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An approach to ghost imaging with a single SPAD array used simultaneously as a several-

pixel "bucket" detector and an imaging camera is described. The key points of the approach

are filtering data frames used for ghost-image reconstruction by the number of per-frame

counts and superposing correlation images obtained for different "bucket" pixels. The

imaging is performed in an experiment with a pseudo-thermal light source where the light

intensity is so low that the dark counts have a noticeable effect on imaging. We demonstrate

that the approach is capable to significantly reduce the destructive effect of dark counts on

the ghost image and improve image contrast, spatial resolution, and image similarity to a

reference image.
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I. INTRODUCTION

Ghost imaging (GI) is already a mature research field dating back nearly a quarter of cen-

tury. Since the first demonstration for GI with twin-photons1 and subsequent GI realization with

classically correlated light2–4, a large corpus of experimental and theoretical works has appeared

addressing particular aspects of GI and its applications for imaging/sensing (see, for example,

review works5–10). The major practical appeal of GI is a possibility to use for image detection

a maximally simple bucket detector unable to produce an image by itself. One has to use high-

resolution detection only with the reference beam (a part of the correlated light not interacting with

the object). Moreover, even correlations of the bucket-detector photo-current with the reference

current (i.e., a predefined set of patterns) are able to provide data sufficient for building a corre-

lation image11 (this possibility gave rise to a rapidly developing "single-pixel" imaging technique

with such possible applications as detection of gas leaks and sensors for situational awareness for

vehicles12).

One of the most perspective GI ways to enhance imaging sensitivity and account for non-

classical light correlations is to apply recently developed single photon avalanche diode (SPAD)

areas for the reference-beam detection7. Currently, the SPAD arrays operated in various detec-

tion regimes (such as time-stamping, counting, and gating) have reached a high technological

maturity13, featuring observation rates up to 1 MHz, 200 ps time resolution14, close-to 100 %

fill factor with megapixel spatial resolution15. SPAD cameras have already found a widespread

use in imaging, for example, in near-infrared fluorescence lifetime imaging16, super-resolving

quantum imaging17,18, demonstrating of EPR inequality violation by measurement of photon

correlations19, correlation plenoptic imaging20, Hong-Ou-Mandel interference microscopy21, Li-

DAR applications22. In these applications, the image is reconstructed from data (temporal and

spatial information for each individual single-pixel detection event) acquired in fixed temporal

windows, hereafter referred to as frames.

The dark counts (DC) are an inevitable effect that limits the sensitivity of SPAD-based imaging.

The DC are caused by intrinsic generation of carriers within the detector in absence of illumination.

The DC are not correlated with the photocounts, but they, however, cannot be separated from

them. The higher the rate of DC in a pixel, the lower the correlation with the light for the events

it detects. In large-size detector arrays, a significant percentage of detector-pixels (such pixels

are called “hot” pixels) could show a DC rate much higher than the median DC rate of the array,
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sometimes even exceeding the typical detected signal. In correlation-based imaging applications,

the destructive action of DC cannot be reduced by data averaging over time. Eventually, the effect

of dark counts on measurement may be minimized by disabling noisy pixels23–25.

In this work we use the SPAD array for a ghost imaging modality that makes a step further

toward full-size quantum correlation imaging with aim to improve image quality. Namely, instead

of a single-pixel bucket detector we use several pixels of the imaging SPAD camera (as in4,26)

and perform averaging over a ghost images obtained for each "bucket" pixel. Also, we propose

procedures allowing to deal with intrinsic shortcomings of SPADs in the low-light regime. The

procedures are frame-filtering on the number of counts per frame and algorithms for dealing with

dark counts in-homogeneously distributed over the SPAD pixels. We demonstrate that for a stan-

dard pseudo-thermal source of correlated photons (namely, a rotating ground-glass disk) such an

approach can significantly rise the ghost-image quality.

It should be emphasized that key points of our approach, namely, filtering frames with re-

spect to a specific number of counts and averaging over several simultaneously obtained intensity

correlation images look to be rather general and applicable not only for different ghost imaging

modalities, but also for generic correlation imaging with light on the few-photon level, first of all,

for quantum microscopy/sensing applications.

The outline of the paper is as follows. In the second Section we describe the ghost imaging

set-up, the object and the SPAD camera used for imaging. In the third Section we outline the

data post-processing procedure, give the definition of the ghost image for the case of multiple

bucket detectors and define two measures of image quality: the contrast-to-noise ratio and the

correlation coefficient to the reference image. In the fourth Section the ghost image inference and

quantification of the image contrast and quality are discussed. Here we demonstrate ghost imaging

with filtered and unfiltered data, and also compare results averaged over multiple "bucket" pixels

and just a single "bucket" pixel. In the Appendix, the influence of dark counts on the ghost image

is discussed.
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FIG. 1: The scheme of the ghost imaging experiment: (LD) laser diode; (LDM) laser diode

mount; CLD fiber collimator; (FBB) broadband filter; (RB) beam reducer; (D) rotating ground-glass

disk; (LC, LT ) lenses; (DI) iris diaphragm; (S1, S2) beam splitters; (RRe f , RT ) reflectors; (T)

target; (FNB) narrow-band filter; (ASPAD) SPAD array; (Cam) camera "SuperEllen"; (PC)

computer. The inset shows how the SPAD array is illuminated by the object and reference beams.

The dashed line in the inset shows boundaries of the “Flare” area; the "bucket" pixels are there.

II. SETUP

A. Optical layout

In the work, the GI is performed by an experimental way using correlated light beams produced

with help of a laser and a rotating ground-glass disk. The initial light beam is generated by a

CW-operated laser source. The experimental setup is shown in Fig 1. The source is a fiber-

pigtailed single-transverse-mode Fabry-Perot laser diode (LDS-670-FP-5-U-3-SMP04-FU-CW-

0.5, LaserCom LLC) operated near a wavelength λ ≈ 671 nm with an output power less than 8

mW. The diode is thermally stabilized inside a laser mount (Thorlabs LDM9T) and operates at

constant current in near-threshold mode (power supply Thorlabs LDC201CU). The laser beam is

output from a PM-fiber and a fiber collimator (CLD, efficient focus length of 7.5 mm) mounted in

a Thorlabs PAF2-7B fiber-port. This beam is collimated. Its cross section has a Gaussian profile

with a diameter of approximately 1.4 mm. The beam is directed through a broadband filter FBB
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and a free-space beam reducer (RB, of about 3 times reduction factor) towards a rotating ground-

glass disk (D). The distances |CLDD| and |RBD| are about 100 mm and 20 mm, respectively. The

diameter of spot illuminated by this beam on the rotating disk is dd ≈ 0.47 mm. Disc D has a

matte surface with a random grained transparent pattern that scatters the input optical beam over a

wide solid angle. The luminous laser spot on the surface of disk D is a pseudo-thermal source of

correlated photons that form random structure of light spots (also called speckles) in space. The

distance between the optical axis and the axis of disk rotation is 52 mm. The disk rotates at a

frequency of 10 Hz. A lens (LC, focal length FLC = 80 mm) positioned at a distance |DLC| ≈ FLC

collects photons scattered by the disk, collimates and directs them through an iris diaphragm (DI ,

|DDI| ≈ 20 mm) towards a beam splitter (S1, |DS1| ≈ 55 mm).

Splitter S1 divides the collimated speckle beam into two arms: object and reference. In the

reference arm, the beam is directed through a reflector (RRe f , |S1RRe f | ≈ 105 mm) and another

beam splitter (S2, |RT S2| ≈ 85 mm) towards a SPAD array (ASPAD) mounted in a camera (Cam).

In the object arm, the beam is directed by a reflector (RT , |S1RT | ≈ 85 mm) to a target (T). A lens

(LT , focus length FLT = 67 mm) collects the light transmitted by target T and focuses it (through

beam splitter S2) on array ASPAD (|LT ASPAD| ≈ FLT ). Target T is positioned as close as possible to

splitter S2. The distances |T LT | and |LT S2| are 13 and 15 mm, respectively. A 20 nm narrowband

filter (FNB) is located in front of the camera for suppressing influence of stray light. The distance

|S2ASPAD| ≈ 50 mm. The beam splitters S1 and S2 are 50:50 non-polarizing beamsplitter cubes

BS011 (Thorlabs). The reflectors RRe f and RT are Thorlabs right-angle prism FS910L-B.

Splitter S2 directs photons from both the reference and object arms to array ASPAD. The ref-

erence beam uniformly fills the entire surface of array ASPAD. The object arm is adjusted so that

the light spot focused by lens LT on the surface of array ASPAD falls on the upper right part of

ASPAD (see the inset in Fig. 1(a)). The diameter of this spot is dT = ddFLT/FC ≈ 0.39 mm. The

central part of this spot (referred to as “bucket”) is intended to be used as a bucket detector. A

larger area (an area limited by dashed lines in the inset in Fig. 1(a)) around the object-beam spot is

considered as a flare area, unsuitable for image reconstruction. The remaining part of array ASPAD

(called “Ghost”) lighted only by the reference beam is reserved for ghost image reconstruction. A

similar arrangement of having a "bucket" and "ghost" images in the region of just a single camera

(albeit a CCD one) was used in an earlier work on ghost imaging with quasi-classical field4. Also,

a similar set-up was recently used for quantum ghost polarimetry27.
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FIG. 2: Resolution test target (left) and high-resolution contour plot of the object with sizes

(right): a ≈ 1.3 mm; b ≈ 0.94 mm; c ≈ 0.20 mm; d ≈ 0.16 mm; e ≈ 0.116 mm; f ≈ 0.12 mm;

g ≈ 0.19 mm.

B. Imaged object

The imaged object is a part of a 1951 USAF resolution test target (negative chrome-on-glass

version, see Fig. 2) discussed in detail in28. We reproduce the images for the digit template “2”

(Element 2 of Group 0) of the test target. In order to illuminate the template ”2” selectively from

other target patterns, the light beams are restricted by diaphragm DI . The height and width of the

selected template are 1.3 and 0.94 mm. The font-line thickness for this object is a value varying

from 0.11 to 0.20 mm. The image of the selected digit template is shown in Fig. 2.

C. SPAD array

The SPAD camera (Cam) is based on the "SuperEllen" sensor, specifically developed by Fon-

dazione Bruno Kessler to target quantum imaging applications14,18 and implemented recently also

for ghost imaging29,30. The array consists of 32×32 = 1024 pixels with a pitch of δs = 44.54µm

and a total sensitive area of 1.4× 1.4mm2 manufactured in 150 nm CMOS standard technology.

The pixels are addressed by their linear index k ∈ {1, . . . ,1024} such that k = yk + 32(xk − 1)
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where xk,yk ∈ {1, . . . ,32} are the discrete Cartesian coordinates of pixels. For every pixel there

is a time-to-digital converter (TDC) which timestamps the first count with up to 204 ps resolution

within a frame of exposure time of up to 100 ns. Using on-chip features for reading empty rows

or frames, a frequency of exposure repetition (i.e. an observation rate) of 800 kHz is achieved

leading to a measurement duty-cycle of 3.6%. The photon detection efficiency reaches 5% at 400

nm and 0.8% at 810 nm. The median dark count rate per pixel is approximately 0.7 kHz over the

whole pixel population. The timestamped counts are registered in a frame-by-frame way.

In our experiment, each frame is a result of light exposition during the time of 45 ns. The data

related to an individual frame is converted into a compressed sparse structure

D f := { f ,n f ,{x(i)k ,y(i)k ,τ(i)}i=1,...,n f }, (1)

where f is the serial number of frame repetition; n f is the total number of events (counts) detected

by all pixels in frame f ; x(i)k , y(i)k and τ(i) are the discrete Cartesian coordinates and the detection

time for the i-th event registered in frame f . The registered data is collected and transferred to a

computer (PC) as a stream of multiple frames:

F = {D f
∣∣n f ≥ 1}. (2)

The frames {D f |n f = 0} (frames for which no events were detected) are not included in the stream

for accelerating the data transfer process.

III. POST-PROCESSING

A. Datasets

For ghost imaging both unfiltered and filtered datasets will be used. The unfiltered dataset

F0 =
{
D f

∣∣n f ≥ 0
}
, (3)

contains all frames registered in the experiment (including the frames of original stream F and

the frames {D f |n f = 0} omitted at data transfer (2)). The total number of frames in this dataset is

N0.

The frame-filtered datasets

F(n∗) = F0
∣∣
n f=n∗ =

{
D f

∣∣n f = n∗
}

(4)
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FIG. 3: Functions g(2)(m∗,k) depending on the distance ∆ym∗k for the pixel m∗ = 496

(xm∗ = ym∗ = 16). The functions are acquired from a frame-filtered dataset F(8) (blue squares)

and unfiltered data F0 (red stars). The blue solid (F(8)) and red dashed (F0) lines indicate

approximation (8) to the acquired functions.

are non-overlapping sub-sets of F0 with fixed number of counts n∗ in frame. The ratio

p(n f = n∗) =
N(n∗)

N0
(5)

is normalised distribution of filtered sub-sets number N(n∗).

B. Correlation functions

The prepared dataset is used to calculate both a per-frame distribution of counts and their pair-

wise correlations31:

G(1)(k) = ⟨Pk⟩{ f}, G(2)(m,k) = ⟨PmPk⟩{ f}, (6)
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where k and m are linear pixel indices, and ⟨. . .⟩{ f} denotes averaging over the dataset frames. For

ideal detectors, G(1)(k) and G(2)(m,k) will be proportional, respectively, the field intensity, and

the transversal correlation function of the second-order of the field on pixel plane. The quantities

Pk in (6) are random binaries taking the value 1 for a count registration at the pixel k or zero in its

absence. In the following consideration we use the normalized second-order correlation function

g(2)(m,k) =
G(2)(m,k)

G(1)(m)G(1)(k)
, (7)

conditioned by the choice of dataset.

The ghost imaging implies knowledge of parameters (spatial resolution, correlation strength

and background) that specify the correlation over SPAD pixels for the applied light beams. The

correlation g(2)(m∗,k) between a “probing” low-noise pixel m = m∗, selected inside the "ghost"

area (Fig. 1), and all other pixels of the SPAD array is well approximated by the Gaussian

g(2)(m∗,k)≈ Am∗ exp
{
−|rm∗k|2

2B2
m∗

}
+Cm∗, (8)

with the distance |rm∗k| =
√

∆x2
m∗k +∆y2

m∗k between k-th and m∗-th pixels. Typical functions

g(2)(m∗,k) depending on the distance ∆ym∗k acquired from different datasets for a ’"probing" pixel

m∗ (the pixel is located in the middle of the SPAD array) are demonstrated in Fig. (3).

C. Ghost image

In the work, we define the ghost image as a weighted sum of several correlation functions

I ′
k =

∑
m∈{B}

G(1)(m)g(2)(m,k)

∑
m∈{B}

G(1)(m)
. (9)

The pixels labeled by m are "bucket" pixels belonging to the set {B}. These pixels are chosen as

located near the center of the object-beam spot on the SPAD area. The image pixels labeled by k

are in the "ghost" area.

The scaling factor and background of the image I ′
k are dataset dependent. In order to minimize

such an uncertainty and, hence, to facilitate analyzing the images produced from different datasets

the array (9) is converted into a background-subtracted normalized image structurally identical to

I ′
k :

I (xk,yk)≡ Ik =
1
Ā
(I ′

k −C̄). (10)
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In our experiment, quality assessment for the reconstructed ghost images is performed by an-

alyzing the properties of Ik. In accordance with (8), the spatial resolution of GI is limited by a

quantity of ∼ 2B̄δs.

D. Image quality

We apply two measures specifying the image quality. The contrast-to-noise ratio (CNR) is

a measure traditionally applied to characterize the quality of spatially restricted image parts. In

imaging applications, these parts usually refer to transmitting (“In”) or non-transmitting (“Out”)

areas of the imaged object. In our experiment, the pixels of these parts are addressed by the

indices k belonging to the sets {In} or {Out}, respectively. The CNR defined as a ratio of the

image contrast K to the total error σ is found in the form:

CNR =
K
σ

=
⟨Ik⟩{In}−⟨Ik⟩{Out}√

σ2
In +σ2

Out

, (11)

where the averaging ⟨. . .⟩{In,Out} is carried out over the sets {In} or {Out}. The quantities σ2
In,Out

are corresponding variances of Ik. At evaluating CNR, we cannot properly assess the influence of

strong-noise pixels on the ghost image since they are sparsely dispersed over the SPAD array and

the area “In” is essentially small. Therefore, for definiteness, the sets {In} and {Out} includes

only indices of low-noise pixels.

The quality of image can also be assessed with help of a correlation coefficient which pixel-

by-pixel measures the strength of linear relationship (that is, a structural similarity32) between

the analyzed image and a higher-quality reference image of the same object. Unlike CNR, this

measure is applicable to the entire image. We apply the correlation coefficient to evaluate the

quality for the entire "ghost" area including highly noised pixels. To produce a reference image

of suitable quality, we project a conventional image of the object (back-lighted by a laser beam)

with help of a converging lens on the photosensitive matrix of a high-resolution digital camera

(UI-3240CP-NIR-GL Rev.2, DS Imaging Development Systems GmbH, pixel size of 5.3 µm) at

a lens magnification of ∼ 1.5. A high-resolution image (spatial resolution of ∼ 3.5 µm/pixel, this

image is illustrated in Fig. 4(a)) stored by the digital camera is converted into a 32× 32-pixel

image I(r)(xk,yk)≡ I(r)k (resolution of ∼ 45 µm/pixel). The obtained high-contrast and low-noise

image I(r)k (the image is shown in Fig. 4(b)) is then exploited as a reference in order to find the
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FIG. 4: A high-resolution conventional image (a) and a 32×32-pixel reference image I(r)(xk,yk)

(b) of the object.

correlation coefficient:

R =

∣∣∣ ∑
k∈{ghost}

(I(r)k −⟨I(r)k ⟩)(Ik −⟨Ik⟩)
∣∣∣√

∑
l,k∈{ghost}

(I(r)l −⟨I(r)l ⟩)2(Ik −⟨Ik⟩)2
, (12)

where the summation is done over the "ghost" part of the SPAD area. In equation (12) brack-

ets ⟨. . .⟩ denote averaging over the "ghost" area pixels. To achieve an accurate correspondence

between the ghost and reference images, (i.e., to ensure the same position and the same scaling

factor for the both images on the 32×32 pixel grid) the correlation coefficient R is maximized at

image converting. The error in evaluation of R is less than 0.01.

Overall, at data post-processing, the following procedure of ghost-image reconstruction is im-

plemented. First of all, a dataset (unfiltered (3) or frame-filtered (4)) is prepared. The prepared

dataset is applied to calculate G(1)(m) and G(2)(m,k) and find normalized correlation function

g(2)(m,k) as described in equations (6) and (7). After that the averaged parameters Ā, B̄, C̄ and

A/C of correlation function (8) are evaluated. Then, a ghost image Ik is computed in accor-

dance with equations (9) and (10). Finally, quality of the obtained image is examined visually and

estimated using CNR (11) and correlation coefficient (12).
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FIG. 5: GI based on the unfiltered dataset F0. The white x’s show the pixels belonging to the

"bucket” region. The white squares and black circles show, respectively, the pixels belonging to

the sets {In} and {Out}. Panel (a): distribution of log2[G
(1)(xk,yk)]; the white cross shows the

point (20,29) corresponding to the maximal intensity of the object-beam spot; the white dashed

line indicates a rectangle containing the “flare” region; the white circles show the “probing”

pixels. Panel (b): ghost image I (xk,yk). Panel (c): ghost image reconstructed with the

single-pixel "bucket" marked by x in the "flare" area.

IV. RESULTS AND DISCUSSION

In our GI experiment, the light beams are registered under conditions where ⟨n f ⟩ ≈ 8. The

registered data stream F is collected over 186 minutes, stored on the computer and later post-

processed. At post-processing, this dataset is used to prepare an unfiltered dataset F0 and then to

produce a number of frame-filtered sets F(n∗).

The maximum count rate for the object-beam spot on the SPAD array is realized near the

point (20,29) (here and further we denote the pixels coordinates x and y just by a pair of indices

(x,y)). The "flare" area is taken as a rectangle with vertices at the pixels (12,32), (12,24), (26,24),

(26,32). The rectangle contains 15× 9 = 135 pixels. So, the remaining "ghost" area includes

Jmax = 1024−135= 889 pixels. Twenty four low-noise pixels uniformly and randomly distributed

across the "ghost" area are selected as the "probing" pixels m ∈ {m∗} required to determine the

averaged parameters Ā, B̄, C̄ and A/C.

In the study, we apply two sets {B} of "bucket" pixels. Nine low-noise pixels surrounding the

point (20,29) are used as a set corresponding to the best image reconstruction. On the other hand,

to highlight advantages offered by our approach, we also demonstrate a traditional GI technique.

For that we just choose as a "bucket" detector a single pixel in the "bucket" region. This pixel is
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the point (20,29). The "flare" area, the exploited "probing" and "bucket" pixels are indicated in

Fig 5(a).

A. GI with unfiltered data

The total number of frames in the unfiltered dataset F0 is N0 ∼ 1.9×109. The per-frame proba-

bilities G(1)(xk,yk)≡ G(1)(k) obtained for all pixels of the SPAD array from this dataset are shown

in Fig. 5(a). The averaged values of shape parameters and the corresponding standard deviations

are as follows: Ā ≈ 0.780, σA ≈ 0.047; B̄ ≈ 1.72, σB ≈ 0.085; and C̄ ≈ 1.085, σC ≈ 0.0046. Ac-

cording to the obtained data, the spatial resolution of the image computed from the data F0 is of

∼ 2B̄δs ≈ 3.44δs ≈ 0.15 mm.

The computed ghost image I (xk,yk) is represented in Fig. 5(b). The visual examination of this

figure shows that the imaged object is recognizable in the ghost image. However, the presented

figure clearly demonstrates a serious drawback. The number of noisy pixels is so high that they

have a strong destructive effect on the quality of the entire image. According to Appendix, the

efficient number of pixels distinguishable (due to the dark-count effect) in the ghost image recon-

structed from the dataset F0 is of ∼ 100. In addition, the spatial resolution is clearly suffering. The

resolution is not high enough to resolve all parts of the object. The "tail" of the imaged digit "2"

(a ∼ 0.1 mm wide strip) is not visible in the reconstructed image.

The quality of the obtained image Ik is estimated numerically in terms of CNR (11) and struc-

ture similarity with the reference image (12). In the CNR evaluation we exploit 6 low-noise pixels

for the set {In} and 43 low-noise pixels for the set {Out} (these pixels are indicated in Fig. 5(b)).

The {In} pixels are located near the maxima of the observed ghost image. For these pixels sets we

have ⟨Ik⟩{In} ≈ 0.1170, σIn ≈ 0.0046 and ⟨Ik⟩{Out} ≈ 0.0163, σOut ≈ 0.0073. According to (11),

the image CNR ≈ 11.7 is achieved at the contrast of K ≈ 0.101 and the total error σ ≈ 0.0086.

Along our estimation (12), the coefficient of correlation R between the image Ik and the reference

image I
(r)

k is of ∼ 0.62.

The unfiltered data F0 is a composition of frames with different values of n f . Fig. 6 shows the

probability distribution that expresses a per-frame probability (5). The shape of this distribution

is rather close to the shape of the Poisson distribution with the same average number of counts

per frame. The obtained p(n f = n′) distribution has a maximum near n′ = 7 and a half-maximum

width of ∼ 9 .
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FIG. 6: Distribution of per-frame probabilities p(n f = n′) over realizations of n f (blue squares)

for the unfiltered dataset F0. The Poisson probability distribution of the same ⟨n f ⟩ are shown by

the red solid line. The Poisson distribution that represents the dark counts typical for the applied

SPAD array is depicted by the black dashed line

B. GI with filtered data

In this subsection, we exploit frame-filtered datasets F(n∗) that are produced by filtering the

data F0 considered in the previous subsection. For the exploited data, the parameter n∗ ranges from

2 to 24 (see Fig.6).

The datasets F(n∗) are used to clarify how the dataset composition may affect the correlation

function (8). Fig.7 shows the dependence of the half-width B̄ and the ratio A/C on n∗ (the scat-

ters show the corresponding root-mean-squared deviations). As can be seen from this figure, the

parametric ratio A/C, within the error of its determination, does not depend on n∗. On the other

hand, the half-width B̄ monotonically increases with n∗ from 1.4 to 2 pixels. As a result, the spa-

tial resolution of GI will worsen from ∼ 0.12 mm up to ∼ 0.18 mm with the parameter n∗. The

GI based on a frame-filtered dataset with n∗ < 12 must exhibit better spatial resolution than the

GI reconstructed from the unfiltered data F0. The observed dispersion-like phenomenon for the

half-width B̄ may be associated with specific optical properties of the rotating disk D.

The datasets F(n∗) are used to reconstruct ghost images. Fig. 8 demonstrates images Ik com-

puted from frame-filtered datasets F(n∗) at n∗ = 4, 8 and 16. In terms of contrast, spatial resolu-
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FIG. 7: Dependence on n∗ for averaged ratio A/C ( left Y axis: blue circles) and half-width B̄ (

right Y axis: red stars) obtained from frame-filtered datasets F(n∗). The relevant parameters

acquired from the unfiltered data F0 are shown by a blue dash-dotted line with a blue square (left

Y axis: A/C) and a red dashed line with a red square (right Y axis: B̄).

tion, and number of distinguishable noised pixels, the presented images look significantly better

compared to the ghost image obtained from unfiltered data. Image qualities (such as spatial res-

olution and contrast) depend on the parameter n∗. Based on visual inspection of the presented

images one can conclude that ghost images of the highest quality are realized for datasets F(n∗)

with n∗ ∼ 8. As can be seen from Fig 8 (b), the spatial resolution of the image Ik based on the

dataset F(8) is high enough to resolve all parts of the imaged object. In accordance with Appendix,

only a few pixels of the image reconstructed from F(8) can be identified as pixels affected by dark

counts.

This conclusion is corroborated with the results of numeric evaluation of CNR (11) and the

correlation coefficient (12) represented in Fig. 9. In the CNR evaluation, the pixels k ∈ {In} and

k ∈ {Out} are the same pixels as in the previous subsection. Generally, for the ghost image based

on the frame-filtered data, the maximum CNR and correlation coefficient R are achieved near those

values of n∗ that correspond to the maximum probability p(n f = n′) of the distribution analyzed in

the previous subsection and represented in Fig.6. As shown in Fig. 9 (left Y axis), compared to the
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FIG. 8: Ghost images reconstructed from the frame-filtered datasets F(4) (a), F(8) (b) and F(16)

(c). Ghost image computed from the frame-filtered dataset F(8) with the single-pixel "bucket"

(d). The white squares, circles and x’s show, respectively, the pixels belonging to the sets {In},

{Out} and {B}.

"unfiltered" image, the "frame-filtered" image Ik has a higher CNR when the parameter n∗ ranges

from 5 to 10. At n∗ = 8, the filtered GI reaches its maximal CNR ≈ 17.0 (⟨Ik⟩{In} ≈ 0.0744,

σIn ≈ 0.0033, ⟨Ik⟩{Out} ≈ 0.0009, σOut ≈ 0.0028, K ≈ 0.0735, σ ≈ 0.0043) which is nearly 45%

higher as compared to the CNR of unfiltered GI.
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F0 .

Unlike CNR, the measure of structural similarity (12) takes into account the effect of strong-

noise pixels on the image. Therefore, the range 3 ≤ n∗ ≤ 19, where the "low-noise" filtered GI

leads to a higher coefficient R (as compared to the "noisy" unfiltered GI), covers almost all of

the considered values of n∗. Like CNR, the structural similarity between the reference and ghost

images attains its maximum at n∗ = 8 leading to R ≈ 0.8 (right Y axis of Fig. 9).

C. GI with a single-pixel "bucket"

The ghost images computed with the single-pixel "bucket" from the unfiltered data F0 and the

filtered dataset F(8) are shown in Fig 5(c) and Fig 8(d), respectively. The resulting ghost image

obtained with the data F0 is the image that one gets with traditional ghost imaging technique for

the case. It seems close to the GI of Fig 5(b) obtained with our approach for the data F0. Indeed,

the correlation coefficient is only slightly lower, R ≈ 0.6 in comparison to the correlation for the

multiple-pixel "bucket" image ( R ≈ 0.62). However, CNR is nearly twice lower, CNR ≈ 6.73.

Using the filtered dataset F(8) improves the correlation giving R ≈ 0.724. However, simulta-

neously it leads to degradation of the contrast, CNR ≈ 5.46. Thus, a single-pixel "bucket" imaging
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modality for the case cannot ensure the quality of image given by averaging over several GI in our

approach.

V. CONCLUSIONS

We have presented an approach to ghost imaging and analyzed the approach capabilities in an

experiment where the light intensity is so low that the dark counts have a noticeable effect on

the imaging. We have demonstrated that filtering the acquired data with respect to the number

of counts per frame and obtaining the image as a weighted average over the images for different

"bucket" pixels, one can significantly reduce the destructive effect of dark counts on the ghost

image, improve the image contrast, spatial resolution and image similarity to the reference image.

The proposed approach allowed us inferring ghost images for dark counts level of 20% and more

of the "bucket" signal level with the photon fluxes of about several photons per time-frame. In our

opinion, using multiple bucket detectors instead of just one is compatible with most applications

of ghost imaging and will allow one to greatly enhance imaging quality in the extremely-low-light

condition. These results can be extended to computational5,11–13 and temporal33–35 ghost imaging.

Our findings are important for developing correlation imaging schemes with light on a-few-photon

level, first of all, for quantum sensing applications.

Appendix A: Dark counts of the SPAD array and their effect on reconstructed ghost images

To analyze the effect of dark-counts (DC) for the SPAD array we, first of all, measure the proba-

bility of counts for each SPAD pixel under conditions where the detection events are DC. To ensure

this condition, the SPAD array is blocked by a light-tight screen from any light source (including

ambient light). The registered data are stored in the computer as a frame-unfiltered dataset FDC

including ∼ 2.8×109 frames. The per-frame probabilities of DC G(1)
DC(k) for all SPAD pixels are

found from the dataset FDC, as described in Section III. The distribution of measured G(1)
DC(xk,yk)

over the pixels of the SPAD array is shown in Fig 10. The bright pixels of this distribution are

strongly noised pixels of the SPAD array. The brightest pixel is the pixel k = 212 with coordinates

xk = 7,yk = 20. One can see in Fig 10 that distribution of DC rates over the SPAD pixels is quite

inhomogeneous and randomized. The measured probabilities G(1)
DC(k) are in a wide range of values

from ∼ 10−5 to ∼ 10−2. The average DC probability per pixel and per frame reaches a value of
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corresponding normalized values.

⟨G(1)
DC⟩ ≈ 4.9× 10−4 (or approximately 0.5 per frame). The dependence of per-frame probability

p(n f = n′) on n′ for this data is represented by the Poisson distribution with ⟨n f ⟩ ≈ 0.5 and shown

in Fig.6.

In general, despite the substantial inhomogeneity and randomness, the influence of DC on

the measurement can be evaluated if the evaluation operates with specially organized sequences

of pixels. In these sequences, the pixels are arranged so that their dark count rates G(1)
DC(k) are

ordered in descending order (“DC-ordering”):

G(1)
DC(k)

DC−ordering−−−−−−−→ G(1)
DC(S j), (A1)

where j is the serial number for each term of the sequence G(1)
DC(S j). The sort index S j specifies

how the data G(1)
DC(k) should be rearranged to obtain the ordered sequence G(1)

DC(S j). The first terms

of the DC-ordered sequence belong to strongly noised pixels, the last to low-noise pixels.

The DC effect on a measured quantity Q(k) is evaluated by analyzing a “DC-ordered” sequence

Q(S j). For the pixels with a weak influence of DC on Q (e.g., for low-noise pixels with j ≫ 1) the

measured Q(S j) fluctuates around a certain value Q0, independent of j. On the other hand, for a

pixel k′ where the influence of DC on Q is significant, the quantity Q(k′) is a function of G(1)
DC(k

′).

For several pixels with strong DC effect, the DC-ordered sequence Q(S j) must explicitly reproduce

the sequence G(1)
DC(S j) within a j index range νQ. In a sense, the deviation χQ =max(|Q(S j)−Q0|)

realized near j = 1 and the width of the range νQ can be accepted as measures of the DC effect.

The width νQ can be associated, for instance, with an efficient number of noised pixels that have a

19



destructive effect on the measured quantity Q. The deviation χQ characterizes the effect strength

for the "hot" pixels.

To evaluate the DC effect on a reconstructed ghost image I (xk,yk) we compute a pixel-by-

pixel image difference ∆I (k) ≡ ∆I (xk,yk) = Ĩ (xk,yk)−I (xk,yk). Here, Ĩ (xk,yk) is an im-

age obtained from I (xk,yk) by a 2D smoothing in which the convolution kernel is a 3×3 pixel

square. The quantity ∆I (k) is insensitive to pattern variation for the imaged object and approx-

imately equal to fluctuation in I (xk,yk) between the neighboring pixels. Owing to these proper-

ties, the difference ∆I is well adapted to register one-pixel-ranged correlation drops typical for

strongly noised pixels sparsely dispersed across the SPAD array. We analyze the dependence of

the “DC-ordered” difference ∆I (S j) on the index j. In a similar way, the DC influence on the

measured probabilities G(1) can be evaluated by considering the sequence G(1)(S j) as a function

of j. The “DC-ordered” sequences G(1)(S j) and ∆I (S j) calculated for the pixels k ∈ {ghost}

( j = 1, . . . ,Jmax) from frame-filtered and unfiltered datasets (they are datasets F(8) and F0 applied

for ghost image computation in Section IV) are represented in Fig. 11. For illustrative purposes

(to demonstrate the effect manifestation in comparison with the image contrast K), the difference

∆I (S j) in the figure is normalized by K.

Regardless of the type of filtering (with or without frame filtering), the DC have an equal

influence on the probabilities G(1) obtained from data with the same average numbers ⟨n f ⟩. As

shown in Fig. 11 (a), the dependencies of G(1)(S j) on the j index for filtered and unfiltered data

(F(8) and F0 with ⟨n f ⟩ ≈ 8) are very similar. The efficient number of pixels distinguishable due

to the DC effect in the imaged distribution G(1)(xk,yk) is νG1 ∼ 100 for the both datasets.

Contrary to G(1), the manifestation of DC effect in ghost images (see Fig. 11 (b)) depends

significantly on what data (frame-filtered or not) is used to compute the images. The efficient

number of pixels distinguishable (due to the DC effect) in the ghost image computed from the

unfiltered data F0 is ν∆I ∼ νG1 ∼ 100. For the frame-filtered dataset F(8), the manifestation of

the DC effect is essentially small. In fact, only a few pixels can be identified that are affected by

DC. The deviation χ∆I realized for the "hottest" pixel k = 212 is more than three times smaller

than for unfiltered data. Such a dramatic reducing (compared to F0) in the DC effect is observed

for all frame-filtered datasets used in Section IV at GI reconstructing. All pixels with the index

j > 300 are accepted to be low-noise.
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