
1

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must

be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Alessandro Marchetto, Md. Mahfuzul Islam, Waseem Asghar, Angelo Susi, Giuseppe
Scanniello, A Multi-Objective Technique to Prioritize Test Cases, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, Volume: 42, Issue: 10, Oct. 1
2016, DOI: 10.1109/TSE.2015.2510633

The final published version is available online at:
https://ieeexplore.ieee.org/document/7362042

When citing, please refer to the published version.

2

T

{ }

A Multi-Objective Technique
to Prioritize Test Cases

Alessandro Marchetto, Md. Mahfuzul Islam, Waseem Asghar, Angelo Susi,

Giuseppe Scanniello, Member, IEEE

Abstract—While performing regression testing, an appropriate choice for test case ordering allows the tester to early discover

faults in source code. To this end, test case prioritization techniques can be used. Several existing test case prioritization

techniques leave out the execution cost of test cases and exploit a single objective function (e.g., code or requirements coverage).

In this paper, we present a multi-objective test case prioritization technique that determines the ordering of test cases that

maximize the number of discovered faults that are both technical and business critical. In other words, our new technique

aims at both early discovering faults and reducing the execution cost of test cases. To this end, we automatically recover links

among software artifacts (i.e., requirements specifications, test cases, and source code) and apply a metric-based approach to

automatically identify critical and fault-prone portions of software artifacts, thus becoming able to give them more importance

during test case prioritization. We experimentally evaluated our technique on 21 Java applications. The obtained results support

our hypotheses on efficiency and effectiveness of our new technique and on the use of automatic artifacts analysis and weighting

in test case prioritization.

Index Terms—Regression Testing; Requirements; Testing; Test Case Prioritization.

✦

1 INTRODUCTION

HE intent of regression testing is to ensure that en-

hancements, patches, or configuration changes have

not introduced new faults in source code. Relevant activities

in regression testing are [1]: (i) test case selection; (ii) test

case minimization; and (iii) test case prioritization. The goal

of test case selection is to choose test cases that are relevant

for a specific part of an application or for performed

changes. On the other hand, test case minimization aims

at reducing the number of test cases to be executed by re-

moving redundant test cases, thus preserving the capability

of a test suite in discovering faults. Finally, the goal of

test case prioritization is to determine test case ordering

that maximizes the probability to early discover faults in

source code. In other words, it is of primary importance to

identify test case orderings that are effective (in terms of

capability in early discovering faults) and efficient (in terms

of execution cost). These factors are relevant because they

represent technical and business criteria for the success of

a software project [2].

Test case prioritization techniques [1], [3] exploit sev-

eral algorithms to prioritize test cases. These techniques

are mostly based on a single dimension (e.g., code or

requirements coverage) and assume that faults have all

the same relevance and that all software artifacts (e.g.,

source code and requirements) are equally relevant. That

A. Marchetto, M. M. Islam, and W. Asghar are Independent researchers
E-mail: alex.marchetto, mahfuzul.islam, waseem960 @gmail.com
A. Susi is with Fondazione Bruno Kessler
E-mail: susi@fbk.eu
G. Scanniello is with DiMIE - University of Basilicata.
E-mail: giuseppe.scanniello@unibas.it

is, these techniques do not identify test case orderings

that early reveal both technical (e.g., coding faults) and

business critical faults (e.g., due to the misunderstanding

of requirements).

We presented in [4] a technique to prioritize test cases

that explicitly considers: low- and high-level information

about test cases. In particular, it was based on the three

following dimensions: structural that concerns information

on source code exercised by test cases under analysis;

functional that regards coverage of users’ and application

requirements; and cost that concerns time to execute test

cases. A test case ordering was attained as a multi-objective

optimization problem to balance considered dimensions

with respect to traceability links among software arti-

facts (i.e., application code, test cases, and requirements

specifications). These links were recovered by applying

Latent Semantic Indexing (LSI) [5]. It is an established

Information Retrieval (IR) technique largely exploited to

recover traceability links (e.g., [6], [7]). A limitation for our

previous presented technique [4] is that it equally weighted

all portions of application artifacts (i.e., source code and

requirements) during test case prioritization. However, it is

often the case in which different portions of application ar-

tifacts have different fault-proneness or testers have specific

needs (e.g., a given requirement or function has to be tested

first). To overcome that limitation, testers could be asked to

manually identify critical portions of application artifacts,

thus becoming able to give them more importance during

test case prioritization. However, this approach is costly

for human testers and also error-prone. In this paper, we

improve the solution highlighted before by leveraging the

capability of automatically identifying fault-prone portions

of software artifacts, according to some characteristics of

•

•

•

mailto:susi@fbk.eu
mailto:giuseppe.scanniello@unibas.it
mailto:giuseppe.scanniello@unibas.it

3

the source code of a given application (e.g., McCabe Cyclo-

matic Complexity) and its requirements (e.g., the number

of classes that implement a requirement). Summarizing our

approach provides the following new research contribu-

tions: (i) a novel multi-objective test case prioritization

technique; (ii) the definition of a metric-based approach

to automatically identify potential critical and fault-prone

portions of application code and requirements; and (iii) a

large experimental evaluation.

As for our experimental evaluation, we have conducted

an experiment on 21 Java applications. We also compared

results obtained by applying our technique and those by

baseline approaches for test case prioritization, namely

random prioritization, code and additional code coverage

techniques, and a multi-objective approach based on code

coverage and test case execution cost [8], [9], [10], [11].

Another baseline technique for comparison was that we

previously presented in [4]. Outcomes suggested that our

technique is able to identify test case orderings that are

effective in terms of early fault discovery and efficient in

terms of test case execution cost.

In Section 2, we discuss related work, while the outline

of our approach is given in Section 3. The approach

exploited to recover traceability links is introduced in Sec-

tion 4. In Section 5, we present metrics and measurements

used in our technique, which is successively shown in

Section 6. In Section 7, we summarize the design of our

investigation and present and discuss achieved results. Final

remarks conclude the paper.

2 RELATED WORK

To prioritize and select test cases a number of techniques

have been proposed and empirically investigated [12], [13],

[14], [15], [8], [9], [10], [16], [17]. Yoo et al. [1] and

Mohanty et al. [3] survey existing research work in these

fields. Results suggest that existing techniques mostly use

either structural or functional coverage criteria with respect

to source code executed by test cases. This is one of the

aspects that makes our proposal different from those in the

literature.

A number of approaches use code coverage and addi-

tional code coverage1 to prioritize test cases with respect

to their capability of executing the source code of software

under test (e.g., [10], [18]). Most of these approaches iden-

tify test case orderings based on a single objective function

(e.g., code coverage). Only a few approaches based on

multi-objective optimization exist (e.g., [12], [11]). These

approaches mainly consider code coverage information and

execution cost of test cases: (i) optimize test cases by

means of a Pareto front using both code coverage and

execution cost or (ii) reduce a multi-objective problem to

a single-objective by using an optimization function. For

example, Yoo and Harman [11] show same benefits of a

Pareto-front optimality for test case selection. The authors

present a two-objective test case selection approach, where

1. Additional code coverage techniques evaluate each test case accord-
ing to the code portion that is uniquely covered by it

code coverage and execution cost are explicitly considered

when conducting test case selection. The approach can be

also directly applied to test case prioritization. This work

presents some similarities with that we present in this paper,

namely the objective formulation takes into account source

code coverage as a measure of test adequacy and execution

time as a measure for cost. The most remarkable differ-

ences between these two approaches can be summarized

as follows: we also consider the coverage of application

requirements, to link them with source code we applied

an IR technique, and we apply a metric-based approach

to automatically identify critical and fault-prone portions

of software artifacts (both source code and requirements).

Another multi-objective test case prioritization approach

is proposed by Sun et al. [19] for ordering test cases in

GUI-based applications. In fact, code (statement) coverage

is traditionally used to test case prioritize, while event

coverage criteria are largely adopted for GUI applications

testing [20]. Hence, Sun et al. propose a multi-objective

test case prioritization approach that exploits both criteria:

statement and event coverage.

More traditionally, Salehie et al. [13], Kavitha et al. [21],

Arafeen et al. [22], and Nguyen et al. [23] propose

techniques to prioritize test cases according to application

requirements. Test cases are mapped to requirements using

a text-to-text traceability links recovery technique and then

test cases are prioritized with the aim of maximizing user

satisfaction. In contrast with our proposal, the most critical

aspect of such techniques is that they mainly prioritize

test cases according to the sole information coming from

requirements, so ignoring the structure and the behavior of

application under test.

Yoo et al. [15] propose an approach to prioritize test

cases according to tester’s needs, while considering struc-

tural information of software under test. Authors ask testers

to prioritize test cases conducting a pair-wise comparison of

them. To limit human effort, authors combine this manual

pair-wise comparison of test cases with test clustering based

on coverage information, thus improving scalability of their

technique. Then, testers are asked to prioritize groups of

test cases (according to the group representative test case)

rather than every test case. The authors also assume that

testers have complete knowledge on each test case. This

could not be true, e.g., in functional testing or in case of a

huge test suite.

Walcott et al. [14] present a technique to prioritize

test cases with respect to time constraints. This is typ-

ical for those contexts in which execution time is lim-

ited by environment constraints. This technique achieves

good results in terms of effectiveness. However, a few

assumptions are taken: different types of faults have same

severity and execution cost of every test case is uniform.

These assumptions might be true only in a few specific

contexts (e.g., applications based on the composition of

third-party services).

Fang et al. [24] propose a similarity-based technique that

uses execution profiles of test cases to maximize diversity

of test cases. The execution frequency profiles of test cases

4

RecoveringTraceabilityLinks ExecutingTestCases

ComputingMetrics

EstimatingMaintainability
IdentifyingCumulative

ReqsAndCode

PrioritizingTestCases

:MaintIndexReqs

:MaintIndexCode

:CodeMetrics

:ReqsMetrics

:ExecCost

:CodeCov

:LinksReqsTestCases

:LinksReqsCode

:TestCases

:Code

:Reqs

:LinksReqsTestCases

:CodeCov

:ExecCost

Fig. 1. Process outline modelle with an UML Activity Diagram with Object Flow

are collected and transformed into ordered sequences. Then,

test case diversity is computed by applying string edit

distances between each pair of execution sequences of test

cases. This dis/similarity measure is used to establish test

case prioritization.

Li et al. [12] empirically assess effectiveness of greedy

and meta-heuristic algorithms to prioritize test cases using

code coverage measures. Conversely to other works, that

focused on the best criteria (e.g., code coverage, time) to

prioritize test cases, Li et al. mainly focus on the algo-

rithm used to compute optimal test case orderings. Results

suggest that meta-heuristic algorithms seem to be quite

efficient and effective for traversing the solution space, thus

promising to define optimal test orderings. According to

these results, we propose in our work the use of a meta-

heuristic algorithm to prioritize test cases according to the

three considered dimensions.

Unlike the studies discussed before, we propose a tech-

nique to prioritize test cases that considers low- (e.g.,

code coverage) and high-level (e.g., requirements coverage)

information about test cases and that uses automatically re-

covered traceability links among requirements, source code,

and test cases. Another remarkable difference between our

work and those in the literature is that we have conducted

a more extensive experimentation on several test suites and

a large number of applications.

3 APPROACH OUTLINE

We present a multi-objective test case prioritization tech-

nique that determines the ordering of test cases that maxi-

mize the number of discovered faults that are both technical

and business critical. This approach automatically recovers

traceability links among software artifacts and applies a

metric-based approach to automatically identify critical and

fault-prone portions of software artifacts. In Figure 1, we

show a behavioral view of our approach in terms of an

UML Activity Diagram with object flow [25]. Ellipses

are phases of our process, while rectangles are software

artifacts produced and/or consumed in each phase.

For each test case, the ExecutingTestCase phase provides

details on covered code statements and execution cost (the

artifacts :CodeCov and :ExecCost in Figure 1), namely

two of the dimensions on which our approach is based

on. The RecoveringTraceabilityLinks phase is in charge of

recovering links between requirements and source code

(:LinksReqsCode) and between requirements and JUnit test

5

A student can add a new exam to the

register. An exam is composed of a name,

CFU (i.e., a number that represent the

university credit of the exam) and an

optional vote. The name is unique, CFU

is a positive number (>=0) and the vote,

if inserted, is a number included between

0 and 30 (the vote can be also 0 or 30).

A vote < 18 is negative (i.e., the exam

is not passed) while >= 18 is positive

(i.e., the exam is passed). An exam can be

inserted also without the vote; it can be

inserted later. ’Laude’ can be added only

when the vote is 30.

Fig. 2. The class calculator.Exam in AveCalc

Fig. 3. The requirement AddExam in AveCalc

cases (:LinksReqsTestCases). Source code is considered

as text and also requirements since they are described in

natural language. In Figure 2 and Figure 3, we show a frag-

ment of the class calculator.Exam and requirement

addExam of the application AveCalc2, respectively. LSI

allowed us to find a link between calculator.Exam

and addExam. Links between requirements and classes

estimate the coverage of requirements that represents the

third dimension of our approach. We provide details on

the approach used for the recovery of traceability links in

Section 4.

Source code and requirements metrics (:CodeMetrics and

:ReqsMetric, respectively) are computed in the Computing-

Metrics phase. Traceability links between requirements and

source code are also used to compute requirements-level

metrics. These links and both source code and require-

2. It is one of the applications used in our empirical assessment

ments metrics are then used to estimate maintainability

indexes (:MaintIndexCode and :MaintIndexReqs) for the

classes and the requirements of a given subject software

in the phase EstimatingMaintainability. Requirements and

source code classes are ordered according to their main-

tainability indexes, respectively. These orderings are then

used together with covered code statements and execution

costs (i.e., the output of ExecutingTestCase) and recovered

traceability links between requirements and test cases to

compute cumulative measures for traceability links and

both code coverage and execution costs of test cases. These

measures are exploited to identify portions of application

code and requirements that are potentially critical and fault-

prone in the phase IdentifyingCumulativeReqsAndCode. In

Section 5, we describe the three phases of our approach

we described just before. It is worth remarking that the

support provided by these three phases represents the most

important difference between our current contribution and

that we previously presented [4], where testers had to

manually identify critical portions of application artifacts

(e.g., source code and requirements).

The performance evaluation of all possible test case

orderings on the three choose dimensions is expensive

in case of test suites containing a large number of test

cases. To deal with this issue, the PrioritizingTestCase

phase exploits a multi-objective optimization method to

prioritize test cases according to our three dimensions.

Several possible evolutionary algorithms are available and

applicable to the problem of test case prioritization. In the

work presented here, we rely on the Non-dominated Sorting

Genetic Algorithm II (NSGA-II [26]). In fact, NSGA-II is

widely used in the solution of optimization problems in

software engineering and demonstrated to be particularly

suited for the prioritization problem [27], [28]. In Section 6,

we provide details on how NSGA-II has been used in our

new approach.

4 TRACEABILITY RECOVERY

Requirements traceability regards the documentation of bi-

directional links among various related requirements and

associated software artifacts produced in the entire devel-

opment process. In other words, requirements traceability

refers to the ability to describe and follow the life of a

requirement, from its origins, through its development and

specification, to its subsequent deployment and use, and

through all periods of on-going refinement and iteration in

any of these phases [29]. This allows a software engineer

to understand relationships that exist within and across

different kinds of software artifacts. For example, docu-

mentation of traceability links might be crucial to be aware

about: (i) source code in charge of implementing a given

application requirement; (ii) requirements implemented by

a specific part of the source code; and (iii) source code

exercised by a test case.

Traceability links are very often not documented at all

and if this information exists it might be not updated or

not aligned with the current implementation and documen-

tation (e.g., [30], [31], [32], [33]). Therefore, methods and

package calculator;

import java.io.Serializable;

import javax.swing.JOptionPane;

/**

* Classe Exam.
* Bean representing an exam.

*

* @author andima

*/

public class Exam implements Serializable \{

public String name;

public int cfu;

public int vote;

public boolean laude;

public boolean maked;

public Exam()\{

name = "Unknow";

cfu = -1;

vote = -1;

laude = false;

maked = false;

\}

public static Exam getInstance(String name,

String cfu, String vote)\{

Exam e = new Exam();

e.setName(name);

// ...

\}

// ...

\}

6

×

−

tools might be needed to infer traceability links among

software artifacts and requirements and source code, in

particular. In this regard, researchers have successfully ap-

plied IR techniques [6], [33], [34], [35]. These approaches

are mostly based on lexical similarity of text contained in

these artifacts [36]. In particular, artifacts are indexed by

extracting information about occurrences of terms within

them and then a lexical similarity measure is computed

to establish whether or not a traceability link might exist

between two artifacts. Independently from the IR technique,

the process to recover traceability links among software

artifacts is similar.

LSI (sometimes referred to as Latent Semantic Analysis)

has been successfully applied in traceability field (e.g., [6],

[36]). Other text retrieval and IR techniques have been

successfully applied to the problem of recovering trace-

ability links among software artifacts. However, existing

research is contradictory on which text retrieval model

and technique work best with source code data. For ex-

ample, Marcus and Maletic [6] experimentally observed

that LSI performs at least as well as Vector Space Model

(VSM) [37] and in some cases LSI outperforms VSM in

recovering documentation-to-source-code traceability links.

Conversely, Abadi et al. [38] observed that VSM provides

better results than LSI in the recovery of traceability links

among different kinds of software artifacts. Similar results

were also obtained by Wang et al. [39]. Other authors advo-

cate for the use of Latent Dirichlet Allocation (LDA) [40].

We decided to use LSI because it is efficient and widely

used in traceability recovery field. The used approach is

close to that proposed by Marcus and Maletic [6] and then

assessed by De Lucia et al. [36]. The use of a different text

retrieval model would not alter the results of our test case

prioritization approach. The use of a different IR technique

represent a possible future direction for our research.

4.1 Latent Semantic Indexing

LSI assumes that there is some underlying or latent struc-

ture in word usage that is partially obscured by vari-

ability in word choice, and uses statistical techniques to

estimate this latent structure. LSI uses information about

co-occurrence of terms (latent structure) to automatically

discover synonymy between two or more terms. The latent

structure of the content is obtained by applying a Singular

Value Decomposition (SVD) to a m n matrix C (also

named term-by-document matrix), where m is the number

of terms and n is the number of documents (artifacts in

our case). By applying SVD, each term and each artifact

could be represented by a vector in the k space (i.e.,

the dimensionality reduction of the latent structure) of

underlying concepts. Indeed, we use SVD to construct a

low-rank approximation Ck to the term-document matrix,

for a value of k that is far smaller than original rank of C.

Thus, we map each row/column to a k dimensional space,

which is defined by k principal eigenvectors (corresponding

to the largest eigenvalues) of CCT and CT C. The matrix

Ck is itself still an m × n matrix, irrespective of k. The

selection of an appropriate value for k is an open issue. A

value for k should be large enough to fit the real structure

of text, but small enough so that we do not also fit the

sampling error or unimportant details.

4.2 IR-Based Traceability Recovery

In a typical text retrieval problem, a software engineer

writes a textual query and retrieves documents that are

similar to that query. In IR-based traceability recovery a

set of source artifacts (used as the query) are compared

with set of target artifacts (even overlapping). Hence, the

number of queries is equal to the number of source artifacts.

To compute similarities between vectors, we use the new

k-dimensional space as we did the original representation.

Similarity between vectors can be computed by different

measures (e.g., Euclidean distance) [41]. In traceability

recovery, the widely used measure is cosine similarity [36]

between each pair of source and target software artifacts.

The larger the cosine similarity value, the more similar the

source artifact to the target one is.

Source artifacts are normalized in the same way as target

ones (i.e., the corpus). Different set of techniques could be

used (e.g., stop word removal and/or stemming). In our

case, normalization is performed by removing non-textual

tokens, splitting terms composed of two or more words,

and eliminating all the terms from a stop word list and

with a length less than three characters. Finally, a Porter

stemmer [41] is applied on lexemes to reduce them to their

root form.

All possible pairs (candidate traceability links) are re-

ported in a ranked list. Irrelevant pairs of artifacts can

be removed using a threshold that selects only a subset

of top links, i.e., retrieved links. Well known strategies

for threshold selection are [36]: Constant Threshold, a

constant threshold is chosen; Scale Threshold, a threshold

is computed as percentage of best similarity value between

two vectors; Variable Threshold, all links among those

candidate are retrieved links whether their similarity values

are in a fixed interval. In this work, we use the Constant

Threshold strategy to limit possibility of loosing links by

considering a large number of link candidates. IR-based

traceability recovery approaches retrieve also links between

source code and target artifacts that do not coincide with

correct ones: some are correct and others not. This is why

these approaches are semi-automatic and require human

intervention to remove erroneously recovered traceability

links. To reduce possible biases in test case prioritization

results due to human factors/decisions, we do not per-

form any further analysis to remove erroneously recovered

traceability links. It is worth mentioning that a traceability

recovery process could be executed (e.g., in background)

every time a tester want or requirements and/or source

code are modified in accordance to maintenance tasks. In

our case, this choice reduces the impact of the overhead

computational cost for the recovery of traceability links on

the execution of our test case prioritization approach.

7

Σ

∈

≤ ≤

Σ

∈

i

[

≤ ≤

Σ

∈

5 RELEVANT CODE AND REQUIREMENTS

In the following, we present metrics and algorithms pro-

posed to identify portions of application code and require-

ments that are potentially critical and fault-prone.

its weighted variant WRCov(t). In particular, RCov(t) is

the measure of requirements coverage for test case t and

measures application requirements exercised during the

execution of t. On the other hand, WRCov(t) measures the

coverage for a test case as follows:

5.1 Metrics

Code. Fault detection capability of a test suite cannot be

WRCov(t) =
r∈Requirements

wr r ReqsCovered
0 otherwise

known before executing test cases. Therefore, we have to

resort to potential fault detection capability of a test suite. It

can be estimated considering the amount of code covered

by test cases in a test suite at run-time [8]. A test case

that covers a larger set of code statements has a higher

potential fault detection capability (i.e., potentially more

faults should be revealed) than one test case that covers a

smaller set of statements.

We define CCov(t) as the amount of code statements

exercised during the execution of a given JUnit test case t.

A variant of this code coverage measure is WCCov(t). For

a given test case, it is defined as a weighted source code

coverage measure in which the coverage of source code is

computed as follows:

Requirements is a set containing the requirements of appli-

cation under test. ReqsCovered is the set of requirements

covered by the execution of test case t, obtained by means

of traceability links recovered by applying our approach.

On the other hand, r is one of application requirements and

wr (0 wr 1) is weight associated to this requirement.

Requirements weight wr can be defined in several ways ac-

cording to fault-proneness of application requirements. The

larger wr, the greater the fault-proneness of requirement is.

Our metric-based requirements prioritization technique au-

tomatically identifies fault-prone application requirements,

thus to be highly weighted when computing the coverage.

Given a test suite S and a possible ordering OrdS for test

cases of this suite, we define:

WCCov(t) =
s∈Statements

ws s CodeCovered
0 otherwise

cumRCov(ti) =

j

[

=1

RCov(tj)

where Statements is the set of source code statements.

CodeCovered is the set of statements covered by the

execution of the test case t, while s is a code statement

of an application and ws (0 ws 1) is a predefined

weight associated to each code statement. The higher

the ws value, the greater the relevance a tester gives to

statements is. In our previous work [4], we left the tester to

manually specify such a weight for different parts (e.g., Java

classes and packages) of code. In fact, this weight ws is

expected to be useful to customize the measurement of code

coverage according to testing needs. For example, a class

implementing a critical service for an application needs to

be tested more than other classes. In our approach, we

exploit a metric-based approach to automatically identify

such a weight for each Java class of the application under

test by considering code characteristics. Code metrics allow

ordering application classes according to their estimated

fault-proneness when computing artifact coverage.

Given a test suite S and an ordering OrdS for test cases

in this suite:

i

cumCCov(ti) = CCov(tj)
j=1

where ti is a test case in the suite. The cumulative code

coverage for ti is computed by summing single code

coverage (i.e., the code covered only by the test case) of

all those test cases from t0 to ti−1.

Requirements. The capability of a test case in exercising

users’ and/or application requirements depends on: (i) the

amount of requirements covered by this test case and

(ii) the relevance of covered requirements. Similarly to

code coverage measure, we defined and used RCov(t) and

where ti is a test case of the suite. Cumulative requirements

coverage for test case ti is computed by summing single

requirements coverage (i.e., the requirements covered only

by the test case) of all those test cases from t0 to ti−1.

Execution cost. The execution cost of a test case can be

approximated by the time required to its execution. If the

implementation of test cases is available, their execution

can be profiled to collect information about running time.

We defined Cost(t) as the time required to execute test case

t.

Given a test suite S and an ordering OrdS for test cases

of this suite, we defined cumCost(ti), where ti is one of the

test case of the suite. It represents the cumulative execution

of test case ti and it is computed as the sum of execution

costs of test cases preceding test case ti OrdS.

Cost(suite) is the overall cost of test cases and is com-

puted as the sum of execution costs of all the test cases.

We then define:

i

InverseCost(ti) = Cost(suite) − Cost(tj)
j=1

5.2 Automatic Weighting

Our metric-based approach automatically weights both

code ws and requirements wr of the application under

test. In particular, we apply code metrics to measure a

Maintainability Index for each Java class (MIclass). This

index estimates the fault-proneness of each class. We use

such an estimation for defining an order of the application

classes. To prioritize all the requirements according to how

they are implemented, we also compute a Maintainability

Index for each of these requirement (MIreq). The idea

8

TABLE 1

Metrics used for the automatic weighting

Metric Ref. Property Definition

Class-level Metrics

(CBO) Coupling Between Objects

(RFC) Response For a Class

(LCOM) Lack Of Cohesion on Methods

(LOCs) Lines of Code

(NOM) Number of methods

(DIT) Depth of Inheritance Tree

(NOC) Number of Children

(MCC) McCabe Cyclomatic Complexity
(WMC) Weighted Methods per Class

[42]

[42]

[42]

-

-

[42]

[42]

[42]

[42]

Coupling

Coupling

Cohesion

Size

Size

Inheritance

Complexity

Complexity

Complexity

It is the number of classes to which a class is coupled
It is the set of methods that can potentially be executed in response to a message

received by an object of the class

It describes the lack of cohesion among methods of a class

It counts the lines of code of a class

It counts the number of methods of a class

It is the length of the class from the root of the inheritance tree

It is the number of immediate subclasses of the class in the class hierarchy

It is (median of) the number of flows thought the code of the method of a class

It is the sum of the MCC for all methods in a class

Requirements-level Metrics

(NC) Number of Classes

(CDC) Requirements diffusion over components

(CDC+) CDC with similarity

(ShR) Shared among Requirements

(ShR+) ShR with similarity

(IN) Contained Requirements

[43]

[43]

-

[44]

-

[44]

Size

Scattering

Scattering

Tangling

Tangling

Inheritance

It is the number of classes implementing a requirements
It is the number of classes that contribute to the implementation of the target

requirements, among those of the application

It is a variant of CDC in which the contribution of each class is weighted according

to the similarity of each class with the requirements definition

It expresses the degree of classes that implement a requirements and that are shared

with, at least, another requirements of the application

It is a variant of ShR in which the contribution of each class is weighted according

to the similarity of each class with the definition of the requirements under analysis

It is the number of requirements whose implementation is entirely contained in the

target requirements

that guides both code and requirements prioritization is

to realize a most critical first strategy. That is, we aim at

increasing the possibility of testing the most critical classes

and requirements before the other classes and requirements.

Our automatic weighting approach is composed of the

following steps:

1) Recovering traceability links. Links among soft-

ware artifacts (i.e., source code and requirements) are

recovered by applying LSI;

2) Computing metrics. For each class, we measure a

set of metrics such as: size, complexity, coupling, and

cohesion. For each requirement, a set of metrics is

also computed to measure properties characterizing

requirements: size, complexity, coupling, cohesion,

scattering, and tangling degree.

3) Estimating maintainability indexes. The computed

metrics are used in a software quality model to com-

pute the maintainability index for each class and each

requirement based on their actual implementation in

the source code. Classes and requirements are ordered

by ranking according to their maintainability index.

5.2.1 Computing metrics

In Table 1, we summarize the used metrics. This table

shows the following information: the name of each metric,

the reference to the paper that originally defined it, the

measured software property, and an intuitive definition of

that metric. A formal and precise definition of such metrics

is beyond the scope of our paper.

We adopt the Class-level Metrics (Table 1 top) to com-

pute MIclass. On the other hand, to compute MIreq,

we adopt two distinctive sets of metrics working at the

following two levels of granularity:

1) traditional object-oriented size metrics working at

class-level (Table 1 top), i.e., for each class of the

target application we measure each metric;

2) concern-oriented metrics3 working at requirements-

level (Table 1 bottom), i.e., for each requirement

we measure such metrics inspired to the concern

ones [45].

The rationale behind the use of these two types of metrics

is that class-level metrics measure the classes composing

each requirement in isolation, while requirements-level

metrics let us relate the requirements implemented with the

one of the other requirements of the application.

5.2.2 Estimating maintainability indexes

The maintainability index is obtained by means of the

following three steps:

Outliers identification. After computing the code and

requirements-level metrics, we identify outliers [47]. For

a given metric, outliers are elements (i.e., classes and

requirements) whose values for such a metric exceed a

given threshold that is obtained on the base of the values

the other elements have for that metric. In our case, the

outliers are those elements having metric values within

the highest/lowest 15% of the value range defined by all

elements of the application [47]. For instance, if the CBO

value ranges between 0 and 56. Given two classes having

CBO(c1) = 52 and CBO(c2) = 35, then c1 is an outliers

for CBO (i.e., the value of c1 is in the range 85-100% of

CBO), while c2 is not an outliers.

Software Quality model. In Table 2, we present the

software quality models (at class- and requirements-level)

used to compute the maintainability index MI for each

class c and requirements r, starting from the two sets of

3. Their common goal regards the association of concern property
quantification with the impact on modularity flaws [45]. A concern is any
consideration that might impact the implementation of a program, whilst
concern measures lead to a shift in the measurement process instead of
quantifying properties of a particular module. These measures quantify
properties of one or multiple concerns with respect to the underlying
modular structure [46].

9

Σ

Σ

TABLE 2

Software Quality Model

Maintainability: Software Quality Models

Class-level Model

CBO

2

RFC

2

LCOM

2

LOCs

1

NOM

1

DIT

2

NOC

1

MCC

1

WMC

1

Requirements-level Model

NC
2

CDC
2

CDC+
2

ShR
1

ShR+
1

IN
1

metrics in Table 1. MI(c) represents an estimation of the

maintainability degree of each application code class c by

considering its structural properties [47]. MI(r) represents

an estimation of the maintainability degree of the software

code implementing the requirements r by considering its

structural properties. The used models are inspired by those

by Lincke et al. [47]. In these models, the metrics are

weighted according to the software property they measure.

As for class-level and consistently with Lincke, we chose:

2 for coupling, cohesion, and inheritance metrics, while 1

for the other metrics. As for requirements-level, we chose:

2 for size and scattering, while 1 for the other metrics.

By knowing the outliers and using a software quality

model such as the one in Table 2, we can compute a

maintainability index for each application element by ag-

gregating the metrics in Table 1 according to their weights

in the used models as follows:

MI(element) = m∈Metrics
(Wm ∗ Om)

(Wm)

Metrics is the set of metrics, Wm is the weight of the

metrics m in the model and Om is the number of outliers

elements for the metrics in the considered model. The

MI(element) value ranges in between 0 and 1. The value

0 is the best possible index (i.e., no outliers elements), while

1 is the worst (i.e., all elements are outliers). For instance,

if a class c1 is an outliers only for CBO, LOCs, and DIT,

then, referring to Table 2, MI(c1) = 5/13 = 0.385, so, c1

has a maintainability index of 0.385, i.e., 38.5%.

Maintainability index computation. To compute the

maintainability index MIclass(c), we use the class-level

quality model (Table 2 top). Then, we compute a maintain-

ability index MIreq(r) for each requirement r of the target

application. To this aim, two additional maintainability

indexes are computed: MIC(r) and MIR(r). MIC(r) is

computed by averaging the maintainability index MIclass
of the classes that implement r (on the base of trace-

ability links), while MIR(r) is computed by applying

the requirements-level quality model for r (i.e., using

the requirements-level metrics in Table 1). By averaging

MIC(r) and MIR(r) for each requirement r, we estimate

the maintainability for r by considering the properties, at

the same time, of the code implementing r in isolation

and the implementation of r with respect to the other

requirements [48].

Application source code classes and requirements are

ordered by ranking the classes and the requirements ac-

cording to their estimated maintainability index (MIclass

TABLE 3

Example: statements, classes, requirements, and test case

definition

St=

S={St, C, R}
(s1, s2, s3, s4, s5⟩

C=(c1, c2, c3, c4⟩
R=(r1, r2, r3⟩

Statements Class Reqs

s1
s2

s3

s4

s5

c1
c2

c2

c3

c4

r2
r3

r1

r3

r3

 Test Case Cost (seconds) Statements Reqs.
t1
t2

t3

20
100

50

s1, s3
s3, s4, s5

s1, s2, s3

r1, r2
r1, r3

r1, r2, r3

MIclass MIreq

MIclass(c1)=0.02 MIclass(c2)=0.3
MIclass(c3)=0.2 MIclass(c4)=0.8

MIreq (r1)=0.5 MIreq (r2)=0.2

MIreq (r3)=0.75

and MIreq, respectively).

5.3 Identifying Cumulative Test Orderings

For each test case ti of a given test ordering OrdS, the

measures cumCCov(ti), cumRCov(ti) and InverseCost(ti)

are computed considering the position of ti in OrdS. Then,

we computed the area of the curves obtained by plotting

the values of the metric (on X axes) with respect to

the test cases in OrdS (Y axes) in a Cartesian plan. To

get a numerical approximation of that area, we used the

Trapezoidal rule [49]. It computes the area of a curve as

the area of a linear function that approximates that curve.

For OrdS and each cumulative measure, the area (Area

Under the Curve, AUC, from here on) estimates the

code coverage AUCcode(OrdS), the requirements coverage

AUCreq(OrdS), and the execution cost AUCcost(OrdS),

respectively. The area indicates how fast the test ordering

OrdS converges. The larger AUC, the faster this test case

ordering converges.

5.4 Example

As an example, let us consider a system that implements

three requirements (r1-r3) and that is composed of four

classes (c1-c4) and five statements (s1-s5). Table 3

(top) details relationship among statements, classes and

requirements. For instance, statement s1 is part of class

c1 and it contributes to realize r2. Table 3 (middle) shows

a test suite composed of three test cases (t1, t2, t3) and

it shows cost and coverage information for each test case

as well. For instance, test case t1 costs 20 (seconds)

and it covers s1 and s2, and it tests requirements r1

and r2. We assume that coverage information contained

in Table 3 has been achieved by applying our IR-based

traceability recovery approach. Table 3 (bottom) shows

possible values of maintainability index MI computed

for each class and each requirement of system under test

and used in test suite prioritization to weight metrics for

measuring code and requirements coverage of each test

case. We assume that such values have been automatically

computed. Considering two possible test orderings for test

10

⟨ ⟩
⟨ ⟩

|{ }| |{ }|

cases shown in Table 3, namely Ord1S= t1, t2, t3 and

Ord2S= t3, t1, t2 . Values of AUC for the two test case

orderings are shown in Table 4. This table also reports

some details for the computation of each measure adopted

to compute AUC values. In particular, the table shows

measures computed for two test orderings by non-weighting

(column wx = 1) measures and by automatically weighting

(column wx = MI) such measures with maintainability

index MI. For example, we can see in Table 4 that

cumCCov(t1) corresponds to 2 in non-weighted measures

(where each weight wx = 1) for test ordering Ord1S.

On the other hand, cumCCov(t1) corresponds to 0.32

(MIclass(c1) s1 +MIclass(c2) s3 =0.02*1+0.3*1)

in MI-based weighted measures (where each weight

TABLE 4

Example of AUC measures and comparison between

different test cases orderings (Ord1S and Ord2S)

wx = MI class (x)). By comparing Ord1S and Ord2S
according to the three AUC measures computed using

both non-weighted and weighted approaches, we can

note that Ord1S and Ord2S have the same AUCcode,

but they are different in terms of AUCreq and AUCcost,

namely Ord2S has a higher AUC in both AUCreq and

AUCcost. In addition, we can note that Ord1S has a higher

AUCcode than Ord2S while this former still preserve a

higher value for both AUCreq and AUCcost. Hence, we

can deduce that: (i) if we consider non-weighted approach,

Ord2S outperforms Ord1S having greater or, at least, not

inferior values in all three measures and (ii) if we consider

weighted approach, no one test ordering outperforms other

one, in all three considered dimensions. This example

suggests that our automatic weighting lets us to work

actually at a fine-grained granularity and gives more

relevance to key portions of source code and requirements.

6 MULTI-OBJECTIVE PRIORITIZATION

NSGA-II uses a set of genetic operators (i.e., crossover,

mutation, and selection) to iteratively evolve an initial

population of candidate solutions. In our case, candidate

solutions are test cases orderings. Evolution is guided by an

objective function (i.e., the fitness function) that evaluates

each candidate solution along considered dimensions. In

each iteration, the Pareto front of best alternative solutions

is generated from evolved population. The front contains

the set of non-dominated solutions, i.e., those solutions that

are not inferior (dominated) to any other solution in all con-

sidered dimensions. Population evolution is iterated until a

(predefined) maximum number of iterations is reached.

In our case, a Pareto front represents the optimal trade-off

between the three dimensions determined by NSGA-II. The

tester can then inspect a Pareto front to find the best com-

promise between having a test case ordering that balances

code coverage, requirements coverage, and execution cost

or alternatively having a test case ordering that maximizes

one/two dimension/s penalizing the remaining one/s.

Our proposed process can be summarized as follows:

1) Solution Encoding. A solution is a possible ordering

of the test cases under analysis. OrdS represents an

execution order for the test cases of suite S. The

solution space for the test case prioritization problem

is the set of permutations of test case orderings. A test

case ordering is represented as an ordered sequence of

integers, where each integer represents the identifier

of a test case.

2) Initialization. The starting population is initialized

randomly selecting a sub-set of possible test case

orderings among all possible permutations of test

cases (i.e., the solution space).

3) Genetic Operators. For the evolution of

permutation-based encoding for the solutions,

we exploited standard operators as described in [50].

As mutation operator, we used SWAP-Mutation in

which two randomly chosen permutation elements

of the solution are swapped. The adopted crossover

operator is PMX-Crossover in which a pair of

solutions is recombined by randomly choosing

an intermediate point and swapping permutation

elements at that point among both solutions. Finally,

we used binary tournament as selection operator.

Two solutions are randomly chosen and the fitter

of the two is the one that survives in the next

population.

4) Fitness Functions. Since our goal is to maximize the

three considered dimensions, each candidate solution

in the population is evaluated by our objective func-

tion based on: AUCcode(OrdS), AUCreq(OrdS), and

AUCcost(OrdS). The larger these values, the faster

Ord1S =⟨t1, t2, t3⟩
Measure Computation wx

1 MIx

cumCCov(t1)

cumCCov(t2)

cumCCov(t3)

AUCcode

wx|{s1}|+ wx|{s3}|

cumCCov(t1)+wx|{s4}| + wx|{s5}|

cumCCov(t2) +wx|{s2}|

2

4

5

8.5

0.32

1.32

1.62

2.45

cumRCov(t1)

cumRCov(t2)

cumRCov(t3)

wx|{r1}|+ wx|{r2}|
cumRCov(t1) +wx|{r3}|

cumRCov(t2)

2

3

3

0.7

1.45

1.45

AUCreq 6.5 2.875

Cost(suite) 170

InvCost(t1) 150

InvCost(t2) 50

InvCost(t3) 0

AUCcost 200

Ord2S =⟨t3, t1, t2⟩
Measure Computation wx

1 MIx

cumCCov(t3)

cumCCov(t1)

wx|{s1}|+wx|{s2}|+wx|{s3}|
cumCCov(t3)

3

3

0.62

0.62

cumCCov(t2)

AUCcode

cumCCov(t1)+wx|{s4}| + wx|{s5}| 5

8.5

1.62

2.05

cumRCov(t3)

cumRCov(t1)

wx|{r1}|+wx|{r2}|+wx|{r3}|
cumRCov(t3)

3

3

1.45

1.45

cumRCov(t2) cumRCov(t1) 3 1.45

AUCreq 7.5 3.625

Cost(suite) 170

InvCost(t3) 120

InvCost(t1) 100

InvCost(t2) 0

AUCcost 220

11

∈

the convergence of a test case ordering is.

7 EXPERIMENTAL ASSESSMENT

To evaluate of our approach, we have developed a proto-

type of a supporting system. It integrates and extends the

following two tool prototypes: (i) MOTCP [51] that im-

plements our previous proposed prioritization technique [4]

and represents the base for our new approach and (ii) SWT-

Metrics [48], which implements our automatic weighting

approach to prioritize software artifacts. MOTCP+ is the

name of the tool implementing our new prioritize technique.

It is composed of a number of software components hav-

ing the purpose of preparing data related to metrics and

traceability links and executing the prioritization process

as shown in Figure 1. In particular, there is a component

in charge of recovering traceability links among software

artifacts. It integrates and extends Traceclipse [30]. We im-

plemented a component to compute class-level metrics and

requirements-level metrics and a component to compute

the maintainability index of each code class and require-

ment and to determine their orderings. Finally, our three-

objective test case prioritization algorithm was implemented

in a component that integrated the implementation of

NSGA-II available in JMetal4 meta-heuristics library [52].

According to the Goal Question Metrics (GQM) template

by Basili and Rombach [53], the goal of our experiment can

be summarized as follows:

1) Analyze the use of our proposal for the purpose

of evaluating its support in the prioritization of test

cases with respect to effectiveness, sensitivity, and

robustness from the point of view of the researcher

in the context of Java applications and from the

• Sensitivity. From a tester’s perspective, this criterion

provides an indication on the capability of test case

orderings in revealing faults with a high severity and

relevance with respect to application requirements.

Only in the case of our proposal, we also analyzed

its Robustness with respect to the goodness of recov-

ered traceability links. Robustness gives us an idea about

the capability of our test case prioritization approach of

adequately working in presence of incomplete or spuri-

ous/wrong traceability links.

To have a deeper understanding of results, we also

perform: (i) an analysis of the generated Pareto Fronts

and of impact of each metric used by our tool to find

optimal solutions and (ii) an analysis of possible co-factors

characterizing experimental objects and artifacts as well

as relationships among them. Among analyzed co-factors,

we consider: the size of applications and their test suites,

the number of requirements, the relationships between test

cases and requirements, the capability of test suites in re-

vealing faults, the test case redundancy, and the distribution

of faults in source code and requirements.

7.1 Evaluation Measures

The Average Percentage of Fault Detected (APFD) is

the measure conventionally adopted to evaluate test case

orderings [9]. Given a test suite S containing n test cases

and let F be the set of m faults revealed by S. For an

ordering S’ of S, let SFi be the position of first test case

s S’ that reveals the i-th fault. The APFD value for S’ is

computed as follows:

SF1 + ... + SFm 1
APFD = 1 − +

point of view of the practitioner assessing whether

our proposal is a viable solution in the context of

his/her own company.

The GQM formalism ensures that important aspects are

defined before planning and execution of our experiment

took place [54].

According to our experiment goal, we compare our

proposal with traditional test cases prioritization tech-

niques [8], [9], [10], namely random prioritization (Rand),

code coverage (CodeCov), and additional code coverage

(AddCodeCov) prioritization. Similarly to Yoo and Har-

man [11], we also applied NSGA-II on the dimensions:

code coverage and execution cost of test cases. This rep-

resents another baseline for comparison (NSGAIIdim2). An

additional baseline for comparison is our previous multi-

objective technique [4]. It used code coverage, requirements

coverage, and execution time of test cases without applying

the automatic weighting scheme we present in this paper.

The comparison has been performed with respect to the

following criteria:

• Effectiveness. It concerns the capability of test case

orderings in revealing faults.

4. http://jmetal.sourceforge.net/

nm 2n

We run an approach (e.g., AddCodeCov or MOTCP+) on a

given application, thus obtaining an ordering S’. A number

of versions of that application are obtained seeding one

fault per time in its source code [9]. That is, each version

contains only one injected fault. To assess the capability

of S’ in detecting faults the APFD value is computed with

respect to the obtained versions of the original application.

A high APFD value signifies a fast fault-detection rate of

the ordering S’.

The APFD-based test case prioritization evaluation as-

sumes that test costs and fault severity and relevance are all

uniform [55]. However, test costs and fault severity can vary

widely in a real-life context. Hence, to get a quantitative

measure of Effectiveness and Sensitivity, we consider

three variants of that measure: APFDall computed checking

all injected faults, APFDftype1 computed checking the

subset of severe faults; and APFDftype2 computed checking

the subset of faults related to relevant requirements. In

particular, Effectiveness is estimated by APFDall, while

APFDftype1 and APFDftype2 estimate Sensitivity.

We statistically analyze results achieved by

MOTCP+ and baseline techniques. The tested null

hypothesis is:

http://jmetal.sourceforge.net/

12

TABLE 5

Objects under study

Application Size (LOCs) Test Cases Req.s Faults Web site

LaTazza 2k 33 10 12 -

AveCalc 2k 47 10 15 -

CommonsProxy 5k 179 10 10 http://commons.apache.org/proxy

DBUtils 5k 225 12 14 http://commons.apache.org/dbutils

iTrust 15k 919 15 21 http://agile.csc.ncsu.edu/iTrust

CommonsCodec 17k 608 19 20 http://commons.apache.org/codec

JTidy 20k 289 25 15 http://jtidy.sourceforge.net

Woden 22k 263 24 19 http://ws.apache.org/woden

Log4J 25k 1029 24 20 http://logging.apache.org/log4j

Betwixt 25k 325 18 20 http://commons.apache.org/dormant/commons-betwixt

JXPath 25k 386 20 20 http://commons.apache.org/jxpath

CommonsIO 25k 859 18 20 http://commons.apache.org/

CommonsBcel 30k 75 20 20 http://commons.apache.org/bcel

CommonsBeanUtils 32k 1556 26 22 http://commons.apache.org/beanutils

XMLGraphics 34k 196 24 15 http://xmlgraphics.apache.org

XMLSecurity 40k 92 23 15 http://santuario.apache.org

CommonsCollections 50k 798 17 20 http://commons.apache.org/collections

Pmd 55k 698 20 20 http://pmd.sourceforge.net

CommonsLang 60k 2307 16 20 http://commons.apache.org/lang

Jabref 70k 213 31 20 http://jabref.sourceforge.net

Xerces 138k 376 20 20 http://xerces.apache.org

NHfaults - there is no difference in the APFD val-

ues obtained on the suites generated by applying

the different approaches.

To test this null hypothesis, we conducted pairwise com-

parisons among results achieved for test suites generated

by the techniques by using the non-parametric one-tailed

Mann-Whitney test since we expect that our novel approach

will obtain better results than other techniques. We use the

Benjamini-Hochberg [56] correction for the compensation

of repeated statistical tests.

To analyze Pareto Front’s metrics, we adopt the Spear-

man’s Rank correlation coefficient (ρ) to estimate collinear-

ity, if any, of the three metrics used to build Pareto fronts.

The Spearman’s Rank correlation coefficient measures cor-

relation between a pair of variables. The returned value

ranges in between -1 and +1, where +1 indicates perfect

correlation and -1 indicates a perfect inverse correlation.

We also apply Principal Components Analysis (PCA) to

check whether metrics used to built each front are correlated

each other, thus discovering those metrics that are dominant

and those redundant. PCA is a non-parametric statistical

technique that estimates interrelation degree of variables

for identifying underlying structures, if any, and combining

variables into smaller sets of linearly uncorrelated variables,

called principal components (PCs). By applying PCA,

we aim at checking the presence of interrelations among

metrics on test suites composing Pareto fronts. The defined

null hypothesis is:

NHpareto - no correlations exist among our

Pareto’s metrics.

To evaluate the impact of possible co-factors on achieved

results, we mainly applied a two-way permutation test [57].

Our null hypothesis is:

NHco−factors - there is no significant impact of

the considered co-factor/s on APFD values.

In all performed statistical tests, we decided (as custom-

ary) to accept a probability of 5% of committing a Type- 1-

Error [54], namely a null hypothesis is rejected if the p-

value returned by a statistical test is less than 0.05.

7.2 Experimental Objects

We considered 21 Java applications form different appli-

cation domains as experimental objects. These applications

range from small to large in terms of size and implemented

functionality. Table 5 summarizes the size of each applica-

tion in terms of lines of code, as well as the number of test

cases, requirements, and faults, and shows links to applica-

tion websites. The considered 21 Java applications were

chosen primarily because of the availability of software

artifacts we needed to apply our technique (e.g., textual

description of the application requirements).

7.3 Procedure

For each application, we applied the following experimental

procedure:

1) Collecting available artifacts. For each applica-

tion, we collected requirements specifications, source

code, and JUnit test cases.

2) Recovering the traceability links. We used the fol-

lowing set-up: k=300; constant threshold=0.1.

3) Applying MOTCP+, MOTCP, Rand, CodCov, Ad-

dCodeCov, and NSGAIIdim2. We ran MOTCP,

MOTCP+, and NSGAIIdim2 with the following set-

up: population size=2*’test suite size’; max it-

erations=1000; crossover probability=0.9; mutation

probability=1/’test suite size’. Since Rand has a non-

deterministic behavior, we ran it several times (i.e.,

30 times) and then we evaluated all generated solu-

tions. We report descriptive statistics on the values of

obtained solutions (min, median, mean, and max).

On the other hand, since MOTCP, MOTCP+, and

http://commons.apache.org/proxy
http://commons.apache.org/dbutils
http://agile.csc.ncsu.edu/iTrust
http://commons.apache.org/codec
http://jtidy.sourceforge.net/
http://ws.apache.org/woden
http://logging.apache.org/log4j
http://commons.apache.org/dormant/commons-betwixt
http://commons.apache.org/jxpath
http://commons.apache.org/
http://commons.apache.org/bcel
http://commons.apache.org/beanutils
http://xmlgraphics.apache.org/
http://santuario.apache.org/
http://commons.apache.org/collections
http://pmd.sourceforge.net/
http://commons.apache.org/lang
http://jabref.sourceforge.net/
http://xerces.apache.org/

13

NSGAIIdim2 are expected to generate sets of equiv-

alent good solutions per execution (Pareto front),

we evaluated all solutions in an obtained front by

considering the following descriptive statistics on

used measures: min, median, mean, and max. This

allowed us to better analyze the behavior of studied

techniques. It easily follows that the meaning of min,

median, mean, and max is different between Rand

and MOTCP, MOTCP+, and NSGAIIdim2.

4) Injecting m faults of different severity (i.e., high

and low) in the source code of a given application,

thus producing m buggy versions. For example, m
is equal to 12 for LaTazza (see Table 5), meaning

that we obtained 12 different faulty versions for

that application. The injection of faults is critical

because hand-seeded faults may not be representative

of real faults [58]. Therefore, we applied a repeatable

process to inject faults that are similar as much as

possible to actual ones [59]. This process is based on

the following steps that are executed sequentially:

a) Analyzing online bug tracker of a given appli-

cation to find documented failures.

b) Faults generated these documented failures are

selected according to the following criteria:

(i) status of the fault is closed/solved; (ii) devi-

ation between observed and specified behaviors

is clearly described from a functional point of

view; and (iii) it is possible to link the fault to

the code where this fault was present. To get this

link, we needed the following information: ap-

plication version where a failure was observed;

code (i.e., class name at least) containing that

fault; version of application where that fault was

fixed and how it was fixed.

c) Analyzing code patches posted to fix a fault

(if any) and code affected by this fault. The

goal here is to recover information on how to

reproduce the original failure.

d) Replicating each failure by injecting a fault in

the source code of the original application. As

mentioned before, one fault per time is injected

in that code, so obtaining one faulty version for

each injected fault. We check the capability of

a test suite in revealing the failure associated to

each injected fault. If at least one test case fails

(i.e., the failure is detected by our test suite),

we add the injected fault to the set of faults of

our experimental investigation.

e) Examining each injected fault to understand if

it can be considered severe and/or related to

relevant requirements. To classify a fault as

severe, we primary consider its severity and

priority fields in bug report. For example, a fault

is severe if both its priority and its severity are

high. To classify faults with respect to relevant

requirements, we considered which application

functionality is affected by fault and relevance

of that functionality from the user’s perspective.

For example, a fault is considered related to

a relevant requirement if application documen-

tation lists this requirement as one of most

important ones.

To reduce as much as possible threats related to

representativeness of hand-seeded faults, the injection

process was performed by an author involved neither

in the definition of our prioritization technique nor

in the execution of experiment. In the Appendix A ,

we show an example of application of the described

injection process.

5) Executing test case orderings. Test case orderings

obtained by the techniques is executed for testing

each version of the application.

6) Computing APFDall, APFDftype1 and APFDftype2
for each studied test prioritization technique, appli-

cation, and ordering.

7) Executing steps from 2 to 7. In the second iteration,

we randomly changed and/or removed 10% of the

recovered traceability links (step 2) to estimate the

Robustness of the approach.

8) Analyzing collected data. Our analysis procedure is

applied on these data.

7.3.1 Threats to validity

Used experimental objects (i.e., applications) and artifacts

(i.e., source code, test cases, and requirements) might

threaten the validity of our results. To deal with these

threats, we used a large set of applications having different

characteristics (e.g., from small to large) and application

domains (e.g., bibliography reference manager). As far

as application artifacts are concerned, we exploited as

much as possible those provided by original developers.

If not available, we reconstructed them by looking at the

documentation provided by the developers in user manuals

and APIs.

Another threat to validity is the set of injected faults,

as well as their distribution in application code. We are

conscious that different sets of faults could lead to different

results. With the aim of limiting such a threat, we used

an experimental process [59] that exploits actual faults de-

scribed into application bug tracker systems. Therefore, we

analyzed the bug tracker of each application and selected

not-trivial and critical faults that we were able to reproduce.

Since it is rare to have an application with many faults,

we produced a version for each fault injected. As for test

case execution cost, we only considered the time needed to

execute test cases. This choice represents a limitation for

the applicability of our approach [60], [61]. However, our

approach can be easily extended to take also into account

additional related costs for regression testing (e.g., the time

to inspect the results). This is the subject of future work.

The set up of the experiment represents another threat

to the validity of results. In particular, the number of runs

for Rand and parameters chosen for the recovery of links

among software artifacts and the parameters chosen in the

multi-objective algorithm could potentially affect results.

14

TABLE 6

APFD of AveCalc, LaTazza, DBUtils, CommonsProxy and iTrust

APFD
 AveCalc LaTazza DBUtils CommonsProxy iTrust
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links
Randmin 0.59 0.74 0.62 0.66 0.54 0.58 0.41 0.41 0.27 0.37 0.34 0.17 0.52 0.49 0.47
Randmean 0.73 0.82 0.84 0.75 0.74 0.83 0.52 0.57 0.47 0.53 0.55 0.5 0.63 0.65 0.63
Randmedian 0.74 0.85 0.8 0.75 0.75 0.72 0.51 0.57 0.46 0.53 0.56 0.5 0.63 0.66 0.66
Randmax 0.83 0.93 0.91 0.81 0.88 0.88 0.65 0.8 0.75 0.65 0.77 0.74 0.73 0.81 0.79
CodeCov 0.77 0.78 0.81 0.6 0.72 0.56 0.4 0.34 0.47 0.56 0.62 0.45 0.56 0.6 0.58
AddCodeCov 0.79 0.8 0.92 0.6 0.72 0.56 0.55 0.71 0.4 0.59 0.65 0.47 0.7 0.71 0.69
NSGAIIdim2 min 0.72 0.79 0.75 0.78 0.7 0.83 0.46 0.43 0.28 0.39 0.27 0.35 0.52 0.51 0.51
NSGAIIdim2 mean 0.78 0.82 0.84 0.78 0.7 0.83 0.52 0.56 0.46 0.48 0.45 0.46 0.6 0.62 0.6
NSGAIIdim2 median 0.79 0.83 0.86 0.78 0.7 0.83 0.52 0.53 0.52 0.47 0.41 0.47 0.61 0.64 0.61
NSGAIIdim2 max 0.87 0.91 0.94 0.78 0.7 0.83 0.61 0.75 0.54 0.59 0.75 0.57 0.63 0.67 0.64
MOTCPmin 0.72 0.75 0.76 0.75 0.65 0.72 0.46 0.62 0.25 0.42 0.35 0.38 0.49 0.4 0.49
MOTCPmean 0.78 0.84 0.83 0.77 0.7 0.75 0.53 0.71 0.43 0.53 0.47 0.53 0.63 0.64 0.65
MOTCPmedian 0.79 0.84 0.83 0.77 0.7 0.75 0.51 0.71 0.44 0.52 0.49 0.5 0.63 0.63 0.63
MOTCPmax 0.86 0.92 0.94 0.79 0.75 0.79 0.65 0.9 0.52 0.65 0.77 0.8 0.72 0.73 0.7
MOTCP+ min 0.62 0.69 0.69 0.77 0.77 0.76 0.45 0.42 0.31 0.31 0.27 0.21 0.52 0.6 0.52
MOTCP+ mean 0.79 0.83 0.87 0.82 0.82 0.88 0.57 0.7 0.47 0.47 0.41 0.45 0.61 0.67 0.61
MOTCP+ median 0.8 0.82 0.88 0.82 0.84 0.91 0.56 0.7 0.48 0.47 0.46 0.46 0.61 0.66 0.61
MOTCP+ max 0.9 0.94 0.94 0.85 0.86 0.93 0.67 0.84 0.63 0.67 0.69 0.72 0.8 0.81 0.81

Incomplete Traceability Links
MOTCP+ min 0.69 0.72 0.82 0.71 0.75 0.76 0.44 0.44 0.35 0.3 0.25 0.19 0.53 0.53 0.52
MOTCP+ mean 0.79 0.81 0.88 0.75 0.8 0.79 0.56 0.59 0.52 0.5 0.5 0.49 0.6 0.65 0.62
MOTCP+ median 0.79 0.8 0.89 0.75 0.79 0.79 0.56 0.57 0.53 0.5 0.5 0.53 0.59 0.63 0.61
MOTCP+ max 0.88 0.92 0.92 0.78 0.87 0.82 0.62 0.77 0.59 0.65 0.76 0.59 0.69 0.76 0.71

TABLE 7

APFD of JTidy, CommonsCodec, Woden, Log4J and Betwixt

APFD
 CommonsCodec JTidy Woden Log4J Betwixt
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links
Randmin 0.36 0.31 0.35 0.43 0.19 0.19 0.44 0.38 0.25 0.55 0.4 0.51 0.46 0.5 0.29
Randmean 0.57 0.57 0.6 0.57 0.51 0.54 0.56 0.55 0.53 0.63 0.61 0.67 0.58 0.63 0.57
Randmedian 0.58 0.6 0.62 0.57 0.47 0.47 0.57 0.55 0.51 0.63 0.64 0.66 0.58 0.63 0.59
Randmax 0.66 0.75 0.73 0.65 0.73 0.73 0.65 0.71 0.71 0.75 0.78 0.88 0.69 0.8 0.77
CodeCov 0.58 0.46 0.4 0.46 0.27 0.27 0.5 0.53 0.57 0.48 0.58 0.7 0.52 0.66 0.5
AddCodeCov 0.53 0.43 0.44 0.5 0.24 0.24 0.54 0.44 0.58 0.76 0.69 0.84 0.58 0.66 0.52
NSGAIIdim2 min 0.49 0.45 0.45 0.63 0.6 0.55 0.39 0.27 0.18 0.61 0.52 0.53 0.48 0.49 0.43
NSGAIIdim2 mean 0.59 0.6 0.58 0.71 0.68 0.62 0.42 0.39 0.34 0.7 0.67 0.65 0.56 0.69 0.54
NSGAIIdim2 median 0.59 0.64 0.59 0.73 0.71 0.57 0.42 0.41 0.39 0.71 0.66 0.64 0.56 0.71 0.52
NSGAIIdim2 max 0.66 0.71 0.69 0.8 0.75 0.81 0.44 0.46 0.4 0.78 0.78 0.83 0.68 0.82 0.77
MOTCPmin 0.42 0.32 0.43 0.58 0.46 0.46 0.43 0.39 0.35 0.5 0.45 0.54 0.48 0.55 0.4
MOTCPmean 0.56 0.55 0.57 0.64 0.56 0.71 0.49 0.48 0.48 0.65 0.59 0.72 0.6 0.7 0.58
MOTCPmedian 0.56 0.55 0.56 0.61 0.59 0.59 0.5 0.47 0.48 0.65 0.59 0.71 0.61 0.71 0.59
MOTCPmax 0.67 0.77 0.73 0.71 0.68 0.68 0.57 0.61 0.64 0.75 0.7 0.92 0.67 0.86 0.68
MOTCP+ min 0.45 0.35 0.37 0.47 0.43 0.43 0.43 0.32 0.27 0.54 0.54 0.49 0.5 0.49 0.47
MOTCP+ mean 0.54 0.5 0.54 0.62 0.58 0.58 0.54 0.5 0.53 0.67 0.66 0.72 0.61 0.67 0.67
MOTCP+ median 0.54 0.48 0.51 0.62 0.59 0.59 0.53 0.48 0.54 0.66 0.67 0.71 0.61 0.66 0.61
MOTCP+ max 0.69 0.78 0.79 0.77 0.85 0.85 0.68 0.76 0.74 0.76 0.82 0.87 0.74 0.86 0.83

Incomplete Traceability Links
MOTCP+ min 0.45 0.36 0.37 0.5 0.38 0.38 0.39 0.38 0.27 0.47 0.37 0.38 0.55 0.59 0.47
MOTCP+ mean 0.59 0.58 0.6 0.66 0.58 0.62 0.54 0.52 0.47 0.62 0.59 0.66 0.61 0.73 0.6
MOTCP+ median 0.6 0.6 0.61 0.65 0.68 0.61 0.55 0.51 0.49 0.61 0.58 0.65 0.61 0.72 0.59
MOTCP+ max 0.71 0.77 0.81 0.81 0.79 0.77 0.63 0.71 0.7 0.8 0.84 0.86 0.69 0.87 0.71

7.4 Results

In the following subsections, we show obtained results by

grouping them for each of considered criteria.

7.4.1 Effectiveness

Tables 6-10 (column APFDall of Traceability Links) report

collected APFD values for the 21 applications object of

our experiment, in presence of recovered traceability links

(top) and considering all injected faults. These tables report

results in terms of minimal, median, mean, and maximal

APFD values achieved for each technique. In Table 11

(columns all), we report the number of times (i.e., appli-

cations) in which each technique outperformed others. To

perform this comparison, we considered: (i) mean and me-

dian values (columns on the left), thus limiting the impact

of possible outliers, (ii) and maximum values (columns on

the right). For example, Rand achieved the highest mean

and median values for APFD in one case (i.e., Woden)

considering all injected faults. MOTCP+ obtained the best

results for 7 applications. In some cases, more than one

technique obtained the best mean and median values for

APFD, so justifying why the sum of values in each column

(i.e., all, ftype1, and ftype2) is greater than 21.

15

÷

TABLE 8

APFD of JXPath, CommonsIO and CommonsBcel, CommonsBeanUtils and XMLGraphics

APFD
 JXPath CommonsIO CommonsBcel CommonsBeanUtils XMLGraphics
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links
Randmin 0.45 0.26 0.41 0.36 0.32 0.2 0.37 0.29 0.29 0.44 0.24 0.27 0.38 0.28 0.24
Randmean 0.53 0.52 0.57 0.52 0.54 0.5 0.51 0.51 0.47 0.56 0.48 0.51 0.49 0.49 0.48
Randmedian 0.53 0.52 0.57 0.52 0.55 0.47 0.51 0.53 0.46 0.56 0.5 0.53 0.5 0.48 0.48
Randmax 0.63 0.67 0.77 0.65 0.81 0.85 0.63 0.71 0.8 0.63 0.7 0.74 0.61 0.76 0.68
CodeCov 0.54 0.57 0.49 0.59 0.63 0.69 0.48 0.39 0.56 0.52 0.54 0.61 0.55 0.45 0.5
AddCodeCov 0.55 0.63 0.47 0.52 0.54 0.42 0.49 0.59 0.45 0.75 0.9 0.67 0.49 0.42 0.53
NSGAIIdim2 min 0.51 0.43 0.54 0.45 0.31 0.41 0.5 0.32 0.32 0.54 0.42 0.54 0.48 0.39 0.4
NSGAIIdim2 mean 0.6 0.59 0.63 0.52 0.47 0.55 0.58 0.5 0.65 0.61 0.51 0.65 0.55 0.55 0.57
NSGAIIdim2 median 0.6 0.62 0.63 0.5 0.45 0.52 0.58 0.53 0.65 0.61 0.51 0.69 0.53 0.54 0.55
NSGAIIdim2 max 0.73 0.83 0.76 0.62 0.73 0.73 0.66 0.64 0.85 0.65 0.6 0.75 0.68 0.72 0.84
MOTCPmin 0.44 0.33 0.36 0.46 0.42 0.34 0.39 0.39 0.41 0.5 0.28 0.33 0.4 0.37 0.25
MOTCPmean 0.55 0.54 0.6 0.56 0.56 0.53 0.52 0.53 0.51 0.6 0.51 0.57 0.54 0.62 0.51
MOTCPmedian 0.54 0.54 0.6 0.57 0.59 0.51 0.52 0.52 0.54 0.59 0.51 0.58 0.54 0.62 0.53
MOTCPmax 0.7 0.76 0.79 0.6 0.66 0.74 0.65 0.65 0.67 0.7 0.78 0.71 0.7 0.83 0.84
MOTCP+ min 0.41 0.46 0.39 0.41 0.44 0.33 0.37 0.33 0.22 0.49 0.35 0.36 0.45 0.37 0.3
MOTCP+ mean 0.56 0.62 0.6 0.54 0.62 0.54 0.53 0.48 0.5 0.61 0.52 0.57 0.55 0.56 0.58
MOTCP+ median 0.57 0.63 0.58 0.53 0.63 0.54 0.53 0.47 0.49 0.6 0.52 0.55 0.55 0.56 0.62
MOTCP+ max 0.67 0.81 0.88 0.68 0.79 0.73 0.68 0.73 0.76 0.71 0.68 0.82 0.71 0.78 0.89

Incomplete Traceability Links
MOTCP+ min 0.47 0.28 0.38 0.41 0.44 0.44 0.41 0.33 0.22 0.5 0.3 0.3 0.45 0.44 0.24
MOTCP+ mean 0.56 0.57 0.62 0.55 0.54 0.51 0.5 0.5 0.53 0.6 0.51 0.57 0.51 0.56 0.44
MOTCP+ median 0.56 0.58 0.63 0.53 0.63 0.5 0.53 0.47 0.49 0.59 0.5 0.58 0.55 0.56 0.44
MOTCP+ max 0.65 0.79 0.76 0.68 0.79 0.62 0.68 0.73 0.76 0.72 0.78 0.76 0.71 0.69 0.68

TABLE 9

APFD of XMLSecurity, CommonsCollections, Pmd and CommonsLang

APFD

 XMLSecurity CommonsCollections Pmd CommonsLang
 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2 all ftype1 ftype2

Traceability Links
Randmin 0.33 0.26 0.22 0.43 0.27 0.37 0.43 0.34 0.32 0.46 0.37 0.33
Randmean 0.5 0.47 0.52 0.54 0.53 0.56 0.52 0.56 0.46 0.58 0.58 0.59
Randmedian 0.5 0.46 0.47 0.55 0.52 0.55 0.52 0.56 0.43 0.58 0.59 0.58
Randmax 0.63 0.66 0.76 0.64 0.54 0.82 0.63 0.77 0.69 0.66 0.7 0.8
CodeCov 0.52 0.61 0.52 0.66 0.54 0.49 0.54 0.3 0.69 0.54 0.66 0.54

AddCodeCov 0.51 0.67 0.48 0.52 0.56 0.8 0.63 0.6 0.61 0.54 0.31 0.59
NSGAIIdim2 min 0.38 0.47 0.35 0.51 0.44 0.54 0.43 0.51 0.4 0.46 0.46 0.35
NSGAIIdim2 mean 0.51 0.6 0.49 0.55 0.5 0.65 0.54 0.62 0.46 0.54 0.54 0.48

NSGAIIdim2 median 0.53 0.64 0.49 0.55 0.49 0.65 0.54 0.61 0.46 0.54 0.47 0.46
NSGAIIdim2 max 0.58 0.69 0.67 0.62 0.58 0.77 0.58 0.78 0.51 0.63 0.64 0.58
MOTCPmin 0.38 0.34 0.26 0.35 0.41 0.41 0.37 0.33 0.23 0.51 0.47 0.4
MOTCPmean 0.5 0.55 0.56 0.55 0.59 0.6 0.49 0.54 0.47 0.61 0.62 0.58
MOTCPmedian 0.51 0.53 0.47 0.54 0.6 0.61 0.49 0.55 0.48 0.6 0.63 0.55
MOTCPmax 0.58 0.73 0.77 0.69 0.76 0.76 0.59 0.7 0.67 0.71 0.82 0.82
MOTCP+ min 0.4 0.22 0.2 0.42 0.28 0.2 0.41 0.33 0.36 0.51 0.42 0.45
MOTCP+ mean 0.52 0.49 0.47 0.53 0.5 0.57 0.55 0.56 0.59 0.61 0.61 0.65

MOTCP+ median 0.52 0.48 0.47 0.53 0.51 0.57 0.55 0.57 0.59 0.59 0.53 0.66
MOTCP+ max 0.66 0.65 0.64 0.69 0.76 0.84 0.65 0.78 0.75 0.73 0.78 0.85

Incomplete Traceability Links
MOTCP+ min 0.3 0.22 0.23 0.41 0.28 0.32 0.41 0.33 0.33 0.49 0.43 0.4
MOTCP+ mean 0.5 0.54 0.51 0.53 0.53 0.62 0.52 0.55 0.49 0.6 0.58 0.62

MOTCP+ median 0.48 0.47 0.46 0.55 0.51 0.64 0.55 0.57 0.57 0.6 0.57 0.63
MOTCP+ max 0.65 0.65 0.78 0.69 0.76 0.87 0.65 0.78 0.78 0.72 0.75 0.8

On the basis of values reported in Tables 6-10 and Ta-

ble 11, we can observe that MOTCP+ tends to outperform

other techniques. APFD values for MOTCP+ are slightly

better. The results achieved by CodeCov and Rand are

worse and tend to have high variability (APFD values vary

in the range: 0.19 0.83), with respect to those achieved by

other techniques. This trend is not statistically confirmed by

the Mann-Whitney test results (see Table 12). In particular,

results suggest a statistically significant difference between

MOTCP+ and MOTCP (p-value < 0.001) also applying the

Benjamini-Hochberg correction. It is worth mentioning that

paired comparisons not listed in Table 12 have all p-values

greater than 0.05. Overall, results suggest that our approach

improves MOTCP by increasing the capability of test case

orderings in early revealing faults and tends to outperform

other approaches.

The results of a two-way permutation test suggest that

observed outcomes depend on the applications object of

our experiment (p-value< 0.001). In particular, we noted

a not-trivial variability of results for all the techniques (on

average 30%). For MOTCP+ and CodeCov, this variability

was 34% and 38%, respectively. Results were comparable

and less variable for Rand, MOTCP, NSGAIIdim2 and

AddCodeCov (less than 30%). In addition, we noted that for

a few applications (e.g., Log4J, iTrust, LaTazza, DBUtils)

considered prioritization techniques achieved results very

16

TABLE 10

APFD of Jabref and Xerces

APFD
 Jabref Xerces
 all ftype1 ftype2 all ftype1 ftype2

Traceability Links
Randmin 0.47 0.38 0.26 0.4 0.25 0.37
Randmean 0.57 0.61 0.58 0.55 0.5 0.48
Randmedian 0.56 0.59 0.48 0.56 0.47 0.53
Randmax 0.67 0.74 0.82 0.63 0.84 0.71

CodeCov 0.43 0.38 0.38 0.52 0.61 0.5

AddCodeCov 0.43 0.38 0.38 0.63 0.46 0.72
NSGAIIdim2 min 0.5 0.52 0.41 0.49 0.35 0.35
NSGAIIdim2 mean 0.54 0.62 0.55 0.53 0.54 0.48
NSGAIIdim2 median 0.54 0.64 0.53 0.53 0.54 0.48
NSGAIIdim2 max 0.58 0.68 0.7 0.61 0.75 0.65
MOTCPmin 0.51 0.51 0.47 0.41 0.23 0.28
MOTCPmean 0.59 0.64 0.63 0.54 0.45 0.51
MOTCPmedian 0.55 0.55 0.48 0.54 0.42 0.52
MOTCPmax 0.6 0.65 0.54 0.67 0.75 0.69
MOTCP+ min 0.49 0.37 0.34 0.51 0.33 0.43
MOTCP+ mean 0.62 0.66 0.68 0.6 0.52 0.58
MOTCP+ median 0.62 0.54 0.46 0.59 0.54 0.58
MOTCP+ max 0.74 0.77 0.82 0.71 0.68 0.75

Incomplete Traceability Links
MOTCP+ min 0.51 0.37 0.52 0.49 0.38 0.4
MOTCP+ mean 0.59 0.6 0.55 0.56 0.58 0.52
MOTCP+ median 0.58 0.54 0.61 0.56 0.55 0.52
MOTCP+ max 0.65 0.77 0.76 0.64 0.79 0.64

TABLE 11

Summary of results for best APFD results

 Mean and Median Maximum

all ftype1 ftype2 all ftype1 ftype2
Rand 1 2 0 0 5 4
CodeCov 5 1 4 0 0 0

AddCodeCov 4 8 4 1 1 0

NSGAIIdim2 6 4 4 3 1 1

MOTCP 3 4 3 1 6 3

MOTCP+ 7 5 6 17 12 15

different (20 to 25 points).

7.4.2 Sensitivity

Tables 6-10 (columns APFDftype1 and APFDftype2) re-

port collected APFD measures for all the applications,

in presence of all automatically recovered traceability

links and considering severe faults (column APFDftype1)

and faults related to relevant requirements (column

APFDftype2). MOTCP+ tends to outperform other tech-

niques for both APFDftype1 and APFDftype2 in most of

the applications as descriptive statistics suggest (see de-

scriptive statistics reported in Tables 6-10 and summary in

Table 11). For example, MOTCP+ outperforms, or at least

achieves comparable results, on the following applications:

AveCalc, LaTazza, DBUtils, CommonProxy, iTrust, Woden,

Log4J, Betwixt, JXPath, CommonsIO, XMLGraphics, and

CommonsLang. On other applications, there is not a clear

winner even if often either MOTCP or NSGAIIdim2 seems

to be slightly better than others. Results of the Mann-

Whitney test suggest that a significant difference exists

between MOTCP+ and both MOTCP and Rand in terms of

APFDftype1 as well as APFDftype2 (p-values are 0.01,
0.01 and 0.008, 0.04, respectively). On the other hand,

no statistical significant difference was observed between

MOTCP+ and both AddCodeCov and CodeCov even if a

trend in favor of MOTCP+ is present. Note that pairs of

TABLE 12

APFD: Mann-Whitney results (in bold values

significant at 5%, while ∗ indicates values still
significant by applying the Benjamini-Hochberg

correction)

 APFDall APFDftype1 APFDftype2

MOTCP+ vs. Rand 0.02 0.01∗ 0.008∗
MOTCP+ vs. CodeCov 0.05 0.12 0.14

MOTCP+ vs. AddCodeCov 0.59 0.74 0.16

MOTCP+ vs. NSGAIIdim2 0.093 0.096 0.02

MOTCP+ vs. MOTCP <0.001∗ 0.01∗ 0.041

other considered techniques (e.g., AddCodeCov vs. Rand)

not listed in the Table 12 have p-values greater than 0.05.

These results suggest that the application of MOTCP+ al-

lows the identification of test case orderings with a higher

severity and relevance with respect to baseline approaches.

The results of a two-way permutation test seem to confirm

the fact that APFDftype1 and APFDftype2 values depend

on the application on which test case ordering techniques

have been applied. That is, achieved outcomes significantly

depend on considered applications (p-value < 0.001).

7.4.3 Robustness

Tables 6-10 show also collected APFD measures obtained

by MOTCP+ in presence of incomplete traceability links.

MOTCP+ preserves the capability in early detecting faults

considering incomplete traceability links. In fact, we ob-

served that only in a few cases MOTCP+ decreases its

capability of early detecting faults. For instance, in case

of APFDall, the difference between the APFD values

obtained by MOTCP+ using complete or incomplete trace-

ability links is on average less than 10 points. That is, the

overall result for Robustness suggests that the capability of

defining adequate test case orderings of MOTCP+ is quite

robust with respect to the goodness of traceability links.

7.4.4 Analysis of the Pareto front’s metrics

Figure 4 shows examples of generated Pareto fronts for

AveCalc, CommonsBcel, and CommonsCollections. Simi-

lar plots have been obtained for other applications and for

all measured APFDs.

By applying the Spearman’s rank correlation on the

metric values obtained for each Pareto front, we observed

that collinearity does not hold for the three metrics used

to build the front. In fact, we observed high collinearity

(>85% of correlation) only in three cases: (i) Commons-

BeanUtils, between AUCcode and AUCcost and (ii) JabRef

and CommonsBcel, between AUCcode and AUCreq.

Results of the PCA analysis are summarized in Table

13. This table reports: the amount of variance accounted by

identified principal components (column Var); how AUC-

code, AUCreq, and AUCcost contribute to these principal

components (columns PC); and the corresponding loading

value (column Load, values range in between 0 and 1 and

represent the impact of a metric on a given component). For

instance, 91.3% of the variance for Betwixt is explained by

17

≥

NumReqs (NumReqs)

Fig. 4. Pareto fronts of APFDall for AveCalc, CommonsBcel and CommonsCollections. Filled circle represent

test suites having higher APFD

TABLE 13

PCA summary of results for each application

Application Var
%

AUCcode AUCreq AUCcost

PC Load PC Load PC Load

AveCalc 77.3 1 0.6 1 0.5 1 0.5

Betwixt 91.3 1 0.6 2 0.8 1 0.6

CommonsBcel 85 1 0.6 1 0.5 1 0.5

CommonsBeanUtils 79 1 0.6 1 0.5 1 0.6

CommonsCodec 88.4 1 0.7 2 0.9 1 0.7

CommonsCollections 89.2 1 0.6 2 0.8 1 0.6

CommonsIO 91.7 - - 2 0.72 1 0.67

CommonsLang 94.7 1 0.71 - - 2 0.73

DBUtis 89.2 2 0.95 1 0.68 1 0.71

iTrust 94.6 1 0.69 2 0.87 1 0.71

Jabref 78.1 1 0.62 1 0.6 1 0.49

JTidy 92.1 1 0.67 2 0.9 1 0.62

JXPath 95.9 1 0.66 2 0.94 1 0.7

LaTazza 97.6 - - 1 0.97 2 0.97

Log4J 94.6 1 0.64 2 0.89 1 0.71

Pmd 91.8 1 0.72 2 0.92 1 0.67

Woden 93.2 1 0.71 2 0.78 - -

Xerces 74.7 1 0.61 1 0.6 1 0.51

XMLGraphics 92.7 1 0.73 2 0.75 - -

XMLSecurity 92.9 1 0.71 2 0.96 1 0.69

CommonsProxy 93.7 1 0.7 2 0.99 1 0.7

the first two principal components (i.e., in the columns PC

for Betwixt we can see 1 and 2 representing two principal

components); AUCcode and AUCcost mainly load on the

first component (the value of columns PC these two metrics

is 1), while AUCreq mainly loads on the second component

(the value of column PC for this metric is 2). All the three

metrics do not have a trivial impact on components (their

Load value is 0.5 for all metrics). A similar trend is shown

for most of the other applications, but for a few of them

(e.g., CommonsIO, LaTazza) not all metrics significantly

load on principal components (see the symbol - in column

PC). In the case of CommonsIO, for example, AUCcost

and AUCreq load respectively on the first and the second

component, instead AUCcode does not load on a specific

component. Overall, results in table confirms that our three

metrics contribute to principal components with a clear

impact and that a trend exists for which such metrics share

(those having at least 80% of the maximum APFD in the

front) we found in three Pareto fronts, that is test suites

having higher APFD values in the Pareto Fronts. In Table

14, we summarize the distribution of these best solutions

in their respective fronts, where each axis of the front has

been divided by three with the aim of identifying three areas

in the front having respectively: low, medium, and high

AUC value. The results suggest that most of best solutions

have high values of AUCcode (71% of the best solutions),

AUCreq (85% of them), and AUCcost (66% of them). In

other words, best solutions can be frequently found in the

top-right part of obtained Pareto Front.

7.4.5 Impact of application objects and artifacts

We analyzed the impact of some aspects of both appli-

cations and used artifacts. In particular, we considered:

(i) size (i.e., size of the considered applications, number

of requirements, and size of test suites); (ii) distribution

of injected faults (e.g., number of faults injected in code

that implements a requirement, number of requirements

not tested by any test case, and density of the faults per

requirements); and (iii) capability of test cases in revealing

faults (e.g., number of test cases revealing one fault, number

of test cases revealed one or more than one fault, number

of test cases that reveal two or more than three faults, and

functional test case redundancy).

In Table 15, we summarize results concerning how in-

jected faults impact on application requirements. The table

reports (second column) the percentage of requirements

affected by at least one fault. For instance, 40% (i.e., 4 out

10) of requirements considered for AveCalc were affected

by at least one fault. Moreover, this table also reports

(third column) the percentage of test cases that do not

impact considered requirements. For examples, 3 out of

20 faults (15%) of CommonsCollections did not impact on

the set of considered application requirements. The per-

centage of not tested requirements is reported in the fourth

column. In the fifth column, the table shows fault density

a conceptual meaning on their impact on the components:

AUCcode and AUCcost seem to refer to software execution,
(FaultDensity =

Σ
r∈req

|NumFaultsr −mean(NumFaults)|
).

while AUCreq to software specification.

In Figure 4, filled circles represent the best solutions

High values of fault density indicate an application in
which faults are concentrated in a few requirements of

the application, while a low level represents an application

18

TABLE 14

Distribution of best solutions (higher APFD) in the Pareto Fronts

Application Best

Solutions

AUCcode AUCreq AUCcost

High Medium Low High Medium Low High Medium Low

AveCalc 7 2 1 4 4 3 0 7 0 0

Betwixt 3 2 1 0 3 0 0 1 0 2

CommonsBcel 4 3 1 0 4 0 0 4 0 0

CommonsBeanUtils 6 6 0 0 4 2 0 0 3 3

CommonsCodec 3 3 0 0 1 2 0 2 1 0

CommonsCollections 4 3 0 1 2 0 2 2 2 0

CommonsIO 3 2 1 0 3 0 0 0 2 1

CommonsLang 3 0 2 1 2 1 0 2 1 0

CommonsProxy 2 2 0 0 1 0 1 0 1 1

DBUtils 4 2 0 2 3 0 1 2 1 1

iTrust 1 1 0 0 1 0 0 0 1 0

Jabref 3 3 0 0 3 0 0 2 1 0

JTidy 6 4 0 2 2 3 1 5 0 1

JXPath 9 4 5 0 7 2 0 4 4 1

LaTazza 2 0 2 0 1 0 1 1 1 0

Log4J 10 7 3 0 7 2 1 2 6 2

Pmd 7 5 0 2 4 2 1 2 4 1

Woden 3 0 1 2 3 0 0 3 0 0

Xerces 3 3 0 0 3 0 0 3 0 0

XmlGraphics 6 2 2 2 3 3 0 5 1 0

XmlSecurity 4 1 1 2 1 1 2 2 1 1
 - 15(71%) 4 (19%) 5(23%) 18(85%) 3(14%) 4(19%) 14(66%) 9(42%) 3(14%)

TABLE 15

Impact of faults on requirements.

Application Reqs affected

by fault (%)

Faults not

impacting

reqs (%)

Not tested

reqs (%)

Fault

Density

Req 80%

faults (%)

LaTazza 60 13 40 1.8 40
AveCalc 40 0 10 3.2 30

CommonsProxy 80 0 10 1.7 40

DBUtis 58 14 25 1.6 50

iTrust 80 23 0 1.8 40

CommonsCodec 57 35 10 2 31

JTidy 36 6 8 1.7 24

Woden 41 21 0 1.8 29

Log4J 41 0 4 1.7 16

Betwixt 77 10 0 1.8 33

JXPath 55 15 0 2 30

CommonsIO 50 0 0 3.4 22

CommonsBcel 25 0 0 1.6 10

CommonsBeanUtils 57 22 7 1.8 30

XMLGraphics 50 20 12 4.3 12

XMLSecurity 13 0 0 1.9 39

CommonsCollections 41 15 5 1.8 29

Pmd 50 10 10 2 25

CommonsLang 80 5 0 2.2 31

Jabref 51 50 22 1.5 32

Xerces 80 0 0 1.6 30

in which faults are spread among many requirements. In

the last column, we report the percentage of requirements

in which 80% of faults have been injected, e.g., 80% of

faults in LaTazza have been injected into 40% (i.e., 4)

requirements out of 10 considered.

From Table 15, we can also observe that injected faults

were evenly distributed among application requirements

(i.e., distributed in more than 51% of requirements —

median value for Reqs affected by faults — and with

a fault density lower or equal than 1.8 – median value

for FaultDensity) in case of: LaTazza, CommonsProxy,

DBUtils, iTrust, Betwixt, CommonsBeanUtils, and Xerces.

Conversely, injected faults seem to be concentrated in a

few requirements (i.e., distributed in less than 51% of

requirements and with a fault density higher or equal than

1.8) in: AveCalc, Woden, CommonsIO, XMLSecurity, and

CommonsCollections.

On the base of results shown in Table 15 (fourth column),

TABLE 16

Percentage of test cases revealing: at least one fault,

only one fault, and more than one fault for each

application; and functional test case redundancy

Application TCS

revealing

≥1 fault

TCS

revealing

=1 fault

TCS

revealing

>1 fault

TCS

Redundancy

LaTazza 68 17 51 8.2

AveCalc 53 4 49 11.7

CommonsProxy 8 7.8 0.2 5.6

DBUtils 8 7 1 10.5

iTrust 4 3.6 0.4 3.6

CommonsCodec 5 4.9 0.1 13.8

JTidy 4 3.7 0.3 14.4

Woden 8 7.2 0.8 4.2

Log4j 4 3.1 0.9 21

Betwix 9 8.4 0.6 2.9

JXPath 7 6.6 0.4 6.5

CommonsIO 3 2.8 0.2 10.8

CommonsBcel 26 24 2 4.1

CommonsBeanUtils 3 2.8 0.2 15.8

XMLGraphics 8 8 0 3.3

XMLSecurity 18 18 0 3.2

CommonsCollections 3 2.8 0.2 4.3

Pmd 3 2.9 0.1 3.8

CommonsLang 1.4 1.1 0.3 20

Jabref 13 13 0 9.4

Xerces 7 6.3 0.7 8.5

for LaTazza and DBUtils a high number of requirements,

40% (4 out of 10) and 25% (3 out of 12) respectively, were

not linked to any test case. This indicates that test cases are

mainly focused on a subset of considered requirements. As

for iTrust, Woden, Betwixt, JXPath, CommonsIO, Com-

monsBcel, XMLSecurity, CommonsLang, and Xerces, all

the requirements were linked to at least one test case, while

for the other applications few requirements (on average

7.7% for each application) were not linked with test cases,

even if some links were present. These results suggest that

the set of used traceability links could be incomplete.

Results reported in Table 16 (second column) suggest

that the test suites of AveCalc, LaTazza, CommonsBcel,

and XMLSecurity have a non-trivial percentage of test cases

19

| | TestClasses

revealing at least one fault. Conversely, a large number of

test suites (i.e., the ones of: iTrust, JTidy, Log4J, Com-

monsIO, CommonsBeanUtils, CommonsCollections, Pmd,

CommonsLang) have less than 5% of fault-revealing test

cases. For each application, the third and the fourth column

of Table 16 show the percentage of test cases revealing

only one and more than one fault, respectively. We can

see that: a limited percentage of test cases (less than 25%)

of considered suites reveals one fault. Only in case of

AveCalc and LaTazza, a large percentage of test cases

(about 50%) reveal more than one fault, while in the

remaining applications almost all test cases reveal only one

of injected faults.

In the last column of Table 16, results for test case

redundancy (TCSRedundancy) are shown. This measure is

computed as follows: |TCS| . TCS is the number

of test cases composing a test suite and TestClasses
represents the JUnit classes that functionally group test

cases. We assume that JUnit classes group functionally

correlated test cases, i.e., JUnit test methods. Results sug-

gest that the test suites with high redundancy are those

of: Log4j, CommonsLang, CommonsBeanUtils, JTidy, and

CommonsCodec.

In Table 17, we summarize the results of a two-way

permutation test on considered co-factors and their inter-

action. Results suggest that there is a significant effect of

application with respect to APFDall values. Moreover, other

factors that have shown some influence on experimental

results are: capability of revealing faults of used test cases

in terms of test cases that reveal only one fault (PercTcsRe-

vealingOneBug); number of test cases composing test suites

(NumberOfTCS) as well as number of requirements (Num-

Reqs); number of requirements containing 80% of injected

faults (PercReq80%faults) as well as fault density (Fault-

Density); and test case redundancy (TCSRedundancy). By

correlating such metrics with APFD values (using the

Spearman’s Rank Correlation Coefficient) we found rele-

vant and statistical impacts for: PercTcsRevealingOneBug

toward Rand (ρ=0.14) and MOTCP (ρ=-0.08), while in

case of NumReqs, PercReq80%faults, FaultDensity and

TCSRedundancy toward Rand (ρ=-0.23, ρ=0.26, ρ=-0.09

and ρ=0.23), MOTCP (ρ=-0.13, ρ=0.14, ρ=-0.07 and ρ=0.4)

and MOTCP+ (no correlation, ρ=0.09, ρ=-0.13 and ρ=0.3).
Notice that CodeCov and AddCodeCov do not have any

correlation with these co-factors.

7.4.6 Additional analysis

We performed an additional analysis to study possible over-

head of our proposal with respect to baseline approaches.

In Table 18, we report some descriptive statistics (i.e.,

minimal, median, maximal, mean, and standard deviation

values) of the overall time for prioritizing test cases by

applying our proposal and baseline approaches on the

studied applications. In the experimentation, we used a PC

equipped by 2.20 GHz Intel Core i7 with 8 GB of RAM

and Windows 8 (64-bit) as operating system.

MOTCP, NSGAIIdim2, and MOTCP+ required a com-

parable time to prioritize test cases and CodeCov and

TABLE 17

Two-way permutation test on the relevant co-factors

Factor p-value

Technique < 0.001

Application < 0.001

Technique:Application < 0.001

Technique <0.001

PercTcsRevealingAtLeastOneBug < 0.001

Technique:PercTcsRevealingAtLeastOneBug 1

Technique <0.001

PercTcsRevealingOneBug 0.127

Technique:PercTcsRevealingOneBug 0.001

Technique < 0.001
PercTcsRevealingMoreThanOneBug < 0.001

Technique:PercTcsRevealingMoreThanOneBug 0.452

Technique < 0.001

PercReqAffectedByAtLeast1Bug < 0.001

Technique:PercReqAffectedByAtLeast1Bug 0.122

Technique < 0.001

PercFaultNotImpactingReq < 0.001

Technique:PercFaultNotImpactingReq 0.851

Technique < 0.001

AppSize 1

Technique:AppSize 0.5781

Technique 0.039

NumberOfTCS 0.047

Technique:NumberOfTCS 0.005

Technique < 0.001
NumReqs < 0.001

Technique:NumReqs < 0.001

Technique 0.048

PercReqNonLinkedToTCS < 0.001

Technique:PercReqNonLinkedToTCS 1

Technique < 0.001

PercReq80%faults 0.065

Technique:PercReq80%faults 0.006

Technique < 0.001

FaultDensity < 0.001

Technique:FaultDensity < 0.001

Technique < 0.001
TCSRedundancy < 0.001

Technique:TCSRedundancy < 0.001

TABLE 18

Descriptive statistics of the overall execution time (in

seconds) of prioritization approaches

 MOTCP+ MOTCP NSGAIIdim2 AddCodeCov CodeCov Rand

Min 14.8 13.9 14.0 0.8 0.8 0.0

Mean 160.5 161.3 162.0 48.6 20.9 1.2

Median 319.7 317.6 318.6 150.4 41.7 2.0

Max 2160.0 2026.4 2022.2 1794.2 297.5 9.9

StDev 488.7 464.6 463.8 387.1 65.3 2.5

Rand were faster with respect to other approaches. As for

AddCodeCov, we observed that it is either fast or slow to

prioritize test cases. This seems to depend on the applica-

tion. In particular, we noted that for medium to large ap-

plications (e.g., CommonsLang and CommonsBeanUtils),

AddCodeCov required more time than other approaches.

In the case of CommonsLang, MOTCP+ required 580.9

seconds, while AddCodeCov required 1794.2 seconds.

Another result of our analysis is that MOTCP and

MOTCP+ required more time than other approaches be-

cause of the time needed to recover traceability links. This

time is, on average, 36% of the overall time required to

multi-objective algorithms to get final test case prioritiza-

tion. However, we can postulate that the time to recover

traceability links is hidden to the user if the recovery

process is executed in background every time requirements,

test cases, or source code are modified. For such a reason,

20

TABLE 19

Time to recover links between requirements and code

and requirements and test cases

 Reqs - TestCases Reqs - Code

Min 2.0 10.0

Mean 163.4 49.9

Median 90.0 25.0

Max 1505.0 430.0

StDev 320.5 91.5

we report in Table 19 some descriptive statistics on the time

to recover traceability links. In particular, the second col-

umn reports the time to recover traceability links between

requirements and test cases, while the third column reports

the time to recover links between requirements and source

code. As shown in Table 19, the recovery of traceability

links requirements and test cases is more expensive since

it required on average 163.4 seconds. The recovery of

traceability links between requirements and source code

required on average 49.9 seconds. We argue that this is

due to the kind of artifacts on which LSI was applied. It

is useful to observe that in a real project, requirements and

test cases change less frequently than source code.

7.4.7 Analysis

We summarize achieved results, their interpretation, and

observed trends as follows:

- Capability to find faults. By considering the three sets

of faults used to evaluate both effectiveness and sensi-

tivity, MOTCP+ mostly outperforms other techniques. In

detail, by considering the median of APFD values we

see that MOTCP+ outperforms: (i) MOTCP 80% of the

applications, (ii) AddCodeCov 66.6% of the applications,

and (iii) NSGAIIdim2 62% of the applications. Only for

2 applications (i.e., CommonsProxy and iTrust) the me-

dian value achieved by MOTCP+ is lower than the one

of baselines and, in particular, of AddCodeCov, NSGAI-

Idim2 and MOTCP. Hence, by trying to balance between

low- and high-level information, MOTCP+ tends to out-

perform the traditional multi-objective technique based on

two dimensions (code-coverage and execution time). By

applying automatic weighting, it seems that MOTCP+ is

more efficient than MOTCP in finding faults. In fact,

test orderings produced by MOTCP+ in almost all cases

are better that those produced by MOTCP. This could

be mainly due to distribution of the faults. In this con-

cern, we observed that AddCodeCov and MOTCP tend

to achieve better results if faults are evenly spread in a

high number of application requirements. MOTCP+ tends

to achieve better results if faults are concentrated in a

few requirements. NSGAIIdim2 seems quite stable with

respect to fault distribution. These findings seem to be in

line with our initial hypothesis about the use of automatic

weighting of application code and requirements to give

more relevance to specific and fault-prone portions of the

application. Indeed, we measured a positive correlation

(Spearman’s Rank correlation coefficient is equal to 0.36

and p-value<0.001) between requirements rankings ob-

tained by applying automatic weighting and distribution of

injected faults into requirements. In other terms, our metric-

based automatic weighting approach is reasonably able to

identify fault-prone requirements.

- Robustness. MOTCP+ seems to be able to support a

limited amount of spurious traceability links. That is, the

quality of traceability links might affect ordering results

even if not in significant way.

- Pareto’s metrics. All three considered metrics seem to

have a relevant impact on our results. In a few applications,

we observed that two metrics could be considered instead of

three without loosing information. In general, we observed

that all the metrics significantly contributed to test case

ordering results in terms of high values of AUCcode,

AUCreq, and AUCcost.

- Co-factors. As for the APFD values, we observed that

results can vary with respect to the studied applications,

namely our experimental objects. In particular, a variance

around 30% for all techniques was observed. Test suite

composition (e.g., percentage of test cases revealing one or

more than one fault, percentage of requirements linked to

test cases, and test case redundancy) and fault distribution

can impact on achieved results. In particular, we see that

fault density has only a (negative) limited impact on results

achieved by our approach. This result suggests that our

approach can achieve reasonably good results if faults are

spread in code and requirements as well as if they are

concentrated in a few requirements. In fact, AddCodeCov

and MOTCP achieve better results than MOTCP+ if faults

are evenly spread across a high number of requirements.

However, an increase of fault density in a few requirements

lets decrease capability of AddCodeCov and MOTCP in

early revealing faults. NSGAIIdim2 seems to be less sensi-

tive than other techniques to changes in bug density. More-

over, test case redundancy can increase the performance

of our approach, while it does not significantly impact

on AddCodeCov. Another aspect that seems to negatively

impacts capability of AddCodeCov in early detecting fault

is the number of test cases of a suite that discovers at least

one faults: at increase of such a number test orderings

generated by AddCodeCov decrease their APFD values.

Instead, APFD values of multi-objective approaches tends

to increase if we observed an increase of the number of test

cases revealing one fault. An aspect that seems to penalize

the multi-objective approaches, while it favors performance

of AddCodeCov, is the number of test cases to be ordered.

We indeed observed that a strong increase of the number

of test cases in a test suite can decrease APFD values of

test orderings obtained by the considered multi-objective

approaches while the APFDs of test ordering produced

by AddCodeCov increase, as well as computation time

required to AddCodeCov to find final test case orderings.

7.4.8 Implications

We distilled the findings of our experiment adopting a

perspective-based approach [62]. We focus on the practi-

tioner/consultant (simply practitioner in the following) and

researcher’s perspectives [63]:

21

1) The results support our initial hypothesis about ef-

ficiency and effectiveness of our technique as well

as about the use of automatic artifacts analysis and

weighting during the prioritization of test cases. That

is, test case orderings obtained by applying our

approach are able to early recover faults that are both

technical and business relevant. This result is relevant

for the practitioner interested in using our approach

in his/her company.

2) The experiment is focused on different kinds of appli-

cations and the magnitude of benefits deriving from

the use of three dimensions suggests that obtained

result could be also generalized in different contexts.

This point deserves further investigations and it is

relevant for both the practitioner and the researcher.

3) The experimental objects were realistic enough for

small- to medium-sized software projects. Although

we are not sure that achieved results scale to real

commercial/industrial projects, the results seem to

reassure us that the outcomes might be generalized

to larger projects. This point is clearly relevant for

the practitioner and deserves future investigations.

4) By explicitly considering functional-dimension dur-

ing the test case prioritization, our technique can

give more relevance to those test cases capable to

reveal severe and requirement-relevant fault, thus

outperforming traditional techniques that conversely

tend to give the same relevance to each fault. This

point is relevant for the researcher.

5) To let our test prioritization technique consider func-

tional aspects, application artifacts (e.g., requirements

and source code) have to be analyzed before doing

the test case orderings definition. Hence, the collected

information can let us produce more efficient test case

orderings but they introduce additional and not-trivial

cost required to identify adequate test ordering. This

aspect is clearly relevant for the practitioner interested

in reducing the cost for performing regression testing

and for identifying effective test case orderings. The

researcher could be interested in investigating pos-

sible strategies to identify a trade-off between these

two concerns.

6) From the execution time point of view, the recovery

of traceability links is the most expensive part of

the process underlying our approach. This aspect is

particularly relevant for the researcher. In particular,

the researcher could be interested in studying either

different text retrieval model and technique or im-

proving the performances of the used IR technique.

The practitioner interested in our approach has to take

into account the additional execution cost introduced

by LSI use or has to explicitly document traceability

links.

7) The diffusion of a new technology/method is made

easier when empirical evaluations are performed and

their results show that such a technology/method

solves actual issues [64]. Therefore, results from our

experiment could speedup the transferring of our

solution to the industry. In addition, its introduction

should not require a complete and radical process

change in a given company because of the use of

automatically recovered traceability links. This point

has particular interest for the practitioner.

8 CONCLUSIONS

We propose a multi-objective technique to identify test case

orderings that are effective (in terms of capability in early

discovering faults) and efficient (in terms of execution cost).

To this end, our proposal takes into account the coverage

of source code and application requirements and the cost

to execute test cases. An IR-based traceability recovery

approach has been applied to link software artifacts (i.e., re-

quirements specifications) with source code and test cases.

A test case ordering is then determined by using a multi-

objective optimization, implemented in terms of NSGA-II.

The proposed technique applies a metric-based approach to

automatically identify critical and fault-prone portions of

software artifacts, thus becoming able to give them more

importance during test case prioritization. Our technique

has been validated on 21 Java applications. The most

important take-away result of our experimental evaluation

is: our approach is able to identify test case orderings that

early recover faults both technical and business relevant.

REFERENCES

[1] S. Yoo and M. Harman, “Regression testing minimization, selection
and prioritization: a survey,” Software Testing, Verification and
Reliability, vol. 22, no. 2, pp. 67–120, 2010.

[2] J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” IEEE Software, vol. 14, pp. 67–74, 1997.

[3] S. Mohanty, A. Acharya, and D. Mohapatra, “A survey on model
based test case prioritization,” International Journal of Computer
Science and Information Technologies, vol. 2, no. 3, pp. 1002 –
1040, 2011.

[4] M. Islam, A. Marchetto, A. Susi, and G. Scanniello, “A Multi-
Objective Technique to Prioritize Test Cases Based on Latent Se-
mantic Indexing,” in Proc. of European Conference on Software
Maintenance and Reengineering. IEEE Computer Society, 2012,
pp. 21–30.

[5] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and
R. A. Harshman, “Indexing by Latent Semantic Analysis,” Journal
of the American Society of Information Science, vol. 41, no. 6, pp.
391–407, 1990.

[6] A. Marcus and J. I. Maletic, “Recovering documentation-to-source-
code traceability links using latent semantic indexing,” in Proc. of
International Conference on Software Engineering. IEEE Computer
Society, 2003, pp. 125–137.

[7] A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source code
lexicon via traceability and information retrieval,” IEEE Transactions
on Software Engineering, vol. 37, no. 2, pp. 205 –227, march-april
2011.

[8] V. R. Basili and R. W. Selby, “Comparing the effectiveness of soft-
ware testing strategies,” IEEE Transactions on Software Engineering,
vol. 13, pp. 1278–1296, December 1987.

[9] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE Transactions on
Software Engineering, vol. 28, pp. 159–182, February 2002.

[10] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test case prior-
itization: an empirical study,” in Proc. of International Conference
on Software Maintenance. IEEE Computer Society, 1999, pp. 179
–188.

[11] S. Yoo and M. Harman, “Pareto efficient multi-objective test case
selection,” in Proc. of International Symposium on Software testing
and Analysis. ACM, 2007, pp. 140–150.

22

[12] Z. Li, M. Harman, and R. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on Software Engineering,
vol. 33, no. 4, pp. 225 –237, april 2007.

[13] M. Salehie, S. Li, L. Tahvildari, R. Dara, S. Li, and M. Moore,
“Prioritizing requirements-based regression test cases: A goal-driven
practice,” in Proc. of European Conference on Software Maintenance
and Reengineering. IEEE Computer Society, 2011, pp. 329 –332.

[14] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Timeaware test suite prioritization,” in Proc. of International Sym-
posium on Software Testing and Analysis. ACM, 2006, pp. 1–12.

[15] S. Yoo and M. Harman, “Using hybrid algorithm for pareto efficient
multi-objective test suite minimisation,” Journal of Systems and
Software, pp. 689–701, 2009.

[16] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in Proc.
of International Conference on Software Maintenance. IEEE
Computer Society, 2013, pp. 540–543.

[17] D. Di Nardo, N. Alshahwan, L. Briand, and Y. Labiche, “Coverage-
based test case prioritisation: An industrial case study,” in Proc.
of International Conference on Software Testing, Verification and
Validation. IEEE Computer Society, 2013, pp. 302–311.

[18] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging
the gap between the total and additional test-case prioritization strate-
gies,” in Proc. of International Conference on Software Engineering.
IEEE Computer Society, 2013, pp. 192–201.

[19] W. Sun, Z. Gao, W. Yang, C. Fang, and Z. Chen, “Multi-objective test
case prioritization for gui applications,” in Proc. of ACM Symposium
on Applied Computing. ACM, 2013, pp. 1074–1079.

[20] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria
for gui testing,” SIGSOFT Softw. Eng. Notes, vol. 26, no. 5, pp.
256–267, Sep. 2001.

[21] R. Kavitha, V. Kavitha, and N. Kumar, “Requirement based test case
prioritization,” in Proc. of International Conference on Communica-
tion Control and Computing Technologies, 2010, pp. 826 –829.

[22] M. Arafeen and H. Do, “Test case prioritization using requirements-
based clustering,” in Proc. of International Conference on Software
Testing, Verification and Validation, March 2013, pp. 312–321.

[23] C. Nguyen, A. Marchetto, and P. Tonella, “Test case prioritization
for audit testing of evolving web services using information retrieval
techniques,” in Proc. of International Conference on Web Services.
IEEE Computer Society, 2011, pp. 636 –643.

[24] C. Fang, Z. Chen, K. Wu, and Z. Zhao, “Similarity-based test case
prioritization using ordered sequences of program entities,” Software
Quality Journal, vol. 22, no. 2, pp. 335–361, 2014.

[25] OMG, “Unified modeling language (OMG UML) specification,
version 2.3,” Object Management Group, Tech. Rep., May 2010.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[27] A. Marchetto, C. Di Francescomarino, and P. Tonella, “Optimizing
the trade-off between complexity and conformance in process reduc-
tion,” in Proc. of International Conference on Search Based Software
Engineering. Springer-Verlag, 2011, pp. 158–172.

[28] Y. Zhang and M. Harman, “Search Based Optimization of Require-
ments Interaction Management,” in Proc. of International Sympo-
sium on Search Based Software Engineering. IEEE Computer
Society, 2010, pp. 47–56.

[29] O. C. Z. Gotel and C. W. Finkelstein, “An Analysis of the Require-
ments Traceability Problem,” in Proc. of International Conference
on Requirements Engineering, 1994, pp. 94–101.

[30] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Traceclipse: an
eclipse plug-in for traceability link recovery and management,” in
Proc. of International Workshop on Traceability in Emerging Forms
of Software Engineering. ACM, 2011, pp. 24–30.

[31] M. Lormans and A. van Deursen, “Reconstructing requirements
coverage views from design and test using traceability recovery via
LSI,” in Proc. of International Workshop on Traceability in Emerging
Forms of Software Engineering. ACM, 2005, pp. 37–42.

[32] A. Qusef, R. Oliveto, and A. De Lucia, “Recovering traceability links
between unit tests and classes under test: An improved method,” in
Proc. of International Conference on Software Maintenance. IEEE
Computer Society, 2010, pp. 1 –10.

[33] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving automated
requirements trace retrieval: a study of term-based enhancement
methods,” Empirical Software Engineering, vol. 15, pp. 119–146,
April 2010.

[34] S. K. Sundaram, J. H. Hayes, A. Dekhtyar, and E. A. Holbrook, “As-
sessing traceability of software engineering artifacts,” Requirements
Engineering, vol. 15, no. 3, pp. 313–335, 2010.

[35] R. Branda, A. Tolve, L. Mazzeo, and G. Scanniello, “Linking e-mails
and source code using BM25F,” in Proc. of International Conference
on Software Engineering Advances. IARIA, 2013, pp. 271–277.

[36] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering
traceability links in software artifact management systems using
information retrieval methods,” ACM Transactions on Software En-
gineering and Methodology, vol. 16, no. 4, 2007.

[37] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York: McGraw Hill, 1983.

[38] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability tech-
nique for specifications,” in Proc. of International Conference on
Program Comprehension. Washington, DC, USA: IEEE CS Press,
2008, pp. 103–112.

[39] S. Wang, D. Lo, Z. Xing, and L. Jiang, “Concern localization
using information retrieval: An empirical study on linux kernel,” in
Proceedings of Working Conference on Reverse Engineering. IEEE
CS Press, 2011, pp. 92–96.

[40] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using
latent dirichlet allocation,” Information & Software Technology,
vol. 52, no. 9, pp. 972–990, Sep. 2010.

[41] C. D. Manning, P. Raghavan, and H. Schütze, An Introduction to
Information Retrieval. Cambridge University Press, England, 2009.

[42] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, Jun. 1994.

[43] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Murphy,
N. Nagappan, and A. V. Aho, “Do Crosscutting Concerns Cause
Defects?” IEEE Transactions on Software Engineering, vol. 34,
no. 4, pp. 497–515, Jul. 2008.

[44] B. C. da Silva, C. Sant’Anna, and C. Chavez, “Concern-based
cohesion as change proneness indicator: an initial empirical study,” in
Proc of Workshop on Emerging Trends in Software Metrics. ACM,
2011, pp. 52–58.

[45] E. Figueiredo, C. Sant’Anna, A. Garcia, T. T. Bartolomei, W. Caz-
zola, and A. Marchetto, “On the maintainability of aspect-oriented
software: A concern-oriented measurement framework,” in Proc. of
European Conference on Software Maintenance and Reengineering.
IEEE Computer Society, 2008, pp. 183–192.

[46] R. E. Lopez-Herrejon and S. Apel, “Measuring and characteriz-
ing crosscutting in aspect-based programs: Basic metrics and case
studies,” in Proc. of International Conference on Fundamental
Approaches to Software Engineering. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 423–437.

[47] R. Lincke, J. Lundberg, and W. Löwe, “Comparing Software Metrics
Tools,” in Proc. of Symposium on Software Testing and Analysis.
ACM, 2008, pp. 131–142.

[48] M. Asghar, A. Marchetto, A. Susi, and G. Scanniello,
“Maintainability-Based Requirements Prioritization by Using
Artifacts Traceability and Code Metrics,” in Proc. of European
Conference on Software Maintenance and Reengineering. IEEE
Computer Society, 2013, pp. 417–420.

[49] K. Atkinson, An Introduction to Numerical Analysis, 2nd ed. Wiley,
1989.

[50] S. Sivanandam and S.N.Deepal, Introduction to genetic algorithms.
Springer, 2008.

[51] M. M. Islam, A. Marchetto, A. Susi, and G. Scanniello, “MOTCP: A
Tool for the Prioritization of Test Cases Based on a Sorting Genetic
Algorithm and Latent Semantic Indexing,” in Proc. of International
Conference on Software Maintenance. IEEE Computer Society,
2012, pp. 654–657.

[52] J. J. Durillo and A. J. Nebro, “jMetal: A Java Framework for Multi-
Objective Optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760 – 771, 2011.

[53] V. Basili, G. Caldiera, and D. H. Rombach, The Goal Question
Metric Paradigm, Encyclopedia of Software Engineering. John
Wiley and Sons, 1994.

[54] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer,
2012.

[55] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating vary-
ing test costs and fault severities into test case prioritization,” in
Proc. of International Conference on Software Engineering. IEEE
Computer Society, 2001, pp. 329 – 338.

23

[56] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
A practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society Series B (Methodological), vol. 57, no. 1,
pp. 289–300, 1995.

[57] R. Baker, “Modern permutation test software,” In E. Edgington
Randomization Tests, New York, Marcel Decker, 1995.

[58] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” in Proc. of International
Conference on Software Engineering. ACM, 2005, pp. 402–411.

[59] A. Marchetto and P. Tonella, “Using search-based algorithms for
ajax event sequence generation during testing,” Empirical Software
Engineering, vol. 16, no. 1, pp. 103–140, 2011.

[60] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The effects
of time constraints on test case prioritization: A series of controlled
experiments,” IEEE Transactions on Software Engineering, vol. 36,
no. 5, pp. 593–617, 2010.

[61] H. Leung and L. White, “Insights into regression testing,” in Proc.
of International Conference on Software Maintenance. IEEE
Computer Society, 1989, pp. 60 – 69.

[62] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, L. S.
Sørumgård, and M. V. Zelkowitz, “The empirical investigation of
perspective-based reading,” Empirical Software Engineering, vol. 1,
no. 2, pp. 133–164, 1996.

[63] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox, J. Ke-
ung, F. Kurniawati, M. Staples, H. Zhang, and L. Zhu, “Evaluating
guidelines for reporting empirical software engineering studies,”
Empirical Software Engineering, vol. 13, pp. 97–121, 2008.

[64] S. L. Pfleeger and W. Menezes, “Marketing technology to software
practitioners,” IEEE Software, vol. 17, no. 1, pp. 27–33, 2000.

Waseem Asghar works as a Software An-
alyst in TVEyes Language Technology. He
completed his MSc in Computer Science
and Engineering in the University of Trento,
Italy, discussing a thesis about prioritisation
techniques in Software testing. His research
interests include Software design and Soft-
ware testing.

Angelo Susi is a research scientist in the
Software Engineering group at Fondazione
Bruno Kessler in Trento, Italy. His research
interests are in the areas of requirements en-
gineering, goal-oriented software engineer-
ing, formal methods for requirements valida-
tion, and search-based software engineer-
ing. He published more than 90 refereed
papers in journals and international confer-
ences such as TSE, TOSEM, IST, SoSyM,
FSE, ICSE, RE. He participated in the or-

ganization committee of several conferences, such as SSBSE’12
(General Chair), RE’11 (Local and Financial chair) and in program
committees of international conferences and workshops (such as
AAMAS, ICSOC, CAiSE and SSBSE). He also served as reviewer
for several Journals such as TSE, REJ, IST, JSS. He is the scientific
manager of the EU FP7 project RISCOSS.

Alessandro Marchetto is currently an inde-
pendent researcher working in the field of
Software Engineering. He received his PhD
degree in Software Engineering from the Uni-
versity of Milano, Italy in 2007. From 2006
till the end of 2012 he was a researcher at
the Center for Information Technology (CIT)
of the Bruno Kessler Foundation in Trento,
Italy, working with the Software Engineering
group. His primary research interests con-
cern Software Engineering and, in particular,

include quality, verification and testing of Software Systems and
of Internet-based systems. He published more than 80 papers in
primary international conferences and journals. He regularly reviews
papers for international conferences (e.g., ICSE, ICSM, CSMR)
and journals (e.g., TSE, IST, JSS, IET). He collaborated to the
organization of more than ten international scientific events (e.g.,
SSBSE 2012, SCAM 2012, EmpiRE 2011-2012-2013-2014, WSE
2008-2012).

Giuseppe Scanniello received his Laurea
and Ph.D. degrees, both in Computer Sci-
ence, from the University of Salerno, Italy,
in 2001 and 2003, respectively. In 2006, he
joined, as an Assistant Professor, the Depart-
ment of Mathematics and Computer Science
at the University of Basilicata, Potenza, Italy.
In 2015, he became an Associate Profes-
sore at the same university. His research
interests include requirements engineering,
empirical software engineering, reverse engi-

neering, reengineering, software visualization, workflow automation,
migration, wrapping, integration, testing, green software engineer-
ing, global software engineering, cooperative supports for software
engineering, visual languages and e-learning. He has published
more than 140 referred papers in journals, books, and conference
proceedings. He serves on the organizing of major international
conferences and workshops in the field of software engineering (e.g.,
ICSE, ICSME, ICPC, SANER and others). Giuseppe Scanniello
leads both the group and the laboratory of software engineering
at the University of Basilicata. He is a member of IEEE and IEEE
Computer Society. More on http://www2.unibas.it/gscanniello/

Md. Mahfuzul Islam works as a Software
Developer in Create-Net and Exrade Srl.
His research interests include Requirements
Engineering and Software design, Software
testing, and Data analytics. He completed
his BSc in Computer Science and Engi-
neering from American International Uni-
versity Bangladesh (Bangladesh) and MSc
from University of Trento (Italy) specialized
in Software Technologies. He has more than
5 years of working experience in research

projects (such as Superhub and Seeinnova EU projects).

http://www2.unibas.it/gscanniello/

24

APPENDIX

In this Appendix, we present an instantiation of the fault

injection process described in Section 7.3. In particular,

let us consider a fault having BCEL-172 as identification

number of bug tracker of CommonsBcel. Figure 5 shows

how this fault appeared in the online bug tracker system.

This fault caused an ArrayOutOfBoundsException

when the search functionality is executed with a given

input.

Fig. 5. Screenshot of fault having id = BCEL-172 in the

online bug-tracker of CommonsBcel

version of CommonsBcel to be used in our experiment.

Once that fault was injected, we verify capability of our

test suite in detecting it. That is, if at least one test case

failed, we choose fault BCEL-172.

The fault BCEL-172 was considered severe because its

priority and severity were high and because that fault

completely compromised CommonsBcel behavior. Chosen

fault was also related to a relevant requirement. In fact,

it compromised a functionality critical for the user of

CommonsBcel library. The application documentation5 lists

search functionality as one of the key provided functionality

and several users identified the faults and reported it in the

application bug-tracker (e.g., BCEL-172, 85, 114, 125).

(a)

(b)

Fig. 6. (a) code with fault (b) code without fault

From the analysis of fault report, we can observe that

the chosen fault affected version 5.2 of CommonsBcel and

it was fixed in version 6.0 (RC1). Hence, by looking at

posted patch and also at code of CommonsBcel version

5.2 (see Figure 6(a)) and version 6.0 RC1 (see Figure 6(b),

we identified where the fault was present in the code, thus

understanding how and where to inject it to get a faulty

5. http://commons.apache.org/proper/commons-bcel/manual.html

http://commons.apache.org/proper/commons-bcel/manual.html

