; Tong, Z.; Liu, X.; Zhang, J.; Zhang, Y.; Li, T. Comparison of tree-structured parzen estimator optimization
in three typical neural network models for landslide susceptibility assessment. Remote Sens. 2021, 13, 4694. [CrossRef]

54. Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [CrossRef]
55. Carvalho, V.R.; Moraes, M.F.; Braga, A.P.; Mendes, E.M. Evaluating five different adaptive decomposition methods for EEG signal

seizure detection and classification. Biomed. Signal Process. Control 2020, 62, 102073. [CrossRef]
56. Baak, M.; Koopman, R.; Snoek, H.; Klous, S. A new correlation coefficient between categorical, ordinal and interval variables

with Pearson characteristics. arXiv 2018. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/en16031371
http://dx.doi.org/10.3390/s22155858
http://dx.doi.org/10.3390/s22207994
http://dx.doi.org/10.1016/j.neucom.2019.12.118
http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.1016/j.ins.2022.01.010
http://dx.doi.org/10.1016/j.asoc.2020.106116
http://dx.doi.org/10.1007/s11783-023-1667-3
http://dx.doi.org/10.3390/rs13224694
http://dx.doi.org/10.1109/TSP.2013.2265222
http://dx.doi.org/10.1016/j.bspc.2020.102073
http://dx.doi.org/10.1016/j.csda.2020.107043

	Introduction
	Related Works 
	Methodology 
	Luong Attention Mechanism
	Encoder–Decoder LSTM
	Hypertuning
	Empirical Wavelet Transform

	Experiments and Results 
	Dataset
	Experiment Setup
	Data Initialization
	Denoising
	Hyperparameter Optimization
	Benchmarking
	Statistical Assessment of the Proposed Method

	Final Remarks and Conclusions 
	References

