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Abstract—While performing regression testing, an appropriate choice for test case ordering allows the tester to early discover 

faults in source code. To this end, test case prioritization techniques can be used. Several existing test case prioritization 

techniques leave out the execution cost of test cases and exploit a single objective function (e.g., code or requirements coverage). 

In this paper, we present a multi-objective test case prioritization technique that determines the ordering of test cases that 

maximize the number of discovered faults that are both technical and business critical. In other words, our new technique 

aims at both early discovering faults and reducing the execution cost of test cases. To this end, we automatically recover links 

among software artifacts (i.e., requirements specifications, test cases, and source code) and apply a metric-based approach to 

automatically identify critical and fault-prone portions of software artifacts, thus becoming able to give them more importance 

during test case prioritization. We experimentally evaluated our technique on 21 Java applications. The obtained results support 

our hypotheses on efficiency and effectiveness of our new technique and on the use of automatic artifacts analysis and weighting 

in test case prioritization. 

 
Index Terms—Regression Testing; Requirements; Testing; Test Case Prioritization. 
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1 INTRODUCTION 

HE intent of regression testing is to ensure that en- 

hancements, patches, or configuration changes have 

not introduced new faults in source code. Relevant activities 

in regression testing are [1]: (i) test case selection; (ii) test 

case minimization; and (iii) test case prioritization. The goal 

of test case selection is to choose test cases that are relevant 

for a specific part of an application or for performed 

changes. On the other hand, test case minimization aims 

at reducing the number of test cases to be executed by re- 

moving redundant test cases, thus preserving the capability 

of a test suite in discovering faults. Finally, the goal of 

test case prioritization is to determine test case ordering 

that maximizes the probability to early discover faults in 

source code. In other words, it is of primary importance to 

identify test case orderings that are effective (in terms of 

capability in early discovering faults) and efficient (in terms 

of execution cost). These factors are relevant because they 

represent technical and business criteria for the success of 

a software project [2]. 

Test case prioritization techniques [1], [3] exploit sev- 

eral algorithms to prioritize test cases. These techniques 

are mostly based on a single dimension (e.g., code or 

requirements coverage) and assume that faults have all 

the same relevance and that all software artifacts (e.g., 

source code and requirements) are equally relevant. That 
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is, these techniques do not identify test case orderings 

that early reveal both technical (e.g., coding faults) and 

business critical faults (e.g., due to the misunderstanding 

of requirements). 

We presented in [4] a technique to prioritize test cases 

that explicitly considers: low- and high-level information 

about test cases. In particular, it was based on the three 

following dimensions: structural that concerns information 

on source code exercised by test cases under analysis; 

functional that regards coverage of users’ and application 

requirements; and cost that concerns time to execute test 

cases. A test case ordering was attained as a multi-objective 

optimization problem to balance considered dimensions 

with respect to traceability links among software arti- 

facts (i.e., application code, test cases, and requirements 

specifications). These links were recovered by applying 

Latent Semantic Indexing (LSI) [5]. It is an established 

Information Retrieval (IR) technique largely exploited to 

recover traceability links (e.g., [6], [7]). A limitation for our 

previous presented technique [4] is that it equally weighted 

all portions of application artifacts (i.e., source code and 

requirements) during test case prioritization. However, it is 

often the case in which different portions of application ar- 

tifacts have different fault-proneness or testers have specific 

needs (e.g., a given requirement or function has to be tested 

first). To overcome that limitation, testers could be asked to 

manually identify critical portions of application artifacts, 

thus becoming able to give them more importance during 

test case prioritization. However, this approach is costly 

for human testers and also error-prone. In this paper, we 

improve the solution highlighted before by leveraging the 

capability of automatically identifying fault-prone portions 

of software artifacts, according to some characteristics of 
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the source code of a given application (e.g., McCabe Cyclo- 

matic Complexity) and its requirements (e.g., the number 

of classes that implement a requirement). Summarizing our 

approach provides the following new research contribu- 

tions: (i) a novel multi-objective test case prioritization 

technique; (ii) the definition of a metric-based approach 

to automatically identify potential critical and fault-prone 

portions of application code and requirements; and (iii) a 

large experimental evaluation. 

As for our experimental evaluation, we have conducted 

an experiment on 21 Java applications. We also compared 

results obtained by applying our technique and those by 

baseline approaches for test case prioritization, namely 

random prioritization, code and additional code coverage 

techniques, and a multi-objective approach based on code 

coverage and test case execution cost [8], [9], [10], [11]. 

Another baseline technique for comparison was that we 

previously presented in [4]. Outcomes suggested that our 

technique is able to identify test case orderings that are 

effective in terms of early fault discovery and efficient in 

terms of test case execution cost. 

In Section 2, we discuss related work, while the outline 

of our approach is given in Section 3. The approach 

exploited to recover traceability links is introduced in Sec- 

tion 4. In Section 5, we present metrics and measurements 

used in our technique, which is successively shown in 

Section 6. In Section 7, we summarize the design of our 

investigation and present and discuss achieved results. Final 

remarks conclude the paper. 

 

2 RELATED WORK 

To prioritize and select test cases a number of techniques 

have been proposed and empirically investigated [12], [13], 

[14], [15], [8], [9], [10], [16], [17]. Yoo et al. [1] and 

Mohanty et al. [3] survey existing research work in these 

fields. Results suggest that existing techniques mostly use 

either structural or functional coverage criteria with respect 

to source code executed by test cases. This is one of the 

aspects that makes our proposal different from those in the 

literature. 

A number of approaches use code coverage and addi- 

tional code coverage1 to prioritize test cases with respect 

to their capability of executing the source code of software 

under test (e.g., [10], [18]). Most of these approaches iden- 

tify test case orderings based on a single objective function 

(e.g., code coverage). Only a few approaches based on 

multi-objective optimization exist (e.g., [12], [11]). These 

approaches mainly consider code coverage information and 

execution cost of test cases: (i) optimize test cases by 

means of a Pareto front using both code coverage and 

execution cost or (ii) reduce a multi-objective problem to 

a single-objective by using an optimization function. For 

example, Yoo and Harman [11] show same benefits of a 

Pareto-front optimality for test case selection. The authors 

present a two-objective test case selection approach, where 

1. Additional code coverage techniques evaluate each test case accord- 
ing to the code portion that is uniquely covered by it 

code coverage and execution cost are explicitly considered 

when conducting test case selection. The approach can be 

also directly applied to test case prioritization. This work 

presents some similarities with that we present in this paper, 

namely the objective formulation takes into account source 

code coverage as a measure of test adequacy and execution 

time as a measure for cost. The most remarkable differ- 

ences between these two approaches can be summarized 

as follows: we also consider the coverage of application 

requirements, to link them with source code we applied 

an IR technique, and we apply a metric-based approach 

to automatically identify critical and fault-prone portions 

of software artifacts (both source code and requirements). 

Another multi-objective test case prioritization approach 

is proposed by Sun et al. [19] for ordering test cases in 

GUI-based applications. In fact, code (statement) coverage 

is traditionally used to test case prioritize, while event 

coverage criteria are largely adopted for GUI applications 

testing [20]. Hence, Sun et al. propose a multi-objective 

test case prioritization approach that exploits both criteria: 

statement and event coverage. 

More traditionally, Salehie et al. [13], Kavitha et al. [21], 

Arafeen et al. [22], and Nguyen et al. [23] propose 

techniques to prioritize test cases according to application 

requirements. Test cases are mapped to requirements using 

a text-to-text traceability links recovery technique and then 

test cases are prioritized with the aim of maximizing user 

satisfaction. In contrast with our proposal, the most critical 

aspect of such techniques is that they mainly prioritize 

test cases according to the sole information coming from 

requirements, so ignoring the structure and the behavior of 

application under test. 

Yoo et al. [15] propose an approach to prioritize test 

cases according to tester’s needs, while considering struc- 

tural information of software under test. Authors ask testers 

to prioritize test cases conducting a pair-wise comparison of 

them. To limit human effort, authors combine this manual 

pair-wise comparison of test cases with test clustering based 

on coverage information, thus improving scalability of their 

technique. Then, testers are asked to prioritize groups of 

test cases (according to the group representative test case) 

rather than every test case. The authors also assume that 

testers have complete knowledge on each test case. This 

could not be true, e.g., in functional testing or in case of a 

huge test suite. 

Walcott et al. [14] present a technique to prioritize 

test cases with respect to time constraints. This is typ- 

ical for those contexts in which execution time is lim- 

ited by environment constraints. This technique achieves 

good results in terms of effectiveness. However, a few 

assumptions are taken: different types of faults have same 

severity and execution cost of every test case is uniform. 

These assumptions might be true only in a few specific 

contexts (e.g., applications based on the composition of 

third-party services). 

Fang et al. [24] propose a similarity-based technique that 

uses execution profiles of test cases to maximize diversity 

of test cases. The execution frequency profiles of test cases 
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Fig. 1. Process outline modelle with an UML Activity Diagram with Object Flow 
 

 
are collected and transformed into ordered sequences. Then, 

test case diversity is computed by applying string edit 

distances between each pair of execution sequences of test 

cases. This dis/similarity measure is used to establish test 

case prioritization. 

Li et al. [12] empirically assess effectiveness of greedy 

and meta-heuristic algorithms to prioritize test cases using 

code coverage measures. Conversely to other works, that 

focused on the best criteria (e.g., code coverage, time) to 

prioritize test cases, Li et al. mainly focus on the algo- 

rithm used to compute optimal test case orderings. Results 

suggest that meta-heuristic algorithms seem to be quite 

efficient and effective for traversing the solution space, thus 

promising to define optimal test orderings. According to 

these results, we propose in our work the use of a meta- 

heuristic algorithm to prioritize test cases according to the 

three considered dimensions. 

Unlike the studies discussed before, we propose a tech- 

nique to prioritize test cases that considers low- (e.g., 

code coverage) and high-level (e.g., requirements coverage) 

information about test cases and that uses automatically re- 

covered traceability links among requirements, source code, 

and test cases. Another remarkable difference between our 

 

work and those in the literature is that we have conducted 

a more extensive experimentation on several test suites and 

a large number of applications. 

 
3 APPROACH OUTLINE 

We present a multi-objective test case prioritization tech- 

nique that determines the ordering of test cases that maxi- 

mize the number of discovered faults that are both technical 

and business critical. This approach automatically recovers 

traceability links among software artifacts and applies a 

metric-based approach to automatically identify critical and 

fault-prone portions of software artifacts. In Figure 1, we 

show a behavioral view of our approach in terms of an 

UML Activity Diagram with object flow [25]. Ellipses 

are phases of our process, while rectangles are software 

artifacts produced and/or consumed in each phase. 

For each test case, the ExecutingTestCase phase provides 

details on covered code statements and execution cost (the 

artifacts :CodeCov and :ExecCost in Figure 1), namely 

two of the dimensions on which our approach is based 

on. The RecoveringTraceabilityLinks phase is in charge of 

recovering links between requirements and source code 

(:LinksReqsCode) and between requirements and JUnit test 
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A student can add a new exam to the 

register. An exam is composed of a name, 

CFU (i.e., a number that represent the 

university credit of the exam) and an 

optional vote. The name is unique, CFU 

is a positive number (>=0) and the vote, 

if inserted, is a number included between 

0 and 30 (the vote can be also 0 or 30). 

A vote < 18 is negative (i.e., the exam 

is not passed) while >= 18 is positive 

(i.e., the exam is passed). An exam can be 

inserted also without the vote; it can be 

inserted later. ’Laude’ can be added only 

when the vote is 30. 

 

 

Fig. 2. The class calculator.Exam in AveCalc 
 

Fig. 3. The requirement AddExam in AveCalc 

 

cases (:LinksReqsTestCases). Source code is considered 

as text and also requirements since they are described in 

natural language. In Figure 2 and Figure 3, we show a frag- 

ment of the class calculator.Exam and requirement 

addExam of the application AveCalc2, respectively. LSI 

allowed us to find a link between calculator.Exam 

and addExam. Links between requirements and classes 

estimate the coverage of requirements that represents the 

third dimension of our approach. We provide details on 

the approach used for the recovery of traceability links in 

Section 4. 

Source code and requirements metrics (:CodeMetrics and 

:ReqsMetric, respectively) are computed in the Computing- 

Metrics phase. Traceability links between requirements and 

source code are also used to compute requirements-level 

metrics. These links and both source code and require- 

 
2. It is one of the applications used in our empirical assessment 

ments metrics are then used to estimate maintainability 

indexes (:MaintIndexCode and :MaintIndexReqs) for the 

classes and the requirements of a given subject software 

in the phase EstimatingMaintainability. Requirements and 

source code classes are ordered according to their main- 

tainability indexes, respectively. These orderings are then 

used together with covered code statements and execution 

costs (i.e., the output of ExecutingTestCase) and recovered 

traceability links between requirements and test cases to 

compute cumulative measures for traceability links and 

both code coverage and execution costs of test cases. These 

measures are exploited to identify portions of application 

code and requirements that are potentially critical and fault- 

prone in the phase IdentifyingCumulativeReqsAndCode. In 

Section 5, we describe the three phases of our approach 

we described just before. It is worth remarking that the 

support provided by these three phases represents the most 

important difference between our current contribution and 

that we previously presented [4], where testers had to 

manually identify critical portions of application artifacts 

(e.g., source code and requirements). 

The performance evaluation of all possible test case 

orderings on the three choose dimensions is expensive 

in case of test suites containing a large number of test 

cases. To deal with this issue, the PrioritizingTestCase 

phase exploits a multi-objective optimization method to 

prioritize test cases according to our three dimensions. 

Several possible evolutionary algorithms are available and 

applicable to the problem of test case prioritization. In the 

work presented here, we rely on the Non-dominated Sorting 

Genetic Algorithm II (NSGA-II [26]). In fact, NSGA-II is 

widely used in the solution of optimization problems in 

software engineering and demonstrated to be particularly 

suited for the prioritization problem [27], [28]. In Section 6, 

we provide details on how NSGA-II has been used in our 

new approach. 

4 TRACEABILITY RECOVERY 

Requirements traceability regards the documentation of bi- 

directional links among various related requirements and 

associated software artifacts produced in the entire devel- 

opment process. In other words, requirements traceability 

refers to the ability to describe and follow the life of a 

requirement, from its origins, through its development and 

specification, to its subsequent deployment and use, and 

through all periods of on-going refinement and iteration in 

any of these phases [29]. This allows a software engineer 

to understand relationships that exist within and across 

different kinds of software artifacts. For example, docu- 

mentation of traceability links might be crucial to be aware 

about: (i) source code in charge of implementing a given 

application requirement; (ii) requirements implemented by 

a specific part of the source code; and (iii) source code 

exercised by a test case. 

Traceability links are very often not documented at all 

and if this information exists it might be not updated or 

not aligned with the current implementation and documen- 

tation (e.g., [30], [31], [32], [33]). Therefore, methods and 

package calculator; 

import java.io.Serializable; 

import javax.swing.JOptionPane; 

/** 

* Classe Exam. 
* Bean representing an exam. 

* 

* @author andima 

*/ 

public class Exam implements Serializable \{ 

public String name; 

public int cfu; 

public int vote; 

public boolean laude; 

public boolean maked; 

public Exam()\{ 

name = "Unknow"; 

cfu = -1; 

vote = -1; 

laude = false; 

maked = false; 

\} 

public static Exam getInstance(String name, 

String cfu, String vote)\{ 

Exam e = new Exam(); 

e.setName(name); 

// ... 

\} 

// ... 

\} 
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tools might be needed to infer traceability links among 

software artifacts and requirements and source code, in 

particular. In this regard, researchers have successfully ap- 

plied IR techniques [6], [33], [34], [35]. These approaches 

are mostly based on lexical similarity of text contained in 

these artifacts [36]. In particular, artifacts are indexed by 

extracting information about occurrences of terms within 

them and then a lexical similarity measure is computed 

to establish whether or not a traceability link might exist 

between two artifacts. Independently from the IR technique, 

the process to recover traceability links among software 

artifacts is similar. 

LSI (sometimes referred to as Latent Semantic Analysis) 

has been successfully applied in traceability field (e.g., [6], 

[36]). Other text retrieval and IR techniques have been 

successfully applied to the problem of recovering trace- 

ability links among software artifacts. However, existing 

research is contradictory on which text retrieval model 

and technique work best with source code data. For ex- 

ample, Marcus and Maletic [6] experimentally observed 

that LSI performs at least as well as Vector Space Model 

(VSM) [37] and in some cases LSI outperforms VSM in 

recovering documentation-to-source-code traceability links. 

Conversely, Abadi et al. [38] observed that VSM provides 

better results than LSI in the recovery of traceability links 

among different kinds of software artifacts. Similar results 

were also obtained by Wang et al. [39]. Other authors advo- 

cate for the use of Latent Dirichlet Allocation (LDA) [40]. 

We decided to use LSI because it is efficient and widely 

used in traceability recovery field. The used approach is 

close to that proposed by Marcus and Maletic [6] and then 

assessed by De Lucia et al. [36]. The use of a different text 

retrieval model would not alter the results of our test case 

prioritization approach. The use of a different IR technique 

represent a possible future direction for our research. 

 
4.1 Latent Semantic Indexing 

LSI assumes that there is some underlying or latent struc- 

ture in word usage that is partially obscured by vari- 

ability in word choice, and uses statistical techniques to 

estimate this latent structure. LSI uses information about 

co-occurrence of terms (latent structure) to automatically 

discover synonymy between two or more terms. The latent 

structure of the content is obtained by applying a Singular 

Value Decomposition (SVD) to a m n matrix C  (also 

named term-by-document matrix), where m is the number 

of terms and n is the number of documents (artifacts in 

our case). By applying SVD, each term and each artifact 

could be represented by a vector in the k space (i.e., 

the dimensionality reduction of the latent structure) of 

underlying concepts. Indeed, we use SVD to construct a 

low-rank approximation Ck to the term-document matrix, 

for a value of k that is far smaller than original rank of C. 

Thus, we map each row/column to a k dimensional space, 

which is defined by k principal eigenvectors (corresponding 

to the largest eigenvalues) of CCT and CT C. The matrix 

Ck is itself still an m × n matrix, irrespective of k. The 

selection of an appropriate value for k is an open issue. A 

value for k should be large enough to fit the real structure 

of text, but small enough so that we do not also fit the 

sampling error or unimportant details. 

 
 

4.2 IR-Based Traceability Recovery 

In a typical text retrieval problem, a software engineer 

writes a textual query and retrieves documents that are 

similar to that query. In IR-based traceability recovery a 

set of source artifacts (used as the query) are compared 

with set of target artifacts (even overlapping). Hence, the 

number of queries is equal to the number of source artifacts. 

To compute similarities between vectors, we use the new 

k-dimensional space as we did the original representation. 

Similarity between vectors can be computed by different 

measures (e.g., Euclidean distance) [41]. In traceability 

recovery, the widely used measure is cosine similarity [36] 

between each pair of source and target software artifacts. 

The larger the cosine similarity value, the more similar the 

source artifact to the target one is. 

Source artifacts are normalized in the same way as target 

ones (i.e., the corpus). Different set of techniques could be 

used (e.g., stop word removal and/or stemming). In our 

case, normalization is performed by removing non-textual 

tokens, splitting terms composed of two or more words, 

and eliminating all the terms from a stop word list and 

with a length less than three characters. Finally, a Porter 

stemmer [41] is applied on lexemes to reduce them to their 

root form. 

All possible pairs (candidate traceability links) are re- 

ported in a ranked list. Irrelevant pairs of artifacts can 

be removed using a threshold that selects only a subset 

of top links, i.e., retrieved links. Well known strategies 

for threshold selection are [36]: Constant Threshold, a 

constant threshold is chosen; Scale Threshold, a threshold 

is computed as percentage of best similarity value between 

two vectors; Variable Threshold, all links among those 

candidate are retrieved links whether their similarity values 

are in a fixed interval. In this work, we use the Constant 

Threshold strategy to limit possibility of loosing links by 

considering a large number of link candidates. IR-based 

traceability recovery approaches retrieve also links between 

source code and target artifacts that do not coincide with 

correct ones: some are correct and others not. This is why 

these approaches are semi-automatic and require human 

intervention to remove erroneously recovered traceability 

links. To reduce possible biases in test case prioritization 

results due to human factors/decisions, we do not per- 

form any further analysis to remove erroneously recovered 

traceability links. It is worth mentioning that a traceability 

recovery process could be executed (e.g., in background) 

every time a tester want or requirements and/or source 

code are modified in accordance to maintenance tasks. In 

our case, this choice reduces the impact of the overhead 

computational cost for the recovery of traceability links on 

the execution of our test case prioritization approach. 
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5 RELEVANT CODE AND REQUIREMENTS 

In the following, we present metrics and algorithms pro- 

posed to identify portions of application code and require- 

ments that are potentially critical and fault-prone. 

its weighted variant WRCov(t). In particular, RCov(t) is 

the measure of requirements coverage for test case t and 

measures application requirements exercised during the 

execution of t. On the other hand, WRCov(t) measures the 

coverage for a test case as follows: 

5.1 Metrics 

Code. Fault detection capability of a test suite cannot be 

 

WRCov(t) = 
r∈Requirements 

wr r ReqsCovered 
0 otherwise 

known before executing test cases. Therefore, we have to 

resort to potential fault detection capability of a test suite. It 

can be estimated considering the amount of code covered 

by test cases in a test suite at run-time [8]. A test case 

that covers a larger set of code statements has a higher 

potential fault detection capability (i.e., potentially more 

faults should be revealed) than one test case that covers a 

smaller set of statements. 

We define CCov(t) as the amount of code statements 

exercised during the execution of a given JUnit test case t. 

A variant of this code coverage measure is WCCov(t). For 

a given test case, it is defined as a weighted source code 

coverage measure in which the coverage of source code is 

computed as follows: 

Requirements is a set containing the requirements of appli- 

cation under test. ReqsCovered is the set of requirements 

covered by the execution of test case t, obtained by means 

of traceability links recovered by applying our approach. 

On the other hand, r is one of application requirements and 

wr (0 wr 1) is weight associated to this requirement. 

Requirements weight wr can be defined in several ways ac- 

cording to fault-proneness of application requirements. The 

larger wr, the greater the fault-proneness of requirement is. 

Our metric-based requirements prioritization technique au- 

tomatically identifies fault-prone application requirements, 

thus to be highly weighted when computing the coverage. 

Given a test suite S and a possible ordering OrdS for test 

cases of this suite, we define: 
 

WCCov(t) = 
s∈Statements 

ws s CodeCovered 
0 otherwise 

 
cumRCov(ti) = 

j

[

=1 

 
RCov(tj) 

where Statements is the set of source code statements. 

CodeCovered is the set of statements covered by the 

execution of the test case t, while s is a code statement 

of an application and ws (0     ws      1) is a predefined 

weight associated to each code statement. The higher 

the ws value, the greater the relevance a tester gives to 

statements is. In our previous work [4], we left the tester to 

manually specify such a weight for different parts (e.g., Java 

classes and packages) of code. In fact, this weight ws is 

expected to be useful to customize the measurement of code 

coverage according to testing needs. For example, a class 

implementing a critical service for an application needs to 

be tested more than other classes. In our approach, we 

exploit a metric-based approach to automatically identify 

such a weight for each Java class of the application under 

test by considering code characteristics. Code metrics allow 

ordering application classes according to their estimated 

fault-proneness when computing artifact coverage. 

Given a test suite S and an ordering OrdS for test cases 

in this suite: 

i 

cumCCov(ti) = CCov(tj) 
j=1 

where ti is a test case in the suite. The cumulative code 

coverage for ti is computed by summing single code 

coverage (i.e., the code covered only by the test case) of 

all those test cases from t0 to ti−1. 

Requirements. The capability of a test case in exercising 

users’ and/or application requirements depends on: (i) the 

amount of requirements covered by this test case and 

(ii) the relevance of covered requirements. Similarly to 

code coverage measure, we defined and used RCov(t) and 

where ti is a test case of the suite. Cumulative requirements 

coverage for test case ti is computed by summing single 

requirements coverage (i.e., the requirements covered only 

by the test case) of all those test cases from t0 to ti−1. 

Execution cost. The execution cost of a test case can be 

approximated by the time required to its execution. If the 

implementation of test cases is available, their execution 

can be profiled to collect information about running time. 

We defined Cost(t) as the time required to execute test case 

t. 

Given a test suite S and an ordering OrdS for test cases 

of this suite, we defined cumCost(ti), where ti is one of the 

test case of the suite. It represents the cumulative execution 

of test case ti and it is computed as the sum of execution 

costs of test cases preceding test case ti OrdS. 

Cost(suite) is the overall cost of test cases and is com- 

puted as the sum of execution costs of all the test cases. 

We then define: 

i 

InverseCost(ti) = Cost(suite) − Cost(tj) 
j=1 

 
5.2 Automatic Weighting 

Our metric-based approach automatically weights both 

code ws and requirements wr of the application under 

test. In particular, we apply code metrics to measure a 

Maintainability Index for each Java class (MIclass). This 

index estimates the fault-proneness of each class. We use 

such an estimation for defining an order of the application 

classes. To prioritize all the requirements according to how 

they are implemented, we also compute a Maintainability 

Index for each of these requirement (MIreq). The idea 
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TABLE 1 

Metrics used for the automatic weighting 

 
Metric Ref. Property Definition 

Class-level Metrics 

(CBO) Coupling Between Objects 

(RFC) Response For a Class 

 
(LCOM ) Lack Of Cohesion on Methods 

(LOCs) Lines of Code 

(NOM )  Number  of  methods 

(DIT ) Depth of Inheritance Tree 

(NOC) Number of Children 

(MCC) McCabe Cyclomatic Complexity 
(WMC) Weighted Methods per Class 

[42] 

[42] 

 
[42] 

- 

- 

[42] 

[42] 

[42] 

[42] 

Coupling 

Coupling 

 
Cohesion 

Size 

Size 

Inheritance 

Complexity 

Complexity 

Complexity 

It is the number of classes to which a class is coupled 
It is the set of methods that can potentially be executed in response to a message 

received by an object of the class 

It describes the lack of cohesion among methods of a class 

It counts the lines of code of a class 

It counts the number of methods of a class 

It is the length of the class from the root of the inheritance tree 

It is the number of immediate subclasses of the class in the class hierarchy 

It is (median of) the number of flows thought the code of the method of a class 

It is the sum of the MCC for all methods in a class 

Requirements-level Metrics 

(NC) Number of Classes 

(CDC) Requirements diffusion over components 

(CDC+) CDC with similarity 

(ShR) Shared among Requirements 

(ShR+) ShR with similarity 

(IN ) Contained Requirements 

[43] 

[43] 

 
- 

[44] 

- 

 
[44] 

Size 

Scattering 

Scattering 

Tangling 

Tangling 

Inheritance 

It is the number of classes implementing a requirements 
It is the number of classes that contribute to the implementation of the target 

requirements, among those of the application 

It is a variant of CDC in which the contribution of each class is weighted according 

to the similarity of each class with the requirements definition 

It expresses the degree of classes that implement a requirements and that are shared 

with, at least, another requirements of the application 

It is a variant of ShR in which the contribution of each class is weighted according 

to the similarity of each class with the definition of the requirements under analysis 

It is the number of requirements whose implementation is entirely contained in the 

target requirements 

 

 

that guides both code and requirements prioritization is 

to realize a most critical first strategy. That is, we aim at 

increasing the possibility of testing the most critical classes 

and requirements before the other classes and requirements. 

Our automatic weighting approach is composed of the 

following steps: 

1) Recovering traceability links. Links among soft- 

ware artifacts (i.e., source code and requirements) are 

recovered by applying LSI; 

2) Computing metrics. For each class, we measure a 

set of metrics such as: size, complexity, coupling, and 

cohesion. For each requirement, a set of metrics is 

also computed to measure properties characterizing 

requirements: size, complexity, coupling, cohesion, 

scattering, and tangling degree. 

3) Estimating maintainability indexes. The computed 

metrics are used in a software quality model to com- 

pute the maintainability index for each class and each 

requirement based on their actual implementation in 

the source code. Classes and requirements are ordered 

by ranking according to their maintainability index. 

 

5.2.1 Computing metrics 

In Table 1, we summarize the used metrics. This table 

shows the following information: the name of each metric, 

the reference to the paper that originally defined it, the 

measured software property, and an intuitive definition of 

that metric. A formal and precise definition of such metrics 

is beyond the scope of our paper. 

We adopt the Class-level Metrics (Table 1 top) to com- 

pute MIclass. On the other hand, to compute MIreq, 

we adopt two distinctive sets of metrics working at the 

following two levels of granularity: 

1) traditional object-oriented size metrics working at 

class-level (Table 1 top), i.e., for each class of the 

target application we measure each metric; 

2) concern-oriented metrics3 working at requirements- 

level (Table 1 bottom), i.e., for each requirement 

we measure such metrics inspired to the concern 

ones [45]. 

The rationale behind the use of these two types of metrics 

is that class-level metrics measure the classes composing 

each requirement in isolation, while requirements-level 

metrics let us relate the requirements implemented with the 

one of the other requirements of the application. 

 

5.2.2 Estimating maintainability indexes 

The maintainability index is obtained by means of the 

following three steps: 

Outliers identification. After computing the code and 

requirements-level metrics, we identify outliers [47]. For 

a given metric, outliers are elements (i.e., classes and 

requirements) whose values for such a metric exceed a 

given threshold that is obtained on the base of the values 

the other elements have for that metric. In our case, the 

outliers are those elements having metric values within 

the highest/lowest 15% of the value range defined by all 

elements of the application [47]. For instance, if the CBO 

value ranges between 0 and 56. Given two classes having 

CBO(c1) = 52 and CBO(c2) = 35, then c1 is an outliers 

for CBO (i.e., the value of c1 is in the range 85-100% of 

CBO), while c2 is not an outliers. 

Software Quality model. In Table 2, we present the 

software quality models (at class- and requirements-level) 

used to compute the maintainability index MI for each 

class c and requirements r, starting from the two sets of 

3. Their common goal regards the association of concern property 
quantification with the impact on modularity flaws [45]. A concern is any 
consideration that might impact the implementation of a program, whilst 
concern measures lead to a shift in the measurement process instead of 
quantifying properties of a particular module. These measures quantify 
properties of one or multiple concerns with respect to the underlying 
modular structure [46]. 
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Σ 

Σ

 

TABLE 2 

Software Quality Model 
 
 

Maintainability: Software Quality Models 

Class-level Model 

CBO 

2 

RFC 

2 

LCOM 

2 

LOCs 

1 

NOM 

1 

DIT 

2 

NOC 

1 

MCC 

1 

WMC 

1 

Requirements-level Model 

NC 
2 

CDC 
2 

CDC+ 
2 

ShR 
1 

ShR+ 
1 

IN 
1 

 

 

 
metrics in Table 1. MI(c) represents an estimation of the 

maintainability degree of each application code class c by 

considering its structural properties [47]. MI(r) represents 

an estimation of the maintainability degree of the software 

code implementing the requirements r by considering its 

structural properties. The used models are inspired by those 

by Lincke et al. [47]. In these models, the metrics are 

weighted according to the software property they measure. 

As for class-level and consistently with Lincke, we chose: 

2 for coupling, cohesion, and inheritance metrics, while 1 

for the other metrics. As for requirements-level, we chose: 

2 for size and scattering, while 1 for the other metrics. 

By knowing the outliers and using a software quality 

model such as the one in Table 2, we can compute a 

maintainability index for each application element by ag- 

gregating the metrics in Table 1 according to their weights 

in the used models as follows: 

MI(element) = m∈Metrics
(Wm ∗ Om)

 
(Wm) 

Metrics is the set of metrics, Wm is the weight of the 

metrics m in the model and Om is the number of outliers 

elements for the metrics in the considered model. The 

MI(element) value ranges in between 0 and 1. The value 

0 is the best possible index (i.e., no outliers elements), while 

1 is the worst (i.e., all elements are outliers). For instance, 

if a class c1 is an outliers only for CBO, LOCs, and DIT, 

then, referring to Table 2, MI(c1) = 5/13 = 0.385, so, c1 

has a maintainability index of 0.385, i.e., 38.5%. 

Maintainability index computation. To compute the 

maintainability index MIclass(c), we use the class-level 

quality model (Table 2 top). Then, we compute a maintain- 

ability index MIreq(r) for each requirement r of the target 

application. To this aim, two additional maintainability 

indexes are computed: MIC(r) and MIR(r). MIC(r) is 

computed by averaging the maintainability index MIclass 
of the classes that implement r (on the base of trace- 

ability links), while MIR(r) is  computed  by  applying 

the requirements-level quality model for r (i.e., using 

the requirements-level metrics in Table 1). By averaging 

MIC(r) and MIR(r) for each requirement r, we estimate 

the maintainability for r by considering the properties, at 

the same time, of the code implementing r in isolation 

and the implementation of r with respect to the other 

requirements [48]. 

Application source code classes and requirements are 

ordered by ranking the classes and the requirements ac- 

cording to their estimated maintainability index (MIclass 

TABLE 3 

Example: statements, classes, requirements, and test case 

definition 
 

 
St= 

S={St, C, R} 
(s1, s2, s3, s4, s5⟩ 

C=(c1, c2, c3, c4⟩ 
R=(r1, r2, r3⟩ 

 

Statements Class Reqs 

s1 
s2 

s3 

s4 

s5 

c1 
c2 

c2 

c3 

c4 

r2 
r3 

r1 

r3 

r3 

 Test Case Cost (seconds) Statements Reqs.  
t1 
t2 

t3 

20 
100 

50 

s1, s3 
s3, s4, s5 

s1, s2, s3 

r1, r2 
r1, r3 

r1, r2, r3 

MIclass MIreq 

MIclass(c1)=0.02 MIclass(c2)=0.3 
MIclass(c3)=0.2 MIclass(c4)=0.8 

MIreq (r1)=0.5 MIreq (r2)=0.2 

MIreq (r3)=0.75 

 
and MIreq, respectively). 

 
5.3 Identifying Cumulative Test Orderings 

For each test case ti of a given test ordering OrdS, the 

measures cumCCov(ti), cumRCov(ti) and InverseCost(ti) 

are computed considering the position of ti in OrdS. Then, 

we computed the area of the curves obtained by plotting 

the values of the metric (on X axes) with respect to 

the test cases in OrdS (Y axes) in a Cartesian plan. To 

get a numerical approximation of that area, we used the 

Trapezoidal rule [49]. It computes the area of a curve as 

the area of a linear function that approximates that curve. 

For OrdS and each cumulative measure, the area (Area 

Under the Curve, AUC, from here on) estimates  the 

code coverage AUCcode(OrdS), the requirements coverage 

AUCreq(OrdS), and the execution cost AUCcost(OrdS), 

respectively. The area indicates how fast the test ordering 

OrdS converges. The larger AUC, the faster this test case 

ordering converges. 

 
5.4 Example 

As an example, let us consider a system that implements 

three requirements (r1-r3) and that is composed of four 

classes (c1-c4) and five statements (s1-s5). Table 3 

(top) details relationship among statements, classes and 

requirements. For instance, statement s1 is part of class 

c1 and it contributes to realize r2. Table 3 (middle) shows 

a test suite composed of three test cases (t1, t2, t3) and 

it shows cost and coverage information for each test case 

as well. For instance, test case t1 costs 20 (seconds) 

and it covers s1 and s2, and it tests requirements r1 

and r2. We assume that coverage information contained 

in Table 3 has been achieved by applying our IR-based 

traceability recovery approach. Table 3 (bottom) shows 

possible values of maintainability index MI  computed 

for each class and each requirement of system under test 

and used in test suite prioritization to weight metrics for 

measuring code and requirements coverage of each test 

case. We assume that such values have been automatically 

computed. Considering two possible test orderings for test 
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⟨ ⟩ 
⟨ ⟩ 

|{   }| |{   }| 

cases shown in Table 3, namely Ord1S= t1, t2, t3 and 

Ord2S= t3, t1, t2 . Values of AUC for the two test case 

orderings are shown in Table 4. This table also reports 

some details for the computation of each measure adopted 

to compute AUC values. In particular, the table shows 

measures computed for two test orderings by non-weighting 

(column wx = 1) measures and by automatically weighting 

(column wx = MI) such measures with maintainability 

index MI. For example, we can see in Table 4 that 

cumCCov(t1) corresponds to 2 in non-weighted measures 

(where each weight wx  = 1) for test ordering Ord1S. 

On the other hand, cumCCov(t1) corresponds to 0.32 

(MIclass(c1) s1 +MIclass(c2) s3 =0.02*1+0.3*1) 

in   MI-based   weighted   measures   (where   each   weight 

TABLE 4 

Example of AUC measures and comparison between 

different test cases orderings (Ord1S and Ord2S) 

wx  = MI class (x)).  By  comparing  Ord1S and Ord2S 
according to the three AUC measures computed using 

both non-weighted and weighted approaches, we can 

note that Ord1S and Ord2S have the same AUCcode, 

but they are different in terms of AUCreq and AUCcost, 

namely Ord2S has a higher AUC in both AUCreq and 

AUCcost. In addition, we can note that Ord1S has a higher 

AUCcode than Ord2S while this former still preserve a 

higher value for both AUCreq and AUCcost. Hence, we 

can deduce that: (i) if we consider non-weighted approach, 

Ord2S outperforms Ord1S having greater or, at least, not 

inferior values in all three measures and (ii) if we consider 

weighted approach, no one test ordering outperforms other 

one, in all three considered dimensions. This example 

suggests that our automatic weighting lets us to work 

actually at a fine-grained granularity and gives more 

relevance to key portions of source code and requirements. 

 
6 MULTI-OBJECTIVE   PRIORITIZATION 

NSGA-II uses a set of genetic operators (i.e., crossover, 

mutation, and selection) to iteratively evolve an initial 

population of candidate solutions. In our case, candidate 

solutions are test cases orderings. Evolution is guided by an 

objective function (i.e., the fitness function) that evaluates 

each candidate solution along considered dimensions. In 

each iteration, the Pareto front of best alternative solutions 

is generated from evolved population. The front contains 

the set of non-dominated solutions, i.e., those solutions that 

are not inferior (dominated) to any other solution in all con- 

sidered dimensions. Population evolution is iterated until a 

(predefined) maximum number of iterations is reached. 

In our case, a Pareto front represents the optimal trade-off 

between the three dimensions determined by NSGA-II. The 

tester can then inspect a Pareto front to find the best com- 

promise between having a test case ordering that balances 

code coverage, requirements coverage, and execution cost 

or alternatively having a test case ordering that maximizes 

one/two dimension/s penalizing the remaining one/s. 

Our proposed process can be summarized as follows: 

1) Solution Encoding. A solution is a possible ordering 

of the test cases under analysis. OrdS represents an 

execution order for the test cases of suite S. The 

solution space for the test case prioritization problem 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

is the set of permutations of test case orderings. A test 

case ordering is represented as an ordered sequence of 

integers, where each integer represents the identifier 

of a test case. 

2) Initialization. The starting population is initialized 

randomly selecting a sub-set of possible test case 

orderings among all possible permutations of test 

cases (i.e., the solution space). 

3) Genetic Operators. For the evolution of 

permutation-based   encoding   for   the   solutions, 

we exploited standard operators as described in [50]. 

As mutation operator, we used SWAP-Mutation in 

which two randomly chosen permutation elements 

of the solution are swapped. The adopted crossover 

operator is PMX-Crossover in which a pair of 

solutions is recombined   by   randomly   choosing 

an intermediate point and swapping permutation 

elements at that point among both solutions. Finally, 

we used binary tournament as selection operator. 

Two solutions are randomly chosen and the fitter 

of the two is the one that survives in the next 

population. 

4) Fitness Functions. Since our goal is to maximize the 

three considered dimensions, each candidate solution 

in the population is evaluated by our objective func- 

tion based on: AUCcode(OrdS), AUCreq(OrdS), and 

AUCcost(OrdS). The larger these values, the faster 

Ord1S =⟨t1, t2, t3⟩ 
Measure Computation wx 

1 MIx 

cumCCov(t1) 

cumCCov(t2) 

cumCCov(t3) 

AUCcode 

wx|{s1}|+ wx|{s3}| 

cumCCov(t1)+wx|{s4}| + wx|{s5}| 

cumCCov(t2) +wx|{s2}| 

2 

4 

5 

8.5 

0.32 

1.32 

1.62 

2.45 

cumRCov(t1) 

cumRCov(t2) 

cumRCov(t3) 

wx|{r1}|+ wx|{r2}| 
cumRCov(t1) +wx|{r3}| 

cumRCov(t2) 

2 

3 

3 

0.7 

1.45 

1.45 

AUCreq  6.5 2.875 

Cost(suite) 170 

InvCost(t1) 150 

InvCost(t2) 50 

InvCost(t3) 0 

AUCcost 200 

Ord2S =⟨t3, t1, t2⟩ 
Measure Computation wx 

1 MIx 

cumCCov(t3) 

cumCCov(t1) 

wx|{s1}|+wx|{s2}|+wx|{s3}| 
cumCCov(t3) 

3 

3 

0.62 

0.62 

cumCCov(t2) 

AUCcode 

cumCCov(t1)+wx|{s4}| + wx|{s5}| 5 

8.5 

1.62 

2.05 

cumRCov(t3) 

cumRCov(t1) 

wx|{r1}|+wx|{r2}|+wx|{r3}| 
cumRCov(t3) 

3 

3 

1.45 

1.45 

cumRCov(t2) cumRCov(t1) 3 1.45 

AUCreq  7.5 3.625 

Cost(suite) 170 

InvCost(t3) 120 

InvCost(t1) 100 

InvCost(t2) 0 

AUCcost 220 
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∈ 

the convergence of a test case ordering is. 

 
7 EXPERIMENTAL ASSESSMENT 

To evaluate of our approach, we have developed a proto- 

type of a supporting system. It integrates and extends the 

following two tool prototypes: (i) MOTCP [51] that im- 

plements our previous proposed prioritization technique [4] 

and represents the base for our new approach and (ii) SWT- 

Metrics [48], which implements our automatic weighting 

approach to prioritize software artifacts. MOTCP+ is the 

name of the tool implementing our new prioritize technique. 

It is composed of a number of software components hav- 

ing the purpose of preparing data related to metrics and 

traceability links and executing the prioritization process 

as shown in Figure 1. In particular, there is a component 

in charge of recovering traceability links among software 

artifacts. It integrates and extends Traceclipse [30]. We im- 

plemented a component to compute class-level metrics and 

requirements-level metrics and a component to compute 

the maintainability index of each code class and require- 

ment and to determine their orderings. Finally, our three- 

objective test case prioritization algorithm was implemented 

in a component that integrated the implementation of 

NSGA-II available in JMetal4 meta-heuristics library [52]. 

According to the Goal Question Metrics (GQM) template 

by Basili and Rombach [53], the goal of our experiment can 

be summarized as follows: 

1) Analyze the use of our proposal for the purpose 

of evaluating its support in the prioritization of test 

cases with respect to effectiveness, sensitivity, and 

robustness from the point of view of the researcher 

in the context  of Java applications and from the 

• Sensitivity. From a tester’s perspective, this criterion 

provides an indication on the capability of test case 

orderings in revealing faults with a high severity and 

relevance with respect to application requirements. 

Only in the case of our proposal, we also analyzed 

its Robustness with respect to the goodness of recov- 

ered traceability links. Robustness gives us an idea about 

the capability of our test case prioritization approach of 

adequately working in presence of incomplete or spuri- 

ous/wrong traceability links. 

To have a deeper understanding of results, we also 

perform: (i) an analysis of the generated Pareto Fronts 

and of impact of each metric used by our tool to find 

optimal solutions and (ii) an analysis of possible co-factors 

characterizing experimental objects and artifacts as well 

as relationships among them. Among analyzed co-factors, 

we consider: the size of applications and their test suites, 

the number of requirements, the relationships between test 

cases and requirements, the capability of test suites in re- 

vealing faults, the test case redundancy, and the distribution 

of faults in source code and requirements. 

 

7.1 Evaluation Measures 

The Average Percentage of Fault Detected (APFD) is 

the measure conventionally adopted to evaluate test case 

orderings [9]. Given a test suite S containing n test cases 

and let F be the set of m faults revealed by S. For an 

ordering S’ of S, let SFi be the position of first test case 

s S’ that reveals the i-th fault. The APFD value for S’ is 

computed as follows: 

SF1 + ... + SFm 1  
APFD = 1 − + 

point of view of the practitioner assessing whether 

our proposal is a viable solution in the context of 

his/her own company. 

The GQM formalism ensures that important aspects are 

defined before planning and execution of our experiment 

took place [54]. 

According to our experiment goal, we compare our 

proposal with traditional test cases prioritization tech- 

niques [8], [9], [10], namely random prioritization (Rand), 

code coverage (CodeCov), and additional code coverage 

(AddCodeCov) prioritization. Similarly to Yoo and Har- 

man [11], we also applied NSGA-II on the dimensions: 

code coverage and execution cost of test cases. This rep- 

resents another baseline for comparison (NSGAIIdim2). An 

additional baseline for comparison is our previous multi- 

objective technique [4]. It used code coverage, requirements 

coverage, and execution time of test cases without applying 

the automatic weighting scheme we present in this paper. 

The comparison has been performed with respect to the 

following criteria: 

• Effectiveness. It concerns the capability of test case 

orderings in revealing faults. 

 
4. http://jmetal.sourceforge.net/ 

nm 2n 

We run an approach (e.g., AddCodeCov or MOTCP+) on a 

given application, thus obtaining an ordering S’. A number 

of versions of that application are obtained seeding one 

fault per time in its source code [9]. That is, each version 

contains only one injected fault. To assess the capability 

of S’ in detecting faults the APFD value is computed with 

respect to the obtained versions of the original application. 

A high APFD value signifies a fast fault-detection rate of 

the ordering S’. 

The APFD-based test case prioritization evaluation as- 

sumes that test costs and fault severity and relevance are all 

uniform [55]. However, test costs and fault severity can vary 

widely in a real-life context. Hence, to get a quantitative 

measure of Effectiveness and Sensitivity, we consider 

three variants of that measure: APFDall computed checking 

all injected faults, APFDftype1 computed checking the 

subset of severe faults; and APFDftype2 computed checking 

the subset of faults related to relevant requirements. In 

particular, Effectiveness is estimated by APFDall, while 

APFDftype1 and APFDftype2 estimate Sensitivity. 

We statistically analyze results   achieved   by 

MOTCP+ and baseline techniques. The tested null 

hypothesis is: 

http://jmetal.sourceforge.net/
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TABLE 5 

Objects under study 
 

Application Size (LOCs) Test Cases Req.s Faults Web site 

LaTazza 2k 33 10 12 - 

AveCalc 2k 47 10 15 - 

CommonsProxy 5k 179 10 10 http://commons.apache.org/proxy 

DBUtils 5k 225 12 14 http://commons.apache.org/dbutils 

iTrust 15k 919 15 21 http://agile.csc.ncsu.edu/iTrust 

CommonsCodec 17k 608 19 20 http://commons.apache.org/codec 

JTidy 20k 289 25 15 http://jtidy.sourceforge.net 

Woden 22k 263 24 19 http://ws.apache.org/woden 

Log4J 25k 1029 24 20 http://logging.apache.org/log4j 

Betwixt 25k 325 18 20 http://commons.apache.org/dormant/commons-betwixt 

JXPath 25k 386 20 20 http://commons.apache.org/jxpath 

CommonsIO 25k 859 18 20 http://commons.apache.org/ 

CommonsBcel 30k 75 20 20 http://commons.apache.org/bcel 

CommonsBeanUtils 32k 1556 26 22 http://commons.apache.org/beanutils 

XMLGraphics 34k 196 24 15 http://xmlgraphics.apache.org 

XMLSecurity 40k 92 23 15 http://santuario.apache.org 

CommonsCollections 50k 798 17 20 http://commons.apache.org/collections 

Pmd 55k 698 20 20 http://pmd.sourceforge.net 

CommonsLang 60k 2307 16 20 http://commons.apache.org/lang 

Jabref 70k 213 31 20 http://jabref.sourceforge.net 

Xerces 138k 376 20 20 http://xerces.apache.org 

 

 

NHfaults - there is no difference in the APFD val- 

ues obtained on the suites generated by applying 

the different approaches. 

To test this null hypothesis, we conducted pairwise com- 

parisons among results achieved for test suites generated 

by the techniques by using the non-parametric one-tailed 

Mann-Whitney test since we expect that our novel approach 

will obtain better results than other techniques. We use the 

Benjamini-Hochberg [56] correction for the compensation 

of repeated statistical tests. 

To analyze Pareto Front’s metrics, we adopt the Spear- 

man’s Rank correlation coefficient (ρ) to estimate collinear- 

ity, if any, of the three metrics used to build Pareto fronts. 

The Spearman’s Rank correlation coefficient measures cor- 

relation between a pair of variables. The returned value 

ranges in between -1 and +1, where +1 indicates perfect 

correlation and -1 indicates a perfect inverse correlation. 

We also apply Principal Components Analysis (PCA) to 

check whether metrics used to built each front are correlated 

each other, thus discovering those metrics that are dominant 

and those redundant. PCA is a non-parametric statistical 

technique that estimates interrelation degree of variables 

for identifying underlying structures, if any, and combining 

variables into smaller sets of linearly uncorrelated variables, 

called principal components (PCs). By applying PCA, 

we aim at checking the presence of interrelations among 

metrics on test suites composing Pareto fronts. The defined 

null hypothesis is: 

NHpareto - no correlations exist among our 

Pareto’s metrics. 

To evaluate the impact of possible co-factors on achieved 

results, we mainly applied a two-way permutation test [57]. 

Our null hypothesis is: 

NHco−factors - there is no significant impact of 

the considered co-factor/s on APFD values. 

In all performed statistical tests, we decided (as custom- 

ary) to accept a probability of 5% of committing a Type- 1-

Error [54], namely a null hypothesis is rejected if the p-

value returned by a statistical test is less than 0.05. 

 
7.2 Experimental Objects 

We considered 21 Java applications form different appli- 

cation domains as experimental objects. These applications 

range from small to large in terms of size and implemented 

functionality. Table 5 summarizes the size of each applica- 

tion in terms of lines of code, as well as the number of test 

cases, requirements, and faults, and shows links to applica- 

tion websites. The considered 21 Java applications were 

chosen primarily because of the availability of software 

artifacts we needed to apply our technique (e.g., textual 

description of the application requirements). 

 
7.3 Procedure 

For each application, we applied the following experimental 

procedure: 

1) Collecting available artifacts. For each applica- 

tion, we collected requirements specifications, source 

code, and JUnit test cases. 

2) Recovering the traceability links. We used the fol- 

lowing set-up: k=300; constant threshold=0.1. 

3) Applying MOTCP+, MOTCP, Rand, CodCov, Ad- 

dCodeCov, and NSGAIIdim2. We ran MOTCP, 

MOTCP+, and NSGAIIdim2 with the following set-

up: population size=2*’test suite size’; max it- 

erations=1000; crossover probability=0.9; mutation 

probability=1/’test suite size’. Since Rand has a non- 

deterministic behavior, we ran it several times (i.e., 

30 times) and then we evaluated all generated solu- 

tions. We report descriptive statistics on the values of 

obtained solutions (min, median, mean, and max). 

On the other hand, since MOTCP, MOTCP+, and 

http://commons.apache.org/proxy
http://commons.apache.org/dbutils
http://agile.csc.ncsu.edu/iTrust
http://commons.apache.org/codec
http://jtidy.sourceforge.net/
http://ws.apache.org/woden
http://logging.apache.org/log4j
http://commons.apache.org/dormant/commons-betwixt
http://commons.apache.org/jxpath
http://commons.apache.org/
http://commons.apache.org/bcel
http://commons.apache.org/beanutils
http://xmlgraphics.apache.org/
http://santuario.apache.org/
http://commons.apache.org/collections
http://pmd.sourceforge.net/
http://commons.apache.org/lang
http://jabref.sourceforge.net/
http://xerces.apache.org/
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NSGAIIdim2 are expected to generate sets of equiv- 

alent good solutions per execution (Pareto front), 

we evaluated all solutions in an obtained front by 

considering the following descriptive statistics on 

used measures: min, median, mean, and max. This 

allowed us to better analyze the behavior of studied 

techniques. It easily follows that the meaning of min, 

median, mean, and max is different between Rand 

and MOTCP, MOTCP+, and NSGAIIdim2. 

4) Injecting m faults of different severity (i.e., high 

and low) in the source code of a given application, 

thus producing m buggy versions. For example, m 
is equal to 12 for LaTazza (see Table 5), meaning 

that we obtained 12 different faulty versions for 

that application. The injection of faults is critical 

because hand-seeded faults may not be representative 

of real faults [58]. Therefore, we applied a repeatable 

process to inject faults that are similar as much as 

possible to actual ones [59]. This process is based on 

the following steps that are executed sequentially: 

 

a) Analyzing online bug tracker of a given appli- 

cation to find documented failures. 

b) Faults generated these documented failures are 

selected according to the following criteria: 

(i) status of the fault is closed/solved; (ii) devi- 

ation between observed and specified behaviors 

is clearly described from a functional point of 

view; and (iii) it is possible to link the fault to 

the code where this fault was present. To get this 

link, we needed the following information: ap- 

plication version where a failure was observed; 

code (i.e., class name at least) containing that 

fault; version of application where that fault was 

fixed and how it was fixed. 

c) Analyzing code patches posted to fix a fault 

(if any) and code affected by this fault. The 

goal here is to recover information on how to 

reproduce the original failure. 

d) Replicating each failure by injecting a fault in 

the source code of the original application. As 

mentioned before, one fault per time is injected 

in that code, so obtaining one faulty version for 

each injected fault. We check the capability of 

a test suite in revealing the failure associated to 

each injected fault. If at least one test case fails 

(i.e., the failure is detected by our test suite), 

we add the injected fault to the set of faults of 

our experimental investigation. 

e) Examining each injected fault to understand if 

it can be considered severe and/or related to 

relevant requirements. To classify a fault as 

severe, we primary consider its severity and 

priority fields in bug report. For example, a fault 

is severe if both its priority and its severity are 

high. To classify faults with respect to relevant 

requirements, we considered which application 

functionality is affected by fault and relevance 

of that functionality from the user’s perspective. 

For example, a fault is considered related to 

a relevant requirement if application documen- 

tation lists this requirement as one of most 

important ones. 

To reduce as much as possible threats related to 

representativeness of hand-seeded faults, the injection 

process was performed by an author involved neither 

in the definition of our prioritization technique nor 

in the execution of experiment. In the Appendix A , 

we show an example of application of the described 

injection process. 

5) Executing test case orderings. Test case orderings 

obtained by the techniques is executed for testing 

each version of the application. 

6) Computing APFDall,  APFDftype1  and  APFDftype2 
for each studied test prioritization technique, appli- 

cation, and ordering. 

7) Executing steps from 2 to 7. In the second iteration, 

we randomly changed and/or removed 10% of the 

recovered traceability links (step 2) to estimate the 

Robustness of the approach. 

8) Analyzing collected data. Our analysis procedure is 

applied on these data. 

7.3.1 Threats to validity 

Used experimental objects (i.e., applications) and artifacts 

(i.e., source code, test cases, and requirements) might 

threaten the validity of our results. To deal with these 

threats, we used a large set of applications having different 

characteristics (e.g., from small to large) and application 

domains (e.g., bibliography reference manager). As far 

as application artifacts are concerned, we exploited as 

much as possible those provided by original developers. 

If not available, we reconstructed them by looking at the 

documentation provided by the developers in user manuals 

and APIs. 

Another threat to validity is the set of injected faults, 

as well as their distribution in application code. We are 

conscious that different sets of faults could lead to different 

results. With the aim of limiting such a threat, we used 

an experimental process [59] that exploits actual faults de- 

scribed into application bug tracker systems. Therefore, we 

analyzed the bug tracker of each application and selected 

not-trivial and critical faults that we were able to reproduce. 

Since it is rare to have an application with many faults, 

we produced a version for each fault injected. As for test 

case execution cost, we only considered the time needed to 

execute test cases. This choice represents a limitation for 

the applicability of our approach [60], [61]. However, our 

approach can be easily extended to take also into account 

additional related costs for regression testing (e.g., the time 

to inspect the results). This is the subject of future work. 

The set up of the experiment represents another threat 

to the validity of results. In particular, the number of runs 

for Rand and parameters chosen for the recovery of links 

among software artifacts and the parameters chosen in the 

multi-objective algorithm could potentially affect results. 
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TABLE 6 

APFD of AveCalc, LaTazza, DBUtils, CommonsProxy and iTrust 
 
 

APFD 
 AveCalc LaTazza DBUtils CommonsProxy iTrust 
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 

Traceability Links 
Randmin 0.59 0.74 0.62 0.66 0.54 0.58 0.41 0.41 0.27 0.37 0.34 0.17 0.52 0.49 0.47 
Randmean 0.73 0.82 0.84 0.75 0.74 0.83 0.52 0.57 0.47 0.53 0.55 0.5 0.63 0.65 0.63 
Randmedian 0.74 0.85 0.8 0.75 0.75 0.72 0.51 0.57 0.46 0.53 0.56 0.5 0.63 0.66 0.66 
Randmax 0.83 0.93 0.91 0.81 0.88 0.88 0.65 0.8 0.75 0.65 0.77 0.74 0.73 0.81 0.79 
CodeCov 0.77 0.78 0.81 0.6 0.72 0.56 0.4 0.34 0.47 0.56 0.62 0.45 0.56 0.6 0.58 
AddCodeCov 0.79 0.8 0.92 0.6 0.72 0.56 0.55 0.71 0.4 0.59 0.65 0.47 0.7 0.71 0.69 
NSGAIIdim2 min 0.72 0.79 0.75 0.78 0.7 0.83 0.46 0.43 0.28 0.39 0.27 0.35 0.52 0.51 0.51 
NSGAIIdim2 mean 0.78 0.82 0.84 0.78 0.7 0.83 0.52 0.56 0.46 0.48 0.45 0.46 0.6 0.62 0.6 
NSGAIIdim2 median 0.79 0.83 0.86 0.78 0.7 0.83 0.52 0.53 0.52 0.47 0.41 0.47 0.61 0.64 0.61 
NSGAIIdim2 max 0.87 0.91 0.94 0.78 0.7 0.83 0.61 0.75 0.54 0.59 0.75 0.57 0.63 0.67 0.64 
MOTCPmin 0.72 0.75 0.76 0.75 0.65 0.72 0.46 0.62 0.25 0.42 0.35 0.38 0.49 0.4 0.49 
MOTCPmean 0.78 0.84 0.83 0.77 0.7 0.75 0.53 0.71 0.43 0.53 0.47 0.53 0.63 0.64 0.65 
MOTCPmedian 0.79 0.84 0.83 0.77 0.7 0.75 0.51 0.71 0.44 0.52 0.49 0.5 0.63 0.63 0.63 
MOTCPmax 0.86 0.92 0.94 0.79 0.75 0.79 0.65 0.9 0.52 0.65 0.77 0.8 0.72 0.73 0.7 
MOTCP+ min 0.62 0.69 0.69 0.77 0.77 0.76 0.45 0.42 0.31 0.31 0.27 0.21 0.52 0.6 0.52 
MOTCP+ mean 0.79 0.83 0.87 0.82 0.82 0.88 0.57 0.7 0.47 0.47 0.41 0.45 0.61 0.67 0.61 
MOTCP+ median 0.8 0.82 0.88 0.82 0.84 0.91 0.56 0.7 0.48 0.47 0.46 0.46 0.61 0.66 0.61 
MOTCP+ max 0.9 0.94 0.94 0.85 0.86 0.93 0.67 0.84 0.63 0.67 0.69 0.72 0.8 0.81 0.81 

Incomplete Traceability Links 
MOTCP+ min 0.69 0.72 0.82 0.71 0.75 0.76 0.44 0.44 0.35 0.3 0.25 0.19 0.53 0.53 0.52 
MOTCP+ mean 0.79 0.81 0.88 0.75 0.8 0.79 0.56 0.59 0.52 0.5 0.5 0.49 0.6 0.65 0.62 
MOTCP+ median 0.79 0.8 0.89 0.75 0.79 0.79 0.56 0.57 0.53 0.5 0.5 0.53 0.59 0.63 0.61 
MOTCP+ max 0.88 0.92 0.92 0.78 0.87 0.82 0.62 0.77 0.59 0.65 0.76 0.59 0.69 0.76 0.71 

 
TABLE 7 

APFD of JTidy, CommonsCodec, Woden, Log4J and Betwixt 
 
 

APFD 
 CommonsCodec JTidy Woden Log4J Betwixt 
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 

Traceability Links 
Randmin 0.36 0.31 0.35 0.43 0.19 0.19 0.44 0.38 0.25 0.55 0.4 0.51 0.46 0.5 0.29 
Randmean 0.57 0.57 0.6 0.57 0.51 0.54 0.56 0.55 0.53 0.63 0.61 0.67 0.58 0.63 0.57 
Randmedian 0.58 0.6 0.62 0.57 0.47 0.47 0.57 0.55 0.51 0.63 0.64 0.66 0.58 0.63 0.59 
Randmax 0.66 0.75 0.73 0.65 0.73 0.73 0.65 0.71 0.71 0.75 0.78 0.88 0.69 0.8 0.77 
CodeCov 0.58 0.46 0.4 0.46 0.27 0.27 0.5 0.53 0.57 0.48 0.58 0.7 0.52 0.66 0.5 
AddCodeCov 0.53 0.43 0.44 0.5 0.24 0.24 0.54 0.44 0.58 0.76 0.69 0.84 0.58 0.66 0.52 
NSGAIIdim2 min 0.49 0.45 0.45 0.63 0.6 0.55 0.39 0.27 0.18 0.61 0.52 0.53 0.48 0.49 0.43 
NSGAIIdim2 mean 0.59 0.6 0.58 0.71 0.68 0.62 0.42 0.39 0.34 0.7 0.67 0.65 0.56 0.69 0.54 
NSGAIIdim2 median 0.59 0.64 0.59 0.73 0.71 0.57 0.42 0.41 0.39 0.71 0.66 0.64 0.56 0.71 0.52 
NSGAIIdim2 max 0.66 0.71 0.69 0.8 0.75 0.81 0.44 0.46 0.4 0.78 0.78 0.83 0.68 0.82 0.77 
MOTCPmin 0.42 0.32 0.43 0.58 0.46 0.46 0.43 0.39 0.35 0.5 0.45 0.54 0.48 0.55 0.4 
MOTCPmean 0.56 0.55 0.57 0.64 0.56 0.71 0.49 0.48 0.48 0.65 0.59 0.72 0.6 0.7 0.58 
MOTCPmedian 0.56 0.55 0.56 0.61 0.59 0.59 0.5 0.47 0.48 0.65 0.59 0.71 0.61 0.71 0.59 
MOTCPmax 0.67 0.77 0.73 0.71 0.68 0.68 0.57 0.61 0.64 0.75 0.7 0.92 0.67 0.86 0.68 
MOTCP+ min 0.45 0.35 0.37 0.47 0.43 0.43 0.43 0.32 0.27 0.54 0.54 0.49 0.5 0.49 0.47 
MOTCP+ mean 0.54 0.5 0.54 0.62 0.58 0.58 0.54 0.5 0.53 0.67 0.66 0.72 0.61 0.67 0.67 
MOTCP+ median 0.54 0.48 0.51 0.62 0.59 0.59 0.53 0.48 0.54 0.66 0.67 0.71 0.61 0.66 0.61 
MOTCP+ max 0.69 0.78 0.79 0.77 0.85 0.85 0.68 0.76 0.74 0.76 0.82 0.87 0.74 0.86 0.83 

Incomplete Traceability Links 
MOTCP+ min 0.45 0.36 0.37 0.5 0.38 0.38 0.39 0.38 0.27 0.47 0.37 0.38 0.55 0.59 0.47 
MOTCP+ mean 0.59 0.58 0.6 0.66 0.58 0.62 0.54 0.52 0.47 0.62 0.59 0.66 0.61 0.73 0.6 
MOTCP+ median 0.6 0.6 0.61 0.65 0.68 0.61 0.55 0.51 0.49 0.61 0.58 0.65 0.61 0.72 0.59 
MOTCP+ max 0.71 0.77 0.81 0.81 0.79 0.77 0.63 0.71 0.7 0.8 0.84 0.86 0.69 0.87 0.71 

 

 

7.4 Results 

In the following subsections, we show obtained results by 

grouping them for each of considered criteria. 

 
7.4.1 Effectiveness 

Tables 6-10 (column APFDall of Traceability Links) report 

collected APFD values for the 21 applications object of 

our experiment, in presence of recovered traceability links 

(top) and considering all injected faults. These tables report 

results in terms of minimal, median, mean, and maximal 

APFD values achieved for each technique. In Table 11 

(columns all), we report the number of times (i.e., appli- 

cations) in which each technique outperformed others. To 

perform this comparison, we considered: (i) mean and me- 

dian values (columns on the left), thus limiting the impact 

of possible outliers, (ii) and maximum values (columns on 

the right). For example, Rand achieved the highest mean 

and median values for APFD in one case (i.e., Woden) 

considering all injected faults. MOTCP+ obtained the best 

results for 7 applications. In some cases, more than one 

technique obtained the best mean and median values for 

APFD, so justifying why the sum of values in each column 

(i.e., all, ftype1, and ftype2) is greater than 21. 
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÷ 

TABLE 8 

APFD of JXPath, CommonsIO and CommonsBcel, CommonsBeanUtils and XMLGraphics 
 
 

APFD 
 JXPath CommonsIO CommonsBcel CommonsBeanUtils XMLGraphics 
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 

Traceability Links 
Randmin 0.45 0.26 0.41 0.36 0.32 0.2 0.37 0.29 0.29 0.44 0.24 0.27 0.38 0.28 0.24 
Randmean 0.53 0.52 0.57 0.52 0.54 0.5 0.51 0.51 0.47 0.56 0.48 0.51 0.49 0.49 0.48 
Randmedian 0.53 0.52 0.57 0.52 0.55 0.47 0.51 0.53 0.46 0.56 0.5 0.53 0.5 0.48 0.48 
Randmax 0.63 0.67 0.77 0.65 0.81 0.85 0.63 0.71 0.8 0.63 0.7 0.74 0.61 0.76 0.68 
CodeCov 0.54 0.57 0.49 0.59 0.63 0.69 0.48 0.39 0.56 0.52 0.54 0.61 0.55 0.45 0.5 
AddCodeCov 0.55 0.63 0.47 0.52 0.54 0.42 0.49 0.59 0.45 0.75 0.9 0.67 0.49 0.42 0.53 
NSGAIIdim2 min 0.51 0.43 0.54 0.45 0.31 0.41 0.5 0.32 0.32 0.54 0.42 0.54 0.48 0.39 0.4 
NSGAIIdim2 mean 0.6 0.59 0.63 0.52 0.47 0.55 0.58 0.5 0.65 0.61 0.51 0.65 0.55 0.55 0.57 
NSGAIIdim2 median 0.6 0.62 0.63 0.5 0.45 0.52 0.58 0.53 0.65 0.61 0.51 0.69 0.53 0.54 0.55 
NSGAIIdim2 max 0.73 0.83 0.76 0.62 0.73 0.73 0.66 0.64 0.85 0.65 0.6 0.75 0.68 0.72 0.84 
MOTCPmin 0.44 0.33 0.36 0.46 0.42 0.34 0.39 0.39 0.41 0.5 0.28 0.33 0.4 0.37 0.25 
MOTCPmean 0.55 0.54 0.6 0.56 0.56 0.53 0.52 0.53 0.51 0.6 0.51 0.57 0.54 0.62 0.51 
MOTCPmedian 0.54 0.54 0.6 0.57 0.59 0.51 0.52 0.52 0.54 0.59 0.51 0.58 0.54 0.62 0.53 
MOTCPmax 0.7 0.76 0.79 0.6 0.66 0.74 0.65 0.65 0.67 0.7 0.78 0.71 0.7 0.83 0.84 
MOTCP+ min 0.41 0.46 0.39 0.41 0.44 0.33 0.37 0.33 0.22 0.49 0.35 0.36 0.45 0.37 0.3 
MOTCP+ mean 0.56 0.62 0.6 0.54 0.62 0.54 0.53 0.48 0.5 0.61 0.52 0.57 0.55 0.56 0.58 
MOTCP+ median 0.57 0.63 0.58 0.53 0.63 0.54 0.53 0.47 0.49 0.6 0.52 0.55 0.55 0.56 0.62 
MOTCP+ max 0.67 0.81 0.88 0.68 0.79 0.73 0.68 0.73 0.76 0.71 0.68 0.82 0.71 0.78 0.89 

Incomplete Traceability Links 
MOTCP+ min 0.47 0.28 0.38 0.41 0.44 0.44 0.41 0.33 0.22 0.5 0.3 0.3 0.45 0.44 0.24 
MOTCP+ mean 0.56 0.57 0.62 0.55 0.54 0.51 0.5 0.5 0.53 0.6 0.51 0.57 0.51 0.56 0.44 
MOTCP+ median 0.56 0.58 0.63 0.53 0.63 0.5 0.53 0.47 0.49 0.59 0.5 0.58 0.55 0.56 0.44 
MOTCP+ max 0.65 0.79 0.76 0.68 0.79 0.62 0.68 0.73 0.76 0.72 0.78 0.76 0.71 0.69 0.68 

 
TABLE 9 

APFD of XMLSecurity, CommonsCollections, Pmd and CommonsLang 

 
APFD 

 XMLSecurity CommonsCollections Pmd CommonsLang 
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 

Traceability Links 
Randmin 0.33 0.26 0.22 0.43 0.27 0.37 0.43 0.34 0.32 0.46 0.37 0.33 
Randmean 0.5 0.47 0.52 0.54 0.53 0.56 0.52 0.56 0.46 0.58 0.58 0.59 
Randmedian 0.5 0.46 0.47 0.55 0.52 0.55 0.52 0.56 0.43 0.58 0.59 0.58 
Randmax 0.63 0.66 0.76 0.64 0.54 0.82 0.63 0.77 0.69 0.66 0.7 0.8 
CodeCov 0.52 0.61 0.52 0.66 0.54 0.49 0.54 0.3 0.69 0.54 0.66 0.54 

AddCodeCov 0.51 0.67 0.48 0.52 0.56 0.8 0.63 0.6 0.61 0.54 0.31 0.59 
NSGAIIdim2 min 0.38 0.47 0.35 0.51 0.44 0.54 0.43 0.51 0.4 0.46 0.46 0.35 
NSGAIIdim2 mean 0.51 0.6 0.49 0.55 0.5 0.65 0.54 0.62 0.46 0.54 0.54 0.48 

NSGAIIdim2 median 0.53 0.64 0.49 0.55 0.49 0.65 0.54 0.61 0.46 0.54 0.47 0.46 
NSGAIIdim2 max 0.58 0.69 0.67 0.62 0.58 0.77 0.58 0.78 0.51 0.63 0.64 0.58 
MOTCPmin 0.38 0.34 0.26 0.35 0.41 0.41 0.37 0.33 0.23 0.51 0.47 0.4 
MOTCPmean 0.5 0.55 0.56 0.55 0.59 0.6 0.49 0.54 0.47 0.61 0.62 0.58 
MOTCPmedian 0.51 0.53 0.47 0.54 0.6 0.61 0.49 0.55 0.48 0.6 0.63 0.55 
MOTCPmax 0.58 0.73 0.77 0.69 0.76 0.76 0.59 0.7 0.67 0.71 0.82 0.82 
MOTCP+ min 0.4 0.22 0.2 0.42 0.28 0.2 0.41 0.33 0.36 0.51 0.42 0.45 
MOTCP+ mean 0.52 0.49 0.47 0.53 0.5 0.57 0.55 0.56 0.59 0.61 0.61 0.65 

MOTCP+ median 0.52 0.48 0.47 0.53 0.51 0.57 0.55 0.57 0.59 0.59 0.53 0.66 
MOTCP+ max 0.66 0.65 0.64 0.69 0.76 0.84 0.65 0.78 0.75 0.73 0.78 0.85 

Incomplete Traceability Links 
MOTCP+ min 0.3 0.22 0.23 0.41 0.28 0.32 0.41 0.33 0.33 0.49 0.43 0.4 
MOTCP+ mean 0.5 0.54 0.51 0.53 0.53 0.62 0.52 0.55 0.49 0.6 0.58 0.62 

MOTCP+ median 0.48 0.47 0.46 0.55 0.51 0.64 0.55 0.57 0.57 0.6 0.57 0.63 
MOTCP+ max 0.65 0.65 0.78 0.69 0.76 0.87 0.65 0.78 0.78 0.72 0.75 0.8 

 

On the basis of values reported in Tables 6-10 and Ta- 

ble 11, we can observe that MOTCP+ tends to outperform 

other techniques. APFD values for MOTCP+ are slightly 

better. The results achieved by CodeCov and Rand are 

worse and tend to have high variability (APFD values vary 

in the range: 0.19 0.83), with respect to those achieved by 

other techniques. This trend is not statistically confirmed by 

the Mann-Whitney test results (see Table 12). In particular, 

results suggest a statistically significant difference between 

MOTCP+ and MOTCP (p-value < 0.001) also applying the 

Benjamini-Hochberg correction. It is worth mentioning that 

paired comparisons not listed in Table 12 have all p-values 

greater than 0.05. Overall, results suggest that our approach 

improves MOTCP by increasing the capability of test case 

orderings in early revealing faults and tends to outperform 

other approaches. 

The results of a two-way permutation test suggest that 

observed outcomes depend on the applications object of 

our experiment (p-value< 0.001). In particular, we noted 

a not-trivial variability of results for all the techniques (on 

average 30%). For MOTCP+ and CodeCov, this variability 

was 34% and 38%, respectively. Results were comparable 

and less variable for Rand, MOTCP, NSGAIIdim2 and 

AddCodeCov (less than 30%). In addition, we noted that for 

a few applications (e.g., Log4J, iTrust, LaTazza, DBUtils) 

considered prioritization techniques achieved results very 
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TABLE 10 

APFD of Jabref and Xerces 
 

APFD 
 Jabref Xerces 
 all ftype1 ftype2 all ftype1 ftype2 

Traceability Links 
Randmin 0.47 0.38 0.26 0.4 0.25 0.37 
Randmean 0.57 0.61 0.58 0.55 0.5 0.48 
Randmedian 0.56 0.59 0.48 0.56 0.47 0.53 
Randmax 0.67 0.74 0.82 0.63 0.84 0.71 

CodeCov 0.43 0.38 0.38 0.52 0.61 0.5 

AddCodeCov 0.43 0.38 0.38 0.63 0.46 0.72 
NSGAIIdim2 min 0.5 0.52 0.41 0.49 0.35 0.35 
NSGAIIdim2 mean 0.54 0.62 0.55 0.53 0.54 0.48 
NSGAIIdim2 median 0.54 0.64 0.53 0.53 0.54 0.48 
NSGAIIdim2 max 0.58 0.68 0.7 0.61 0.75 0.65 
MOTCPmin 0.51 0.51 0.47 0.41 0.23 0.28 
MOTCPmean 0.59 0.64 0.63 0.54 0.45 0.51 
MOTCPmedian 0.55 0.55 0.48 0.54 0.42 0.52 
MOTCPmax 0.6 0.65 0.54 0.67 0.75 0.69 
MOTCP+ min 0.49 0.37 0.34 0.51 0.33 0.43 
MOTCP+ mean 0.62 0.66 0.68 0.6 0.52 0.58 
MOTCP+ median 0.62 0.54 0.46 0.59 0.54 0.58 
MOTCP+ max 0.74 0.77 0.82 0.71 0.68 0.75 

Incomplete Traceability Links 
MOTCP+ min 0.51 0.37 0.52 0.49 0.38 0.4 
MOTCP+ mean 0.59 0.6 0.55 0.56 0.58 0.52 
MOTCP+ median 0.58 0.54 0.61 0.56 0.55 0.52 
MOTCP+ max 0.65 0.77 0.76 0.64 0.79 0.64 

 
TABLE 11 

Summary of results for best APFD results 
 
 

 Mean and Median Maximum 

all ftype1 ftype2 all ftype1 ftype2 
Rand 1 2 0 0 5 4 
CodeCov 5 1 4 0 0 0 

AddCodeCov 4 8 4 1 1 0 

NSGAIIdim2 6 4 4 3 1 1 

MOTCP 3 4 3 1 6 3 

MOTCP+ 7 5 6 17 12 15 

 

 
different (20 to 25 points). 

 

7.4.2 Sensitivity 

Tables 6-10 (columns APFDftype1  and APFDftype2)  re- 

port collected APFD measures for all the applications, 

in presence of all automatically recovered traceability 

links and considering severe faults (column APFDftype1) 

and faults related to relevant requirements (column 

APFDftype2). MOTCP+ tends to outperform other tech- 

niques for both APFDftype1  and APFDftype2  in most of 

the applications as descriptive statistics suggest (see de- 

scriptive statistics reported in Tables 6-10 and summary in 

Table 11). For example, MOTCP+ outperforms, or at least 

achieves comparable results, on the following applications: 

AveCalc, LaTazza, DBUtils, CommonProxy, iTrust, Woden, 

Log4J, Betwixt, JXPath, CommonsIO, XMLGraphics, and 

CommonsLang. On other applications, there is not a clear 

winner even if often either MOTCP or NSGAIIdim2 seems 

to be slightly better than others. Results of the Mann- 

Whitney test suggest that a significant difference exists 

between MOTCP+ and both MOTCP and Rand in terms of 

APFDftype1  as well as APFDftype2  (p-values are 0.01, 
0.01 and 0.008, 0.04, respectively). On the other hand, 

no statistical significant difference was observed between 

MOTCP+ and both AddCodeCov and CodeCov even if a 

trend in favor of MOTCP+ is present. Note that pairs of 

TABLE 12 

APFD: Mann-Whitney results (in bold values 

significant at 5%, while ∗ indicates values still 
significant by applying the Benjamini-Hochberg 

correction) 
 
 

 APFDall APFDftype1 APFDftype2 

MOTCP+ vs. Rand 0.02 0.01∗ 0.008∗ 
MOTCP+ vs. CodeCov 0.05 0.12 0.14 

MOTCP+ vs. AddCodeCov 0.59 0.74 0.16 

MOTCP+ vs. NSGAIIdim2 0.093 0.096 0.02 

MOTCP+ vs. MOTCP <0.001∗ 0.01∗ 0.041 

 

 
other considered techniques (e.g., AddCodeCov vs. Rand) 

not listed in the Table 12 have p-values greater than 0.05. 

These results suggest that the application of MOTCP+ al- 

lows the identification of test case orderings with a higher 

severity and relevance with respect to baseline approaches. 

The results of a two-way permutation test seem to confirm 

the fact that APFDftype1  and APFDftype2  values depend 

on the application on which test case ordering techniques 

have been applied. That is, achieved outcomes significantly 

depend on considered applications (p-value < 0.001). 

 

7.4.3 Robustness 

Tables 6-10 show also collected APFD measures obtained 

by MOTCP+ in presence of incomplete traceability links. 

MOTCP+ preserves the capability in early detecting faults 

considering incomplete traceability links. In fact, we ob- 

served that only in a few cases MOTCP+ decreases its 

capability of early detecting faults. For instance, in case 

of APFDall, the difference between the APFD values 

obtained by MOTCP+ using complete or incomplete trace- 

ability links is on average less than 10 points. That is, the 

overall result for Robustness suggests that the capability of 

defining adequate test case orderings of MOTCP+ is quite 

robust with respect to the goodness of traceability links. 

 

7.4.4 Analysis of the Pareto front’s metrics 

Figure 4 shows examples of generated Pareto fronts for 

AveCalc, CommonsBcel, and CommonsCollections. Simi- 

lar plots have been obtained for other applications and for 

all measured APFDs. 

By applying the Spearman’s rank correlation on the 

metric values obtained for each Pareto front, we observed 

that collinearity does not hold for the three metrics used 

to build the front. In fact, we observed high collinearity 

(>85% of correlation) only in three cases: (i) Commons- 

BeanUtils, between AUCcode and AUCcost and (ii) JabRef 

and CommonsBcel, between AUCcode and AUCreq. 

Results of the PCA analysis are summarized in Table 

13. This table reports: the amount of variance accounted by 

identified principal components (column Var); how AUC- 

code, AUCreq, and AUCcost contribute to these principal 

components (columns PC); and the corresponding loading 

value (column Load, values range in between 0 and 1 and 

represent the impact of a metric on a given component). For 

instance, 91.3% of the variance for Betwixt is explained by 
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Fig. 4. Pareto fronts of APFDall for AveCalc, CommonsBcel and CommonsCollections. Filled circle represent 

test suites having higher APFD 

 

TABLE 13 

PCA summary of results for each application 
 
 

Application Var 
% 

AUCcode AUCreq AUCcost 

PC Load PC Load PC Load 

AveCalc 77.3 1 0.6 1 0.5 1 0.5 

Betwixt 91.3 1 0.6 2 0.8 1 0.6 

CommonsBcel 85 1 0.6 1 0.5 1 0.5 

CommonsBeanUtils 79 1 0.6 1 0.5 1 0.6 

CommonsCodec 88.4 1 0.7 2 0.9 1 0.7 

CommonsCollections 89.2 1 0.6 2 0.8 1 0.6 

CommonsIO 91.7 - - 2 0.72 1 0.67 

CommonsLang 94.7 1 0.71 - - 2 0.73 

DBUtis 89.2 2 0.95 1 0.68 1 0.71 

iTrust 94.6 1 0.69 2 0.87 1 0.71 

Jabref 78.1 1 0.62 1 0.6 1 0.49 

JTidy 92.1 1 0.67 2 0.9 1 0.62 

JXPath 95.9 1 0.66 2 0.94 1 0.7 

LaTazza 97.6 - - 1 0.97 2 0.97 

Log4J 94.6 1 0.64 2 0.89 1 0.71 

Pmd 91.8 1 0.72 2 0.92 1 0.67 

Woden 93.2 1 0.71 2 0.78 - - 

Xerces 74.7 1 0.61 1 0.6 1 0.51 

XMLGraphics 92.7 1 0.73 2 0.75 - - 

XMLSecurity 92.9 1 0.71 2 0.96 1 0.69 

CommonsProxy 93.7 1 0.7 2 0.99 1 0.7 

 

 
the first two principal components (i.e., in the columns PC 

for Betwixt we can see 1 and 2 representing two principal 

components); AUCcode and AUCcost mainly load on the 

first component (the value of columns PC these two metrics 

is 1), while AUCreq mainly loads on the second component 

(the value of column PC for this metric is 2). All the three 

metrics do not have a trivial impact on components (their 

Load value is 0.5 for all metrics). A similar trend is shown 

for most of the other applications, but for a few of them 

(e.g., CommonsIO, LaTazza) not all metrics significantly 

load on principal components (see the symbol - in column 

PC). In the case of CommonsIO, for example, AUCcost 

and AUCreq load respectively on the first and the second 

component, instead AUCcode does not load on a specific 

component. Overall, results in table confirms that our three 

metrics contribute to principal components with a clear 

impact and that a trend exists for which such metrics share 

(those having at least 80% of the maximum APFD in the 

front) we found in three Pareto fronts, that is test suites 

having higher APFD values in the Pareto Fronts. In Table 

14, we summarize the distribution of these best solutions 

in their respective fronts, where each axis of the front has 

been divided by three with the aim of identifying three areas 

in the front having respectively: low, medium, and high 

AUC value. The results suggest that most of best solutions 

have high values of AUCcode (71% of the best solutions), 

AUCreq (85% of them), and AUCcost (66% of them). In 

other words, best solutions can be frequently found in the 

top-right part of obtained Pareto Front. 

7.4.5 Impact of application objects and artifacts 

We analyzed the impact of some aspects of both appli- 

cations and used artifacts. In particular, we considered: 

(i) size (i.e., size of the considered applications, number 

of requirements, and size of test suites); (ii) distribution 

of injected faults (e.g., number of faults injected in code 

that implements a requirement, number of requirements 

not tested by any test case, and density of the faults per 

requirements); and (iii) capability of test cases in revealing 

faults (e.g., number of test cases revealing one fault, number 

of test cases revealed one or more than one fault, number 

of test cases that reveal two or more than three faults, and 

functional test case redundancy). 

In Table 15, we summarize results concerning how in- 

jected faults impact on application requirements. The table 

reports (second column) the percentage of requirements 

affected by at least one fault. For instance, 40% (i.e., 4 out 

10) of requirements considered for AveCalc were affected 

by at least one fault. Moreover, this table also reports 

(third column) the percentage of test cases that do not 

impact considered requirements. For examples, 3 out of 

20 faults (15%) of CommonsCollections did not impact on 

the set of considered application requirements. The per- 

centage of not tested requirements is reported in the fourth 

column. In the fifth column, the table shows fault density 

a conceptual meaning on their impact on the components: 

AUCcode and AUCcost seem to refer to software execution, 
(FaultDensity  = 

Σ
r∈req 

|NumFaultsr −mean( NumFaults )|  
).

 

while AUCreq to software specification. 

In Figure 4, filled circles represent the best solutions 

High values of fault density indicate an application in 
which faults are concentrated in a few requirements of 

the application, while a low level represents an application 
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TABLE 14 

Distribution of best solutions (higher APFD) in the Pareto Fronts 

 
Application Best 

Solutions 

AUCcode AUCreq AUCcost 

High Medium Low High Medium Low High Medium Low 

AveCalc 7 2 1 4 4 3 0 7 0 0 

Betwixt 3 2 1 0 3 0 0 1 0 2 

CommonsBcel 4 3 1 0 4 0 0 4 0 0 

CommonsBeanUtils 6 6 0 0 4 2 0 0 3 3 

CommonsCodec 3 3 0 0 1 2 0 2 1 0 

CommonsCollections 4 3 0 1 2 0 2 2 2 0 

CommonsIO 3 2 1 0 3 0 0 0 2 1 

CommonsLang 3 0 2 1 2 1 0 2 1 0 

CommonsProxy 2 2 0 0 1 0 1 0 1 1 

DBUtils 4 2 0 2 3 0 1 2 1 1 

iTrust 1 1 0 0 1 0 0 0 1 0 

Jabref 3 3 0 0 3 0 0 2 1 0 

JTidy 6 4 0 2 2 3 1 5 0 1 

JXPath 9 4 5 0 7 2 0 4 4 1 

LaTazza 2 0 2 0 1 0 1 1 1 0 

Log4J 10 7 3 0 7 2 1 2 6 2 

Pmd 7 5 0 2 4 2 1 2 4 1 

Woden 3 0 1 2 3 0 0 3 0 0 

Xerces 3 3 0 0 3 0 0 3 0 0 

XmlGraphics 6 2 2 2 3 3 0 5 1 0 

XmlSecurity 4 1 1 2 1 1 2 2 1 1 
 - 15(71%) 4 (19%) 5(23%) 18(85%) 3(14%) 4(19%) 14(66%) 9(42%) 3(14%) 

 

 
TABLE 15 

Impact of faults on requirements. 

 
Application Reqs affected 

by fault (%) 

Faults not 

impacting 

reqs (%) 

Not tested 

reqs (%) 

Fault 

Density 

Req 80% 

faults (%) 

LaTazza 60 13 40 1.8 40 
AveCalc 40 0 10 3.2 30 

CommonsProxy 80 0 10 1.7 40 

DBUtis 58 14 25 1.6 50 

iTrust 80 23 0 1.8 40 

CommonsCodec 57 35 10 2 31 

JTidy 36 6 8 1.7 24 

Woden 41 21 0 1.8 29 

Log4J 41 0 4 1.7 16 

Betwixt 77 10 0 1.8 33 

JXPath 55 15 0 2 30 

CommonsIO 50 0 0 3.4 22 

CommonsBcel 25 0 0 1.6 10 

CommonsBeanUtils 57 22 7 1.8 30 

XMLGraphics 50 20 12 4.3 12 

XMLSecurity 13 0 0 1.9 39 

CommonsCollections 41 15 5 1.8 29 

Pmd 50 10 10 2 25 

CommonsLang 80 5 0 2.2 31 

Jabref 51 50 22 1.5 32 

Xerces 80 0 0 1.6 30 

 
 

in which faults are spread among many requirements. In 

the last column, we report the percentage of requirements 

in which 80% of faults have been injected, e.g., 80% of 

faults in LaTazza have been injected into 40% (i.e., 4) 

requirements out of 10 considered. 

From Table 15, we can also observe that injected faults 

were evenly distributed among application requirements 

(i.e., distributed in more than 51% of requirements — 

median value for Reqs affected by faults — and with 

a fault density lower or equal than 1.8 – median value 

for FaultDensity) in case of: LaTazza, CommonsProxy, 

DBUtils, iTrust, Betwixt, CommonsBeanUtils, and Xerces. 

Conversely, injected faults seem to be concentrated in a 

few requirements (i.e., distributed in less than 51% of 

requirements and with a fault density higher or equal than 

1.8) in: AveCalc, Woden, CommonsIO, XMLSecurity, and 

CommonsCollections. 

On the base of results shown in Table 15 (fourth column), 

 
TABLE 16 

Percentage of test cases revealing: at least one fault, 

only one fault, and more than one fault for each 

application; and functional test case redundancy 

 
Application TCS 

revealing 

≥1 fault 

TCS 

revealing 

=1 fault 

TCS 

revealing 

>1 fault 

TCS 

Redundancy 

LaTazza 68 17 51 8.2 

AveCalc 53 4 49 11.7 

CommonsProxy 8 7.8 0.2 5.6 

DBUtils 8 7 1 10.5 

iTrust 4 3.6 0.4 3.6 

CommonsCodec 5 4.9 0.1 13.8 

JTidy 4 3.7 0.3 14.4 

Woden 8 7.2 0.8 4.2 

Log4j 4 3.1 0.9 21 

Betwix 9 8.4 0.6 2.9 

JXPath 7 6.6 0.4 6.5 

CommonsIO 3 2.8 0.2 10.8 

CommonsBcel 26 24 2 4.1 

CommonsBeanUtils 3 2.8 0.2 15.8 

XMLGraphics 8 8 0 3.3 

XMLSecurity 18 18 0 3.2 

CommonsCollections 3 2.8 0.2 4.3 

Pmd 3 2.9 0.1 3.8 

CommonsLang 1.4 1.1 0.3 20 

Jabref 13 13 0 9.4 

Xerces 7 6.3 0.7 8.5 

 

 
for LaTazza and DBUtils a high number of requirements, 

40% (4 out of 10) and 25% (3 out of 12) respectively, were 

not linked to any test case. This indicates that test cases are 

mainly focused on a subset of considered requirements. As 

for iTrust, Woden, Betwixt, JXPath, CommonsIO, Com- 

monsBcel, XMLSecurity, CommonsLang, and Xerces, all 

the requirements were linked to at least one test case, while 

for the other applications few requirements (on average 

7.7% for each application) were not linked with test cases, 

even if some links were present. These results suggest that 

the set of used traceability links could be incomplete. 

Results reported in Table 16 (second column) suggest 

that the test suites of AveCalc, LaTazza, CommonsBcel, 

and XMLSecurity have a non-trivial percentage of test cases 
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| | TestClasses 

revealing at least one fault. Conversely, a large number of 

test suites (i.e., the ones of: iTrust, JTidy, Log4J, Com- 

monsIO, CommonsBeanUtils, CommonsCollections, Pmd, 

CommonsLang) have less than 5% of fault-revealing test 

cases. For each application, the third and the fourth column 

of Table 16 show the percentage of test cases revealing 

only one and more than one fault, respectively. We can 

see that: a limited percentage of test cases (less than 25%) 

of considered suites reveals one fault. Only in case of 

AveCalc and LaTazza, a large percentage of test cases 

(about 50%) reveal more than one fault, while in the 

remaining applications almost all test cases reveal only one 

of injected faults. 

In the last column of Table 16, results for test case 

redundancy (TCSRedundancy) are shown. This measure is 

computed as follows:       |TCS|      . TCS   is the number 

of test cases composing a test suite and TestClasses 
represents the JUnit classes that functionally group test 

cases. We assume that JUnit classes group functionally 

correlated test cases, i.e., JUnit test methods. Results sug- 

gest that the test suites with high redundancy are those 

of: Log4j, CommonsLang, CommonsBeanUtils, JTidy, and 

CommonsCodec. 

In Table 17, we summarize the results of a two-way 

permutation test on considered co-factors and their inter- 

action. Results suggest that there is a significant effect of 

application with respect to APFDall values. Moreover, other 

factors that have shown some influence on experimental 

results are: capability of revealing faults of used test cases 

in terms of test cases that reveal only one fault (PercTcsRe- 

vealingOneBug); number of test cases composing test suites 

(NumberOfTCS) as well as number of requirements (Num- 

Reqs); number of requirements containing 80% of injected 

faults (PercReq80%faults) as well as fault density (Fault- 

Density); and test case redundancy (TCSRedundancy). By 

correlating such metrics with APFD values (using the 

Spearman’s Rank Correlation Coefficient) we found rele- 

vant and statistical impacts for: PercTcsRevealingOneBug 

toward Rand (ρ=0.14) and MOTCP (ρ=-0.08), while in 

case of NumReqs, PercReq80%faults, FaultDensity and 

TCSRedundancy toward Rand (ρ=-0.23, ρ=0.26, ρ=-0.09 

and ρ=0.23), MOTCP (ρ=-0.13, ρ=0.14, ρ=-0.07 and ρ=0.4) 

and MOTCP+ (no correlation, ρ=0.09, ρ=-0.13 and ρ=0.3). 
Notice that CodeCov and AddCodeCov do not have any 

correlation with these co-factors. 

7.4.6 Additional analysis 

We performed an additional analysis to study possible over- 

head of our proposal with respect to baseline approaches. 

In Table 18, we report some descriptive statistics (i.e., 

minimal, median, maximal, mean, and standard deviation 

values) of the overall time for prioritizing test cases by 

applying our proposal and baseline approaches on the 

studied applications. In the experimentation, we used a PC 

equipped by 2.20 GHz Intel Core i7 with 8 GB of RAM 

and Windows 8 (64-bit) as operating system. 

MOTCP, NSGAIIdim2, and MOTCP+ required a com- 

parable time to prioritize test cases and CodeCov and 

TABLE 17 

Two-way permutation test on the relevant co-factors 

 
Factor p-value 

Technique < 0.001 

Application < 0.001 

Technique:Application < 0.001 

Technique <0.001 

PercTcsRevealingAtLeastOneBug < 0.001 

Technique:PercTcsRevealingAtLeastOneBug 1 

Technique <0.001 

PercTcsRevealingOneBug 0.127 

Technique:PercTcsRevealingOneBug 0.001 

Technique < 0.001 
PercTcsRevealingMoreThanOneBug < 0.001 

Technique:PercTcsRevealingMoreThanOneBug 0.452 

Technique < 0.001 

PercReqAffectedByAtLeast1Bug < 0.001 

Technique:PercReqAffectedByAtLeast1Bug 0.122 

Technique < 0.001 

PercFaultNotImpactingReq < 0.001 

Technique:PercFaultNotImpactingReq 0.851 

Technique < 0.001 

AppSize 1 

Technique:AppSize 0.5781 

Technique 0.039 

NumberOfTCS 0.047 

Technique:NumberOfTCS 0.005 

Technique < 0.001 
NumReqs < 0.001 

Technique:NumReqs < 0.001 

Technique 0.048 

PercReqNonLinkedToTCS < 0.001 

Technique:PercReqNonLinkedToTCS 1 

Technique < 0.001 

PercReq80%faults 0.065 

Technique:PercReq80%faults 0.006 

Technique < 0.001 

FaultDensity < 0.001 

Technique:FaultDensity < 0.001 

Technique < 0.001 
TCSRedundancy < 0.001 

Technique:TCSRedundancy < 0.001 

 
TABLE 18 

Descriptive statistics of the overall execution time (in 

seconds) of prioritization approaches 

 
 MOTCP+ MOTCP NSGAIIdim2 AddCodeCov CodeCov Rand 

Min 14.8 13.9 14.0 0.8 0.8 0.0 

Mean 160.5 161.3 162.0 48.6 20.9 1.2 

Median 319.7 317.6 318.6 150.4 41.7 2.0 

Max 2160.0 2026.4 2022.2 1794.2 297.5 9.9 

StDev 488.7 464.6 463.8 387.1 65.3 2.5 

 

 
Rand were faster with respect to other approaches. As for 

AddCodeCov, we observed that it is either fast or slow to 

prioritize test cases. This seems to depend on the applica- 

tion. In particular, we noted that for medium to large ap- 

plications (e.g., CommonsLang and CommonsBeanUtils), 

AddCodeCov required more time than other approaches. 

In the case of CommonsLang, MOTCP+ required 580.9 

seconds, while AddCodeCov required 1794.2 seconds. 

Another result of our analysis is that MOTCP and 

MOTCP+ required more time than other approaches be- 

cause of the time needed to recover traceability links. This 

time is, on average, 36% of the overall time required to 

multi-objective algorithms to get final test case prioritiza- 

tion. However, we can postulate that the time to recover 

traceability links is hidden to the user if the recovery 

process is executed in background every time requirements, 

test cases, or source code are modified. For such a reason, 



20 
 

TABLE 19 

Time to recover links between requirements and code 

and requirements and test cases 

 
 Reqs - TestCases Reqs - Code 

Min 2.0 10.0 

Mean 163.4 49.9 

Median 90.0 25.0 

Max 1505.0 430.0 

StDev 320.5 91.5 

 
we report in Table 19 some descriptive statistics on the time 

to recover traceability links. In particular, the second col- 

umn reports the time to recover traceability links between 

requirements and test cases, while the third column reports 

the time to recover links between requirements and source 

code. As shown in Table 19, the recovery of traceability 

links requirements and test cases is more expensive since 

it required on average 163.4 seconds. The recovery of 

traceability links between requirements and source code 

required on average 49.9 seconds. We argue that this is 

due to the kind of artifacts on which LSI was applied. It 

is useful to observe that in a real project, requirements and 

test cases change less frequently than source code. 

 

7.4.7 Analysis 

We summarize achieved results, their interpretation, and 

observed trends as follows: 

- Capability to find faults. By considering the three sets 

of faults used to evaluate both effectiveness and sensi- 

tivity, MOTCP+ mostly outperforms other techniques. In 

detail, by considering the median of APFD values we 

see that MOTCP+ outperforms: (i) MOTCP 80% of the 

applications, (ii) AddCodeCov 66.6% of the applications, 

and (iii) NSGAIIdim2 62% of the applications. Only for 

2 applications (i.e., CommonsProxy and iTrust) the me- 

dian value achieved by MOTCP+ is lower than the one 

of baselines and, in particular, of AddCodeCov, NSGAI- 

Idim2 and MOTCP. Hence, by trying to balance between 

low- and high-level information, MOTCP+ tends to out- 

perform the traditional multi-objective technique based on 

two dimensions (code-coverage and execution time). By 

applying automatic weighting, it seems that MOTCP+ is 

more efficient than MOTCP in finding faults. In fact, 

test orderings produced by MOTCP+ in almost all cases 

are better that those produced by MOTCP. This could 

be mainly due to distribution of the faults. In this con- 

cern, we observed that AddCodeCov and MOTCP tend 

to achieve better results if faults are evenly spread in a 

high number of application requirements. MOTCP+ tends 

to achieve better results if faults are concentrated in a 

few requirements. NSGAIIdim2 seems quite stable with 

respect to fault distribution. These findings seem to be in 

line with our initial hypothesis about the use of automatic 

weighting of application code and requirements to give 

more relevance to specific and fault-prone portions of the 

application. Indeed, we measured a positive correlation 

(Spearman’s Rank correlation coefficient is equal to 0.36 

and p-value<0.001) between requirements rankings ob- 

tained by applying automatic weighting and distribution of 

injected faults into requirements. In other terms, our metric- 

based automatic weighting approach is reasonably able to 

identify fault-prone requirements. 

- Robustness. MOTCP+ seems to be able to support a 

limited amount of spurious traceability links. That is, the 

quality of traceability links might affect ordering results 

even if not in significant way. 

- Pareto’s metrics. All three considered metrics seem to 

have a relevant impact on our results. In a few applications, 

we observed that two metrics could be considered instead of 

three without loosing information. In general, we observed 

that all the metrics significantly contributed to test case 

ordering results in terms of high values of AUCcode, 

AUCreq, and AUCcost. 

- Co-factors. As for the APFD values, we observed that 

results can vary with respect to the studied applications, 

namely our experimental objects. In particular, a variance 

around 30% for all techniques was observed. Test suite 

composition (e.g., percentage of test cases revealing one or 

more than one fault, percentage of requirements linked to 

test cases, and test case redundancy) and fault distribution 

can impact on achieved results. In particular, we see that 

fault density has only a (negative) limited impact on results 

achieved by our approach. This result suggests that our 

approach can achieve reasonably good results if faults are 

spread in code and requirements as well as if they are 

concentrated in a few requirements. In fact, AddCodeCov 

and MOTCP achieve better results than MOTCP+ if faults 

are evenly spread across a high number of requirements. 

However, an increase of fault density in a few requirements 

lets decrease capability of AddCodeCov and MOTCP in 

early revealing faults. NSGAIIdim2 seems to be less sensi- 

tive than other techniques to changes in bug density. More- 

over, test case redundancy can increase the performance 

of our approach, while it does not significantly impact 

on AddCodeCov. Another aspect that seems to negatively 

impacts capability of AddCodeCov in early detecting fault 

is the number of test cases of a suite that discovers at least 

one faults: at increase of such a number test orderings 

generated by AddCodeCov decrease their APFD values. 

Instead, APFD values of multi-objective approaches tends 

to increase if we observed an increase of the number of test 

cases revealing one fault. An aspect that seems to penalize 

the multi-objective approaches, while it favors performance 

of AddCodeCov, is the number of test cases to be ordered. 

We indeed observed that a strong increase of the number 

of test cases in a test suite can decrease APFD values of 

test orderings obtained by the considered multi-objective 

approaches while the APFDs of test ordering produced 

by AddCodeCov increase, as well as computation time 

required to AddCodeCov to find final test case orderings. 

 
7.4.8 Implications 

We distilled the findings of our experiment adopting a 

perspective-based approach [62]. We focus on the practi- 

tioner/consultant (simply practitioner in the following) and 

researcher’s perspectives [63]: 
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1) The results support our initial hypothesis about ef- 

ficiency and effectiveness of our technique as well 

as about the use of automatic artifacts analysis and 

weighting during the prioritization of test cases. That 

is, test case orderings obtained by applying our 

approach are able to early recover faults that are both 

technical and business relevant. This result is relevant 

for the practitioner interested in using our approach 

in his/her company. 

2) The experiment is focused on different kinds of appli- 

cations and the magnitude of benefits deriving from 

the use of three dimensions suggests that obtained 

result could be also generalized in different contexts. 

This point deserves further investigations and it is 

relevant for both the practitioner and the researcher. 

3) The experimental objects were realistic enough for 

small- to medium-sized software projects. Although 

we are not sure that achieved results scale to real 

commercial/industrial projects, the results seem to 

reassure us that the outcomes might be generalized 

to larger projects. This point is clearly relevant for 

the practitioner and deserves future investigations. 

4) By explicitly considering functional-dimension dur- 

ing the test case prioritization, our technique can 

give more relevance to those test cases capable to 

reveal severe and requirement-relevant fault, thus 

outperforming traditional techniques that conversely 

tend to give the same relevance to each fault. This 

point is relevant for the researcher. 

5) To let our test prioritization technique consider func- 

tional aspects, application artifacts (e.g., requirements 

and source code) have to be analyzed before doing 

the test case orderings definition. Hence, the collected 

information can let us produce more efficient test case 

orderings but they introduce additional and not-trivial 

cost required to identify adequate test ordering. This 

aspect is clearly relevant for the practitioner interested 

in reducing the cost for performing regression testing 

and for identifying effective test case orderings. The 

researcher could be interested in investigating pos- 

sible strategies to identify a trade-off between these 

two concerns. 

6) From the execution time point of view, the recovery 

of traceability links is the most expensive part of 

the process underlying our approach. This aspect is 

particularly relevant for the researcher. In particular, 

the researcher could be interested in studying either 

different text retrieval model and technique or im- 

proving the performances of the used IR technique. 

The practitioner interested in our approach has to take 

into account the additional execution cost introduced 

by LSI use or has to explicitly document traceability 

links. 

7) The diffusion of a new technology/method is made 

easier when empirical evaluations are performed and 

their results show that such a technology/method 

solves actual issues [64]. Therefore, results from our 

experiment could speedup the transferring of our 

solution to the industry. In addition, its introduction 

should not require a complete and radical process 

change in a given company because of the use of 

automatically recovered traceability links. This point 

has particular interest for the practitioner. 

 
8 CONCLUSIONS 

We propose a multi-objective technique to identify test case 

orderings that are effective (in terms of capability in early 

discovering faults) and efficient (in terms of execution cost). 

To this end, our proposal takes into account the coverage 

of source code and application requirements and the cost 

to execute test cases. An IR-based traceability recovery 

approach has been applied to link software artifacts (i.e., re- 

quirements specifications) with source code and test cases. 

A test case ordering is then determined by using a multi- 

objective optimization, implemented in terms of NSGA-II. 

The proposed technique applies a metric-based approach to 

automatically identify critical and fault-prone portions of 

software artifacts, thus becoming able to give them more 

importance during test case prioritization. Our technique 

has been validated on 21 Java applications. The most 

important take-away result of our experimental evaluation 

is: our approach is able to identify test case orderings that 

early recover faults both technical and business relevant. 
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APPENDIX 

In this Appendix, we present an instantiation of the fault 

injection process described in Section 7.3. In particular, 

let us consider a fault having BCEL-172 as identification 

number of bug tracker of CommonsBcel. Figure 5 shows 

how this fault appeared in the online bug tracker system. 

This fault caused an ArrayOutOfBoundsException 

when the search functionality is executed with a given 

input. 
 

Fig. 5. Screenshot of fault having id = BCEL-172 in the 

online bug-tracker of CommonsBcel 

version of CommonsBcel to be used in our experiment. 

Once that fault was injected, we verify capability of our 

test suite in detecting it. That is, if at least one test case 

failed, we choose fault BCEL-172. 

The fault BCEL-172 was considered severe because its 

priority and severity were high and because that fault 

completely compromised CommonsBcel behavior. Chosen 

fault was also related to a relevant requirement. In fact, 

it compromised a functionality critical for the user of 

CommonsBcel library. The application documentation5 lists 

search functionality as one of the key provided functionality 

and several users identified the faults and reported it in the 

application bug-tracker (e.g., BCEL-172, 85, 114, 125). 

 

 

 

(a) 

(b) 
 

Fig. 6. (a) code with fault (b) code without fault 
 

From the analysis of fault report, we can observe that 

the chosen fault affected version 5.2 of CommonsBcel and 

it was fixed in version 6.0 (RC1). Hence, by looking at 

posted patch and also at code of CommonsBcel version 

5.2 (see Figure 6(a)) and version 6.0 RC1 (see Figure 6(b), 

we identified where the fault was present in the code, thus 

understanding how and where to inject it to get a faulty 

 

 

 

 

 

 

 

5. http://commons.apache.org/proper/commons-bcel/manual.html 

http://commons.apache.org/proper/commons-bcel/manual.html

