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Abstract: The cost of electricity and gas has a direct influence on the everyday routines of people who
rely on these resources to keep their businesses running. However, the value of electricity is strongly
related to spot market prices, and the arrival of winter and increased energy use owing to the demand
for heating can lead to an increase in energy prices. Approaches to forecasting energy costs have
been used in recent years; however, existing models are not yet robust enough due to competition,
seasonal changes, and other variables. More effective modeling and forecasting approaches are
required to assist investors in planning their bidding strategies and regulators in ensuring the security
and stability of energy markets. In the literature, there is considerable interest in building better
pricing modeling and forecasting frameworks to meet these difficulties. In this context, this work
proposes combining seasonal and trend decomposition utilizing LOESS (locally estimated scatterplot
smoothing) and Facebook Prophet methodologies to perform a more accurate and resilient time
series analysis of Italian electricity spot prices. This can assist in enhancing projections and better
understanding the variables driving the data, while also including additional information such
as holidays and special events. The combination of approaches improves forecast accuracy while
lowering the mean absolute percentage error (MAPE) performance metric by 18% compared to the
baseline model.

Keywords: electricity spot prices; electrical power systems; time series decomposition; time
series forecasting

1. Introduction

The price of electricity and gas directly affects the routine of the people who need
this availability to maintain their daily activities. With the Russia–Ukraine conflict that
started on 24 February 2022, the value of electricity and gas has increased considerably for
consumers in neighboring countries. The value of electricity is directly linked to the value
of spot market prices [1], and with the onset of winter and increased energy consumption
due to the need for heating, the value that energy can reach is something that needs to be
assessed [2].

Several authors have been researching this subject in recent years. Various approaches
based on artificial intelligence paradigms—mainly machine learning and deep learning—
have been designed to forecast the price of energy [3–5]. Before the deregulation of elec-
tricity markets, spot price forecasts were laborious and detailed [6]. They were based
on estimating the future market forecast based on historical data, calculating supply by
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adding the operating costs of generating units, and by comparing supply and demand.
Thus, cost-based models were reliable tools for forecasting electricity spot prices and
required negligible changes. However, currently, such models are outdated, and unfortu-
nately, the models implemented at present for electricity spot prices are not yet accurate
enough [3].

Due to increasing competition, seasonal variations on the demand and supply sides,
seasonal variations in temperature, the availability of renewable energy sources in the
energy systems, macroeconomics, and many other factors, it is essential to develop more
accurate price modeling and new forecasting techniques, which is a challenge for market
participants [7]. As electricity cannot be stored, a balance must be maintained between
demand and supply, thus electricity spot markets can have opportunities and risks. Thus,
it is important to develop profitable strategies using appropriate tools that require accurate
day-ahead electricity spot prices, where large amounts of electricity are commercialized
daily. The daily price volatility is high, they are also characterized by high frequency,
a variable average, and multiple seasonality due to several unique characteristics that
differentiate electricity from other forms of energy [8].

The European wholesale electricity price data refers to the prices of electricity that
are traded on the wholesale market in Europe [9]. Wholesale electricity markets are
where electric utilities, large industrial users, and other electricity generators buy and
sell electricity in bulk. These markets are typically organized and regulated by national
or regional regulatory bodies. As mentioned by Bahn, Samano, and Sarkis [10], the use
of renewable energy has changed electricity market prices; according to the authors, the
merit order effect has a downward pressure on prices whereas, with market power, higher
infra-marginal rents will tend to increase prices.

The formation of wholesale electricity prices in Europe is influenced by a variety
of factors, including the supply and demand for electricity, the cost of generation and
transmission, and the availability of different types of electricity generation [11]. On the
supply side, the availability of electricity is influenced by factors such as the capacity
of electricity generation facilities, the availability of fuel sources, and the reliability of
transmission and distribution systems [12]. On the demand side, the demand for electricity
is influenced by factors such as economic activity, population growth, and changes in
consumer behavior.

The cost of electricity generation and transmission is also an important factor in the
formation of wholesale electricity prices [13]. This includes the cost of fuel sources, such
as coal, natural gas, and renewable energy sources, as well as the cost of maintaining and
operating electricity generation and transmission infrastructure [14]. The availability of
different types of electricity generation can also affect the formation of wholesale electricity
prices. For example, the use of renewable energy sources, such as wind and solar power, can
help to reduce the overall cost of electricity generation, which may lead to lower wholesale
electricity prices [15].

In the literature, there are many recent works related to energy consumption in Italy.
Some researchers have especially studied this variation due to the pandemic, such as
the works of Ghiani et al. [16], Bahmanyar, Estebsari, and Ernst [17], and Krarti, and Al-
dubyan [18]. Current studies related to the price of energy, such as the work of Moreno
and Díaz [19], are rarer, and the analyses performed are in relation to previous years [20]
in which there was not such a wide variation in the time series; this is the challenge of
this research. One of the latest works related to electricity prices in Italy is presented
by Ghanem et al. [21], wherein an evaluation is also performed due to the impact of the
coronavirus disease of 2019 (COVID-19).

Different time frames, such as short-term, medium-term, and long-term, can be used
for forecasting [22]. When developing a forecast, the time horizon of the forecast might
impact which aspects are most important to examine. Short-term forecasting may place
a greater emphasis on current market conditions and immediate supply and demand
dynamics. Seasonal changes and the adoption of new technology may be more meaningful
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for medium-term forecasting. For long-term forecasting, it may be crucial to include
macroeconomic trends and structural changes in the market. It is essential to evaluate the
time horizon of the forecast and the elements that are likely to influence the forecast for
that horizon [23].

The development of more accurate forecasting methodologies has become more com-
plex and dynamic, and is a key task for investors when planning their bidding strategies to
maximize their effectiveness from short, medium, and long-term horizons [24–26]. Finally,
they help regulators ensure the long-term sufficiency and security of supply and the con-
stancy of energy markets. For these reasons, there has been growing interest in the literature
with respect to developing better price modeling and forecasting techniques [27–29]. Based
on that, an assessment will be presented of the variation in electricity prices on the stock
market in Italy, which is reflected in the increase in the cost of energy for consumers.

Summarily, the contributions of this paper are:

• Developing a less error-prone forecasting model for electricity spot prices, which
combines Facebook’s Prophet approach and the seasonal and trend decomposition
using LOESS (locally estimated scatterplot smoothing);

• Performing a pre-processing filter to reduce noise in the time series, avoiding the
evaluation of abrupt variations that do not correspond to a variation trend;

• Evaluating stock market behavior in relation to days of the week, time of year, and vari-
ation trend, based on the mean square error, root-mean-square error, and mean abso-
lute percentage error.

The rest of this article is structured in the following way. Section 2 reviews the related
works in the forecasting theme applied to electricity prices and related fields. Then, this
Section describes the dataset and preprocessing steps of electricity prices in Italy. Facebook’s
Prophet method and Seasonal and Trend decomposition using LOESS (STL) are introduced
in Section 3. Section 4 summarizes and discusses the forecasting results. Finally, concluding
remarks and potential future directions are given in Section 5.

2. Related Works

In the European Union (EU), the wholesale electricity price is decided by the last
power plant needed to meet demand [9]. Wind, nuclear, coal, and gas power facilities
submit bids to the electricity market, with the lowest sources chosen first. In this approach,
gas plants often set prices. This approach ensures that all generators sell their power at the
same price, allowing cheaper renewable energy generators to have a wider profit margin
as an incentive for increasing investment in renewable energy, which the EU needs in order
to accomplish its climate change goals [11].

The uncertain future value of electricity has drawn the attention of several authors
who have proposed solutions to reduce the impact of price variation, by preparing the
market for possible price hikes and the need for rationing [30]. To solve this issue, re-
searchers have been conducting evaluations on the possibility of optimizing the power
generation scheduling [31], optimization in equipment design [32], and improvements in
the identification of faults in the electrical power system based on computer vision tech-
niques [33], standard classifiers [34], classical convolutional neural networks [35], and using
interpretable models [36]. A further possibility that has been explored is the estimation of
the future value of electricity based on time series forecasting [37], which is the focus of
this paper.

Defining which model is appropriate for the evaluation of electricity spot prices can
be a challenging task since there are large fluctuations in the energy market due to external
factors [38], as well as uncertainties regarding wind power generation [39]. Ensemble-based
models that use weak learners to have a robust model are increasingly being used. More
recently, the decomposition ensemble forecasting paradigm has been proposed for energy
price forecasting. This approach often decomposes time series data into several components
with simple structures and aggregates the forecast results from all the components to obtain
a final forecast [40]. Models that are increasingly being applied for time series forecasting
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include the group method of data handling [41], ensemble learning models [42], long
short-term memory [43], and other classical approaches [44].

Three electricity price series from Australian and Spanish electricity markets were
used to verify the prediction performance of a hybrid model, with a two-layer decomposi-
tion based on the combination of variational modal decomposition (VMD) and ensemble
empirical modal decomposition (EEMD) carried out on the residual term, combining the
extreme learning machine (ELM) optimized by differential evolution (DE). The generaliza-
tion ability and effectiveness of the proposed model were verified through tests on data
with different characteristics [40]. The proposed decomposition–ensemble learning models,
using randomized algorithms as individual forecasting tools, were extremely efficient and
fast compared with other benchmarking models for energy forecasting the Brent crude oil
spot price and the Henry Hub natural gas price [45].

The bagging, boosting, random subspace, bagging plus random subspace, and stacked
generalization ensemble models were applied to predict emergency situations 1-h ahead in
hydroelectric power plants, with the dam, installed at Santa Catarina state, Brazil, advanc-
ing the necessary decision-making in a situation of risk to the dam [46]. A very short-term
electricity price forecasting model was developed by Bhatia et al. [47], applying ensemble
learning. The model combined bagging and boosting in the stacking phase, reducing
the overall variances due to the stacking process by inculcating bootstrap aggregation.
Improved forecasting performance in terms of accuracy and statistical tests was obtained.
Were utilized data for day-ahead electricity price, load consumption, wind generation,
and other parameters, in Austria from January 2015 to December 2016.

The research of Jiang et al. [48] proposed a new decomposition–selection–ensemble
forecasting system adopting multiple predictors to forecast time series, which can lift the
restriction of a single model, and can objectively and adaptively select the best predictor
for every sub-series via an optimal sub-model selection scheme, determining the most
appropriate sub-models without being subjective. They selected two datasets of crude oil
and natural gas future prices. The proposed model always achieves high-quality precision
and stability relative to other models.

Ribeiro et al. [49] proposed a self-adaptive, decomposed, heterogeneous, and ensem-
ble learning model for short-term electricity price forecasting. The coyote optimization
algorithm was adopted to tune the decomposition hyperparameters in an empirical comple-
mentary ensemble manner in the preprocessing stage, and three machine learning models
were designed with the intention of handling the components obtained through the signal
decomposition approach with a focus on time series forecasting. The results showed the
efficiency of the proposed model. A predictive model was developed by Lucas et al. [50] to
capture the dynamics and identify deterministic or quasi-determinist variables which may
influence the energy market prices. A total of 19 predictors were considered to develop a
regression model using three machine learning algorithms. In terms of feature importance,
many variables were analyzed and scores were assigned, and the ELEXON Balancing
Energy Market in the United Kingdom was considered. The proposed approach could be
used as a support tool for market price forecasting.

Hybrid models that use noise reduction techniques increase the model’s ability to per-
form accurate predictions [51]. A novel hybrid prediction model was proposed in the work
of Qiao and Yang [52] using the wavelet transform (WT), stacked autoencoders, and long
short-term memory. Compared with other advanced prediction models, the forecasting
accuracy of the developed model is obviously improved based on some general evaluation
indexes. In addition, this model overcomes the shortcomings of determining wavelet’s
orders and layers based on experience. Its prediction accuracy is higher than that of using
long short-term memory alone to predict residential, commercial, and industrial electricity
prices [53].

Techniques combining WT with fixed and adaptive machine learning time series
models have been evaluated [53]. To create an adaptive model, an extended Kalman filter
was used to update the parameters continuously on the test set. This paper compared two
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approaches combining WT with prediction models—multicomponent and direct—applied
to stationary and non-stationary data from the United Kingdom electricity demand/gas
price markets. The results showed that the forecasting accuracy is significantly improved by
using the WT and adaptive models. Another study using a novel hybrid method with em-
pirical wavelet transform (EWT), support vector regression, bi-directional long short-term
memory, and Bayesian optimization, was proposed to increase the accuracy of electricity
price forecasting [54]. The proposed hybrid model is employed on the data gathered from
the European Power Exchange Spot. Five different case studies were adopted to verify the
effectiveness of the hybrid model that achieved a better forecasting performance. The use
of WT is a promising alternative because it considers the signal energy to be superior to
other filters [55]

In addition to noise reduction, optimizers have been applied to improve the predictive
power of the model [56]. Thus, a new adaptive hybrid model based on variational mode de-
composition, self-adaptive particle swarm optimization, seasonal autoregressive integrated
moving average, and a deep belief network was proposed for short-term electricity price
forecasting [57]. The effectiveness of the model was verified by using data from Australian,
Pennsylvania–New Jersey–Maryland, and Spanish electricity markets. Results showed that
the proposed model can significantly improve forecasting accuracy and stability.

Accurate forecasting of electricity spot prices is important for market participants [58],
investors, and regulators [59]. A number of different methods have been proposed for this
task, including time series models [60], artificial neural networks [61], and hybrid models.
Ensemble-based models and decomposition ensemble forecasting have been found to be
effective in forecasting electricity spot prices, as have hybrid models combining time series
models with artificial neural networks. Self-adaptive, decomposed, heterogeneous and
ensemble learning models have also been shown to be effective in this context. From the lit-
erature review, it is possible to observe that hybrid models and ensemble-based approaches
are particularly effective for forecasting electricity spot prices, particularly in the short and
medium term.

In summary, there has been a focus on finding efficient and effective methods for
forecasting electricity prices in order to reduce the impact of price variation and prepare
the market for potential price hikes and the need for rationing [30,37]. It is inferred from
the literature review that hybrid models and ensemble-based approaches are particularly
effective for forecasting electricity spot prices, particularly in the short and medium term.

This work is distinct from other research in a number of respects. The first objective is
to create a less error-prone power spot price forecasting model by combining the Facebook
Prophet technique with seasonal and trend decomposition using LOESS. Second, it incorpo-
rates a pre-processing filter to decrease noise in the time series and prevent the evaluation
of abrupt variations that do not match a trend variation. The report concludes by evaluating
the behavior of the stock market in connection to weekdays, seasons, and variance trends.

Dataset

In this paper, we utilized the European wholesale electricity price dataset to inves-
tigate the factors that influence the formation of wholesale electricity prices in Europe.
This dataset includes time series data on the prices of electricity that are traded on the
wholesale market in Europe, as well as information on the supply and demand for elec-
tricity, the cost of generation and transmission, and the availability of different types of
electricity generation. For time series evaluation, the stock values of the electricity market
of Italy from 1 January 2015 to 30 November 2022 were used, corresponding to 2890 ob-
servations (https://ember-climate.org/data-catalogue/european-wholesale-electricity-
price-data/ (accessed on 23 December 2022)), corresponding to a daily record of the price
variation, where the values are presented in megawatt-hour (MWh).

Using statistical and machine learning techniques, we analyzed the European whole-
sale electricity price dataset to understand trends and patterns in the data and to make
predictions about future electricity prices [62]. Our analysis aims to identify the key factors

https://ember-climate.org/data-catalogue/european-wholesale-electricity-price-data/
https://ember-climate.org/data-catalogue/european-wholesale-electricity-price-data/
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that contribute to the formation of wholesale electricity prices in Europe and to provide
insights into the factors that may impact the future direction of the electricity market.

3. Facebook’s Prophet Method

Facebook Prophet is a time series data forecasting tool created by Facebook’s Core
Data Science team. It is constructed on top of the open-source programming language R
and is intended to be simple to use while producing credible forecasts, according to [63].
The Prophet technique is based on the assumption that time series data can be described
as a mixture of numerous characteristics, such as trends, seasonality, and holidays [64].
The math powering Facebook Prophet entails identifying and modeling these components
using a number of mathematical and statistical methodologies: (i) linear regression is used
to model the trend component of a time series; (ii) Fourier series are used to model the
seasonality component of a time series; and (iii) additive models are used to describe the
holidays component of a time series.

A linear or nonlinear regression model is often used to discover and model any
underlying patterns or trends in the data for the trend component of the time series.
A linear regression model’s equation can be given by:

y = β0 + β1x + ε,

where y is the dependent variable (i.e., the time series), x is the independent variable (i.e.,
the time of the data point), β0 and β1 are the coefficients of the model that are determined
by the regression, and ε is the error term representing the difference between the predicted
value of y and the actual value.

A Fourier series, a mathematical tool for describing periodic functions, is generally
used to model the seasonality component of a time series. A Fourier series can be repre-
sented as the sum of sines and cosines:

f (t) = a0 +
n

∑
k=1

(
ak cos

2πkt
T

+ bk sin
2πkt

T

)
,

where f (t) is the time series, t is the time of the data point, T is the period of the time series,
n is the number of terms in the series, a0 is the average value of the time series, ak and bk
are the coefficients of the sines and cosines that are determined by the Fourier analysis.

The holidays component of the time series is often modeled using a generative additive
model (GAM), a statistical model that allows for the insertion of additional elements that
may influence the time series. According to [65], a GAM is a flexible and non-parametric
regression model that may be used to match complex data patterns. This is accomplished
by representing the relationship between the response variable (the time series data) and
the predictor variables (the factors influencing the data) as a sum of smooth functions.
The GAM used by the Prophet method can be expressed as follows:

y(t) = g1(t) + g2(t) + · · ·+ gk(t) + ε(t), (1)

where y(t) is the response variable (the time series data), gi(t) is the smooth function that
models the ith predictor variable, and ε(t) is the error term that represents the random
noise or variation in the data.

Smooth functions gi(t) can be described using a number of basis functions that can
capture the data’s complexity, such as splines or Fourier series. Maximum likelihood
estimation or other optimization approaches can be used to estimate the parameters of
these basis functions.

Once the GAM has been fitted to the data, it may be used to predict future values of t
by evaluating the smooth functions gi(t). This will generate a forecast of the time series
data, as well as uncertainty intervals that can be used to assess the forecast’s trustworthiness.
After modeling these components, they can be integrated to generate a single, composite
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model of the time series (as is presented in Figure 1). Based on the detected and modeled
underlying trends, patterns, and factors, this model can then be used to forecast future
values of the time series.

Figure 1. Representative flowchart of the Facebook Prophets.

The math behind the Facebook Prophet approach is based on the usage of generalized
additive models, which are flexible and non-parametric regression models that may be
utilized to model complex data patterns. The Prophet technique can generate trustworthy
projections of time series data by utilizing these models. The method, in addition to
forecasting, offers several other properties that can be beneficial for evaluating time series
data. It may, for example, detect and model the impacts of holidays and other special events
on data, and it can give visualizations of the data and the fitted model to aid comprehension.

3.1. Seasonal and Trend Decomposition Using LOESS (STL)

STL is a method for decomposing a time series into its trend, seasonality, and residual
components. It entails applying a smoothing function to the data and then iteratively
deleting the fitted curve from the data to extract the trend and seasonality components.
The residuals, or the difference between the original data and the fitted curve, show noise
or irregularity in the data [66].

Smoothing functions that can be employed in the STL approach include the LOESS
and Savitzky-Golay (SG) filters. LOESS is a non-parametric smoothing approach that
fits a smooth curve to the data using local regression. It is good at smoothing noisy
data and is more adaptable than other smoothing approaches. The SG filter is a sort of
digital smoothing filter that fits a polynomial function to a window of data points and
uses the polynomial value at the window’s center point as the smoothed value. It is
effective in removing noise while maintaining the underlying trend and structure of the
data, according to [67].

This study focused on STL utilizing LOESS, by fitting a smooth curve to each subset
of the data separately and then merging these curves to obtain a global fit. This enables
the LOESS approach to capture complicated patterns in data that would be difficult to
express using a basic mathematical model. To utilize the LOESS method to fit a smooth
curve to these data, we must first define the number of subsets to be employed. Typically,
this is determined by the quantity of data points and the desired smoothness of the curve.
If we have 100 data points and want a somewhat smooth curve, we may utilize 10 subsets.
The data are separated into the required number of subgroups when the number of subsets
is specified. If we utilize ten subsets, for example, we would divide the data into ten groups
of ten data points each.

In the context of STL decomposition, the LOESS method is used in STL decomposition
to fit separate smooth curves to the seasonal, trend, and residual components of time series
data. These curves are then integrated to form a global fit to the data, which can be used to
construct forecasts. To execute STL decomposition, the period of the seasonal component
must first be specified, which is often the number of time units (such as months or years) in
a single cycle of the seasonal pattern. Once the seasonal component’s period has been set,
the STL technique proceeds as follows:
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• The time series data are separated into seasons, each with a set number of time units.
For example, if the data includes monthly retail sales with a seasonal span of 12 months
(1 year), each season would have 12 months of data;

• Each season’s data are fitted with an LOESS smooth curve independently. This
generates a sequence of smooth curves, one for each data season;

• Step 2—smooth curves are then joined to give a global fit to the data. The seasonal
component of the time series is represented by this global fit;

• To create a detrended series, the seasonal component is eliminated from the orig-
inal time series data. This detrended series only includes the data’s trend and
residual components;

• The detrended series is then fitted with an LOESS smooth curve. This smooth curve
represents the time series’ trend component;

• The residual component is then calculated by subtracting the trend component from
the detrended series. These are the data that cannot be explained by seasonal or
trend components.

Once the seasonal, trend, and residual components of the time series data have been
extracted, they can be studied separately to acquire a better understanding of the data’s
underlying patterns and trends. The trend component, for example, can indicate key
patterns that repeat at regular intervals, whereas the seasonal component can disclose
important patterns that repeat at regular intervals.

The residual component, on the other hand, can provide information about random
noise or volatility in the data that the seasonal or trend components cannot explain. This
can be helpful in determining the dependability of seasonal and trend estimations, as well
as finding potential outliers or abnormalities in the data.

The STL approach can be used to forecast time series data after the components have
been removed and examined. This is accomplished by extrapolating the smooth curves
fitted to the data in steps 2 and 5. The seasonal and trend curves are projected to future
time points and then put together to give a time series data forecast. The equation for STL
decomposition is as follows:

yt = St + Tt + Rt, (2)

where yt is the original time series data, St is the seasonal component, Tt is the trend
component, and Rt is the residual component.

Seasonal decomposition with LOESS is accomplished mathematically by fitting a
smooth curve to the data using locally weighted regression. This is often accomplished
using a weighted least squares method, with the weights determined based on the data’s
local features. The equation for locally weighted regression is as follows:

y = f (x) + ε,

where y is the dependent variable (i.e., the time series), f (x) is the locally weighted regres-
sion curve, and ε is the error term representing the difference between the predicted value
of y and the actual value.

The locally weighted regression curve can be estimated by:

min ∑
i∈X

wi(yi − θTxi)
2, (3)

where x is the independent variable (i.e., the time of the data point), w is a non-negative
weight associated with the training point. The points in the training set that are close to
x are given a higher “preference" than the points that are far away from x. As a result,
the value of wi is large for x lying close to the query point x. The coefficients, associated
with a certain training point x are typically chosen as:

wi = exp− (xi − x)T(xi − x)
2τ2 , (4)
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where τ is the bandwidth parameter and controls the rate at which weight falls with
distance from x. The parameters can be calculated by the closed-form solution:

θ = (XTWX)−1(XTWY) (5)

where X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and W = {w1, w2, . . . , wn}.
Once the smooth curve has been fitted to the data, we can use the curve’s features

to identify the individual components of the time series. Fitting a linear or nonlinear
regression model to the curve and detecting the overall pattern of the data over time,
for example, might be used to estimate the trend component. Seasonality can be detected
by recognizing any recurrent patterns in data that occur at regular intervals, such as
monthly swings in sales data. The noise component can be identified by looking for any
random or unpredictable fluctuations in the data that do not follow any underlying pattern.
A high-level of the method is presented in Figure 2.

Scatter
plot data

Define
local

neighbor-
hoods

Fit
weighted
function
locally

Smooth
curve

Figure 2. LOESS procedure.

Seasonal and trend decomposition can aid in comprehending and evaluating time
series data. It can assist in identifying relevant patterns and trends in data that can be
used to make informed judgments. Statistical techniques like as the STL method and the
moving average method can be used to divide data into the seasonal, trend, and residual
components, allowing for a better understanding of the underlying patterns in the data.

We can use the strengths of both methodologies to achieve a more accurate and robust
time series analysis by combining STL and Facebook Prophet. STL can be used to break
down data into its constituent parts, which can then be fed into the Prophet model. This
can increase forecast accuracy and help us better understand the variables driving the data.
Furthermore, the Prophet model’s flexibility allows us to incorporate extra information,
such as holidays and other special events, which can boost forecast accuracy even further.

For a complete evaluation of the time series, it is necessary to analyze the influence of
the change in the predicted steps forward and to use different sampling windows with n
data points, every ∆t, until time t. Whereas the more steps forward (P) that are predicted
(t + P), the greater could be a challenging task, and using a small data series may not result
in a representative analysis as it is not possible to evaluate seasonality due to the different
times of the year. Based on that, the dataset adopted for the forecast can be defined as:

x = [x(t− (n− 1)∆t), . . . , x (t− ∆t), x(t)], (6)

where a predicted value can be defined as:

y(t + P) = f (x), (7)

where y(t + P) is the predicted value for the time series, and f (x) a mapping function
considering n regressors.

3.2. Performance Metrics

In this paper the mean square error (MSE), root-mean-square error (RMSE), and mean
absolute percentage error (MAPE) were considered, given by:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (8)
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (9)

MAPE% =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100, (10)

where n is the length of the original signal, yi is the observed value, and ŷi is the predicted
output [68]. The simulations were performed using the Google Colab platform (https:
//colab.research.google.com/ (accessed on 23 December 2022)).

4. Analysis of Results

The evaluation of electricity spot price variation and prediction of future values of
Italy is presented in this section. To reduce the variation of peaks that are not representative,
the decomposition STL technique is used. The first analysis are performed with respect to
the pre-processing of the time series.

4.1. Pre-Processing

One of the major challenges in time series forecasting is the presence of oscillations
(which in some cases can be considered noise), resulting from variation that is intrinsic to the
data used. Using band-pass filtering techniques to reduce high frequencies can impact the
loss of signal characteristics, then techniques based on evaluation of the progression of data
in the time series, are more promising for this type of evaluation. In this paper, to reduce
these oscillations the STL was used for pre-processing the signal. Initially, the seasonal and
residue variation in the STL decomposition were analyzed, as presented in Figure 3.
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Figure 3. Seasonal and residual outcome of the time series.

The price variation can be observed when large market variations occur in stock
values, these seasonal variations tend to return to the time series variation trend. This
makes it even more difficult to predict the future value of electricity considering the large
fluctuations that occurred in the last year under evaluation. In addition to the seasonality in
the variation that occurs in the stock market, there is a residue generated by this variation
which is also present in the time series.

https://colab.research.google.com/
https://colab.research.google.com/
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Considering these variations, the trend value was analyzed, this value was used in
this paper as the observed value to forecast the electricity price. To use the trend from the
STL, it is necessary to define two parameters which are the length of the seasonal smoother
(LSS) and the length of the trend smoother (LTS). The results of the STL decomposition
analysis are presented in Figure 4 in relation to the LTS of the time series. The variation
of the value of LSS did not result in a visual change; for this reason, these results are not
presented in graphical form.
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Figure 4. Trend vs original time series regarding the LTS variation.

To decompose the signal, it is necessary that the LTS values are odd, for this reason,
the variation is presented with a step of 50 with the first value at 11, considering that it is
not possible to perform the decomposition of the LTS equal to 1. From an LTS value equal
to or greater than 51, the peaks were attenuated and this information was lost. Having
these preliminary results, a value of LTS equal to 51 was considered the maximum possible
value in the decomposition, because an abrupt decomposition causes the signal to lose
its characteristics.

Considering the focus on analyzing trend variation in electricity prices, it is promising
to use STL in the time series decomposition. Using the STL, oscillations are not considered
and a more assertive forecast can be made based on the trend of variation of the electricity
price. Based on the resulting trend signal, Facebook’s Prophet was used for forecasting.

4.2. Facebook’s Prophet

In a preliminary one-step analysis (one observation to predict), Facebook’s Prophet
results in the forecast presented in Figure 5, wherein the black points are the data used to
train the model, the blue line is the forecasting results, and the light blue area represents
the confidence intervals.

In the analysis of the forecast about future prices, it is possible to see that there is a
tendency the increase the energy bill, the big variation that occurred in the second semester
of 2022 shows the volatility in the variation of the electric energy values at the beginning
of winter, this variation worries the consumers since the gas value also keeps increasing.
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As electricity is an alternative source for heating homes in the winter in northern countries,
this upward trend has a direct impact on people’s lives.
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Figure 5. Facebook’s Prophet forecasting.

To further improve the forecasting ability, the results of the error calculation with
respect to the STL decomposition are presented in Table 1. The best error results in each
LTS configuration are shown in bold, and the best overall value is shown underlined. Since
an LSS lower than 21 and greater than 61 would cause the error values to increase, only the
values up to this limit are presented.

Table 1. Error evaluation regarding STL decomposition.

LTS LSS MSE RMSE MAPE (%)

11
21 8805.30 93.84 30.54
41 8727.33 93.42 30.33
61 8552.59 92.48 30.01

21
21 4705.48 68.60 20.56
41 4729.80 68.77 20.59
61 4745.27 68.88 20.63

31
21 6800.03 82.46 25.73
41 6743.90 82.12 25.58
61 6660.24 81.61 25.42

41
21 7178.79 84.73 26.59
41 7070.99 84.09 26.35
61 7035.60 83.88 26.28

51
21 8837.37 94.01 30.43
41 8749.61 93.54 30.23
61 8701.09 93.28 30.13

When more observations are predicted relative to observed values, the model may
have more difficulty predicting values with acceptable error. In a step-ahead analysis, this
occurs because when a long-term evaluation is performed, the predicted values that do
not match the observed reality (error) are accumulated; thus, long-term analysis is more
difficult to perform when there is a high nonlinearity in the time series. However, it is
possible to have a longer horizon, which in terms of energy planning is promising. Table 2
shows the forecast error values in relation to the use of more observations.



Energies 2023, 16, 1371 13 of 18

Table 2. Evaluation of the maximum observations ahead.

Observations MSE RMSE MAPE (%)

1 4705.48 68.60 20.56
5 8018.98 89.54 28.49
10 13,451.76 115.98 40.10
25 32,009.12 178.91 77.71
50 61,336.33 247.66 132.61

Considering that the observations are daily, 50 observations represent having the
ability to forecast the increase in the spot market price of energy 50 days ahead. In terms of
market evaluation, one observation (one day ahead) would be promising for any course of
action; however, when the issue of energy planning is observed, considering that electric
energy is an alternative energy source to the use of gas for heating purposes, the ideal is to
observe a forecast of at least 50 days, since this corresponds to the period of greatest need for
heating during the winter. The STL Facebook’s Prophet results considering 50 observations
are presented in Figure 6. Using 50 observations means assessing to predict the spot market
value 50 days ahead.

It was observed that when many observations are used for forecasting and few for
training, the model tended to have lower error results, however, the forecast shows that
these results occurred because with fewer data for training the model became closer to the
exponential energy increase, considering that there are political factors that influence this
variation, a long term forecast does not correspond to a guarantee of accuracy, since besides
market variations other factors have an influence on the long term price of electricity.
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Figure 6. Facebook’s Prophet forecasting results considering the prediction of 50 observations.

Results that are interesting in terms of model evaluation are the resulting forecast
components shown in Figure 7. It can be observed that there was a trend of energy price
increase from the year 2021 that was maintained in the year 2022, and based on the results
obtained, it will possibly be maintained in 2023. The weekly variation shows that in the
middle of the week the highest peaks of variation, with the lowest values being entered on
Tuesdays. This indicates that typically the market reacts with an increase in stock purchases
after a drop in its value, an expected result in relation to the stock market. The highest
share price values occur in the months of September and December. This variation possibly
occurs at the end of summer and the beginning of winter, which causes the market value to
fluctuate considerably.
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Figure 7. Prophet components of the forecasting.

The results showed that the lowest errors in the forecast were obtained when the
length of the trend smoother (LTS) was equal to 21 and the length of the seasonal smoother
(LSS) was equal to 21 or 41. Specifically, the mean squared error (MSE) and root mean
squared error (RMSE) values were 4705.48 and 68.60, respectively, while the mean absolute
percentage error (MAPE) was 20.56%. These values represent a significant improvement
over the other configurations tested, indicating that the forecast was more accurate when
these parameter values were used

4.3. Discussion

The results indicate that there is a tendency for electricity prices to increase, with a
particularly large variation occurring in the second semester of 2022. This increase in prices
is likely due to a combination of factors, including the volatility of the energy market,
the rising cost of fuel sources, and the increasing demand for electricity. The variation in
prices during the winter months is of particular concern to consumers, as higher electricity
prices may impact their ability to affordably heat their homes.

Our results indicated that, using an LTS of 21 and an LSS of 21, resulted in the best
overall error values, with an MSE of 4705.48, an RMSE of 68.60, and a MAPE of 20.56.
These findings suggest that the STL decomposition can be a useful tool for improving the
accuracy of electricity price forecasting, as it allows for a more nuanced analysis of the time
series data.

Overall, our analysis of the European wholesale electricity price data highlights
the importance of understanding the factors that influence the formation of electricity
prices and the potential benefits of utilizing statistical and machine learning techniques to
make more accurate forecasts. These insights may be useful for a variety of stakeholders,
including electricity generators, transmission and distribution companies, and electricity
consumers, as well as policymakers seeking to optimize the functioning of the electricity
market in Europe.
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4.4. Short-Term Evaluation

The selection of the time window used for forecasting influences the forecast’s capabil-
ity. When fewer data are observed, the model tends to require less computational effort.
This issue raises a reflection on which time window is adequate to perform the market
forecast, since reducing this window can lead to an improvement in the error metrics.
Nevertheless, these evaluations are not representative in terms of the seasonality of the
series, since longer times must be observed for a complete market evaluation. Table 3
presents an evaluation of the forecasts considering variations in the time window used.

Table 3. Evaluation of the variation in the number of days.

Time (Days) MSE RMSE MAPE (%)

2890 4705.48 68.60 20.56
1825 1667.84 40.83 12.24
1460 930.85 30.50 9.14
1095 90.99 9.53 2.85
730 1406.27 37.50 11.24
365 38,681.73 196.67 58.96
180 4163.31 64.52 19.34
90 253.59 15.92 4.78

When the time window is increased, the error signal (residual) increases until it
reaches its maximum (in this evaluation) at 365 observations (at which point predictions
are ineffective, since the MAPE error is 58.96%). When 1095 observations are used (3 years),
lower error values are found, and within this perspective, an optimization analysis could
be performed to determine the optimal number of observations. Since the purpose of
this paper was to evaluate the complete variation history to assess the seasonality of the
variations, this was not performed. Figure 8 shows the use of STL to filter the signal and
Prophet to perform the forecast considering 90 observations.

Figure 8. Evaluation considering 90 observations: (A) STL filter; (B) Prophet forecasts.

The evaluation of a short period of time results in a lower forecast error of the model
in view of the fact that the predictions only take into account momentary variations, and do
not consider the seasonal variations of the market. In this sense using the entire dataset
(with 2890 observations) is more challenging. Still, it results in an appropriate reflection of
the price variation, and the energy cost scenario compared to previous years.

5. Conclusions and Future Directions of Research

In this study, we employed the decomposition ensemble forecasting paradigm, which
decomposes time series data into simple components and aggregates the forecast results
from all components to obtain a final forecast. We also utilized the STL technique for
pre-processing the data to reduce oscillations and better understand the trends in the
data. By defining appropriate values for the length of the seasonal smoother and the trend
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smoother, we were able to extract the trend in the data and use it as the observed value for
forecasting with Facebook’s Prophet model.

Our findings showed that using STL in the decomposition of the time series can
provide a better performance forecast of electricity prices in Italy by focusing on the trend
of variation rather than considering oscillations as noise. This approach can be a promising
tool for market participants and regulators to develop profitable strategies and ensure the
security and stability of energy markets.

Future research in this area could include further exploration of different ensemble-
based models and their effectiveness in forecasting electricity prices, as well as the de-
velopment of improved techniques for decomposing and analyzing time series data. Ad-
ditionally, further work could be undertaken to understand the impact of political and
other external factors on the forecasting performance of these models. Future work can
be conducted with state-of-the-art models, such as extreme gradient boosting (XGBoost)
trees among other models based on ensemble learning methods that have been successfully
applied by other authors.
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