
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.

Mauro Dragoni; Giulio Petrucci, A Neural Word Embeddings Approach For Multi-Domain

Sentiment Analysis, IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, Volume: 8, Issue: 4,

pp. 457-470, Oct.-Dec. 2017, DOI: 10.1109/TAFFC.2017.2717879

The final published version is available online at: https://ieeexplore.ieee.org/document/7954756

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing

policy. For all terms of use and more information see the publisher's website.

When citing, please refer to the published version.

https://ieeexplore.ieee.org/document/7954756

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

2

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A Neural Word Embeddings Approach For
Multi-Domain Sentiment Analysis

Mauro Dragoni, Fondazione Bruno Kessler

Giulio Petrucci, Fondazione Bruno Kessler, University of Trento

E-mail: [dragoni,petrucci]@fbk.eu

Abstract—Multi-domain sentiment analysis consists in estimating the polarity of a given text by exploiting domain-specific information.

One of the main issues common to the approaches discussed in the literature is their poor capabilities of being applied on domains

which are different from those used for building the opinion model. In this paper, we will present an approach exploiting the linguistic

overlap between domains to build sentiment models supporting polarity inference for documents belonging to every domain. Word

embeddings together with a deep learning architecture have been implemented into the NeuroSent tool for enabling the building of

multi-domain sentiment model. The proposed technique is validated by following the Dranziera protocol in order to ease the

repeatability of the experiments and the comparison of the results. The outcomes demonstrate the effectiveness of the proposed

approach and also set a plausible starting point for future work.

Index Terms—Sentiment Analysis, Natural Language Processing, Neural Networks, Multi-domain Sentiment Analysis, Deep Learning

✦

1 INTRODUCTION

Sentiment Analysis is a natural language processing (NLP)

task [1] which aims at classifying documents according to the

opinion expressed about a given subject [2]. Generally speaking,

sentiment analysis aims at determining the attitude of a speaker

or a writer with respect to a topic or the overall tonality of a

document. In the recent years, the exponential increase in the use

of the Web for exchanging public opinions about events, facts,

products, etc. led to an extensive usage of sentiment analysis

approaches, especially for marketing purposes.

The paper [3] formalizes the sentiment analysis problem by

representing an “opinion” as a quintuple:

⟨oj , fjk, soijkl, hi, tl⟩ (1)

where oj is a target object, fjk is a feature of the object oj ,

soijkl is the opinion polarity value given by the opinion holder hi
about the feature fjk, and tl is the timestamp when the opinion

is expressed. The value of soijkl can be classified as positive,

negative, or neutral. In general, different and more fine-grained

rating schemes can be used as well, depending on the level of

satisfaction the opinion holder has with respect to the specific

object feature.

Many works available in the literature address the sentiment

analysis problem without distinguishing domain specific informa-

tion of documents when sentiment models are built. The necessity

of investigating this problem from a multi-domain perspective is

led by the different influence that a term might have in different

contexts. Let us consider the following examples. In the first one,

we have an emotion-based context where the adjective “cold” is

used differently based on the feeling, or mood, of the opinion

holder:

1) Our new colleague behaves in a very cold way with us.

2) A cold drink is the best thing we can drink when the

temperature is very hot.

Submitted on June 3, 2017

In the second example instead we have a subjective-based

context where the adjective “small” is used differently based on

the product category reviewed by a user:

1) The sideboard is small and it is not able to contain a lot

of stuff.

2) The small dimensions of this decoder allow to move it

easily.

In the first context, we considered two different emotional

domains: in the first one, a person is commenting about the

behavior of his colleague by using the adjective “cold” with a

negative polarity. Instead, in the second one, a person is referring

to the adjective cold in a positive way as a good solution for the

described situation.

Instead, in the second context, we considered the interpretation

of texts referring to two different domains: “Furnishings” and

“Electronics”. In the first one, the polarity of the adjective “small”

is negative because it highlights an issue of the described item.

On the other hand, in the second domain, the polarity of same

adjective may be considered positive.

The multiple facets with which textual information can be an-

alyzed requires the design of approaches able to address different

domains. The idea of adapting terms polarity to different domains

emerged only in the last decade [4]. Multi-domain sentiment anal-

ysis approaches discussed in the literature (surveyed in Section 2)

focus on building models for transferring information between

pairs of domains [5]. While on the one hand such approaches

allow to propagate specific domain information to others, their

drawback is the necessity of building new transfer models every

time a new domain has to be analyzed. Thus, such approaches

do not have a great generalization capability of analyzing texts,

because transfer models are limited to the N domains used for

building the models.

The contribution presented in this paper aims at addressing

the challenge of working in a multi-domain environment. The

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

3

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

described approach, implemented into the NeuroSent tool, is

based on the following pillars:

• the use of word embeddings for representing each word

contained in raw sentences;

• the word embeddings are generated from an opinion-based

corpus instead of a general purpose one (like news or

Wikipedia);

• the design of a deep learning technique exploiting the

generated word embeddings for training the sentiment

model;

• the use of multiple output layers for combining domain

overlap scores with domain-specific polarity predictions.

The last point enables the exploitation of linguistic overlaps

between domains, which can be considered one of the pivotal

assets of our approach. This way, the overall polarity of a

document is computed by aggregating, for each domain, the

domain-specific polarity value multiplied by a belonging degree

representing the overlap between the embedded representation of

the whole document and the domain itself. The use of this strategy

ease the validation of our approach from two perspectives: (i)

to measure the effectiveness of our model on the domains used

for creating the model itself, and (ii) to observe how our model

behaves in classifying document coming from domains different

from the ones adopted for building the model (i.e. generalization

of our approach). This point represents an innovative aspect with

respect to the state of the art of multi-domain sentiment analysis.

The paper is structured as follows. Section 2 presents a survey

on works about sentiment analysis in both the single and the multi-

domain environment and provides a brief review of some advances

in the field of NLP that have successfully exploited deep learning

approaches. In Section 3, we included information about the ma-

terial used for developing our approach. Then, Section 4 provides

the elements for understanding how our deep network works from

a mathematical perspective. In Section 5, we present the overall

architecture of NeuroSent that is evaluated in Section 6. Finally,

Section 7 concludes the article.

2 RELATED WORK

In this Section, we briefly review the main contributions in the

field of sentiment analysis and opinion mining, first from a general

standpoint and then with a particular attention to the multi-domain

scenario. A brief overview of significant recent contributions in

the NLP field that based on deep learning approaches follows,

pointing out some application to the sentiment analysis task.

2.1 Sentiment Analysis and Opinion Mining

The topic of sentiment analysis has extensively been studied in the

literature [3], [6], where several techniques have been proposed

and validated.

Machine learning techniques are the most common approaches

used for addressing the sentiment analysis problem. For instance,

in [2] and [7] the authors compared the performance of Naive-

Bayes, Maximum Entropy, and Support Vector Machines classi-

fiers in sentiment analysis, using different features like considering

only unigrams, bigrams, combination of both, incorporating parts

of speech and position information, or considering only adjectives.

The recent massive growth of online product reviews paved

the way for using sentiment analysis techniques in marketing

activities. The issue of detecting the different opinions concerning

the same product expressed in the same review emerged as a chal-

lenging problem. This task has been carried out by identifying the

aspect of the product that a sentence in the opinion may refer to. In

the literature, many approaches have been proposed: conditional

random fields (CRF) [8], hidden Markov models (HMM) [9],

sequential rule mining [10], dependency tree kernels [11], and

clustering [12].

Recently, the application of sentiment analysis approaches

attracted a lot of interest also in the social networks research

field [13]. The use of social networks for expressing opinions and

comments about products, political or social events, significantly

increased in the last years. However, the analysis of the social

network environment brought to light new challenges mainly

related to (i) the different ways people express their opinions (i.e.

multi-modality) and to (ii) the management of noisy data contained

in social network texts [14].

The social dimension of the Web fostered the development

of multi-disciplinary approaches combining computer and social

sciences to improve the interpretation, recognition, and processing

of opinions and sentiments expressed in social networks. The

synergy between these approaches has been called sentic com-

puting [15]. Sentic computing has been employed for address-

ing several cognitive-inspired problems like the classification of

natural language text [16] and the extraction of emotions from

images [17].

Real-world solutions have been also developed. For example

the authors of SENTILO [18], [19] presented an approach where a

neo-Davinsonian theory of meaning is the backbone of a strategy

used to process the text. This approach is then hybridized with

Semantic Web technologies.

2.2 Multi-Domain Sentiment Analysis

According to the nomenclature widely used in the literature (see

[4]), we call domain a set of documents about similar topics, e.g.

a set of reviews about similar products like mobile phones, books,

movies, etc.. The massive availability of multi domain corpora

in which similar opinions are expressed about different domains

opened the scenario for new challenges. Researchers tried to train

models capable to acquire knowledge from a specific domain

and then to exploit this knowledge for working on documents

belonging to different ones. This strategy was called domain

adaptation. The use of domain adaptation techniques demonstrated

that opinion classification is highly sensitive to the domain from

which the training data is extracted. The reason is that when using

the same words, and even the same language constructs, we may

obtain different opinions, depending on the domain. The classic

scenario occurs when the same word has positive connotations

in one domain and negative connotations in another one, as we

showed within the examples presented in Section 1.

Several approaches related to multi-domain sentiment analysis

have been proposed. Roughly speaking, all of these approaches

rely on one of the following ideas: (i) the transfer of learned

classifiers across different domains [4], [5], [20], [21], and (ii)

the use of propagation of labels through graph structures [22],

[23], [24], [25].

While on the one hand such approaches demonstrated their

effectiveness in working in a multi-domain environment, on the

other hand they suffered by the limitation in adapting to domain

that are different from those used for building the model. With

respect to this issue, our approach, by starting from a limited

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

4

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

number of domain-based labeled data, is able to build models

supporting the polarity inference of texts belonging to unseen

domains. The model is then capable to deal with documents that

are radically different from the ones used in the training process.

2.3 Deep Learning in NLP and Sentiment Analysis

Neural networks are a well known family of statistical learn-

ing models which have been largely exploited for problems of

classification, regression and clustering. Along the years, they

have been employed in different areas: image processing, time

series analysis, digital signal processing, and NLP. A well known

problem in training multi-layered networks in gradient-based

methods and backpropagation is the vanishing gradient problem,

first demonstrated in [26]: a smaller and smaller fraction of the

error is backpropagated back through these layers, significantly

slowing down the training process. Recently, the widespread of

the Graphical Processing Unit (GPU) computing architectures

provided researchers with a significantly increased amount of

computational power, allowing to overcome such problem, even if

only in a pragmatical way, as remarked in [27]. In this scenario, a

new interest flourished in deep network architectures, which were

already theoretically established and proved to be advantageous

(see [28]). As a consequence, different complex network architec-

tures exploiting different neural cell models, have been used for

several tasks achieving remarkable results. A sort of new discipline

arisen, commonly referred to as deep learning, aiming to exploit

such systems to reduce the gap between Machine Learning and

classical Artificial Intelligence.

The main feature of these systems is that they can easily

deal with distributed representations of text, which are extremely

flexible and robust. Moreover, the dimensions of distributed vector

space models are typically smaller of vocabulary dimensions,

helping to avoiding the curse of dimensionality. Deep networks

have been used to build a distributed representations of single

words and to train a language model in the seminal work [29].

In [30] a single network architecture is trained to perform several

typical NLP tasks: part-of-speech tagging, chunking, named entity

recognition, and semantic role labeling. The main advantage of a

unified learning process is that it is less dependent on intermediate

representations or task-specific features: this ends up in a signifi-

cant reduction of feature engineering costs. In such approach, the

distributed representation of words are learned from large amount

of unlabeled training data.

In Recursive Neural Networks (RecNNs, see [31]) two input

vectors from a sequence are combined into a single vector of the

same dimension, which is itself recursively combined with another

vector from the input space: as long as we go through the recur-

sion, the resulting vector will hold the distributed representation

of larger chunks of text. Such architectures have been successfully

used to parse Natural Language sentences, as in [32].

Recurrent Neural Networks (RNNs) are fed sequentially: at

each step, their state depends on the current input value and on

their state at the previous step. This aspect makes them particularly

suitable to model natural language sentences as a sequence of

words. A pivotal aspect of such architecture is that, as long as

we keep feeding it, we obtain a distributed representation that

goes beyond the single word. The usage of RNN architectures in

the slot filling task has been explored in [33], with a minimum

memory effect through windowing the input sequence. Long

Short-Term Memory (LSTM) units (see [34]) in order to achieve

more powerful memory capabilities, are used in [35] where a RNN

is trained to execute short fragment of python code in a sequence-

to-sequence translation fashion. In [36], Gated Recursive Units

(GRUs) are used for a machine translation task. Such units are

conceptually simpler and computationally less expensive than

LSTM ones, providing though a shorter term memory. In this

approach, two RNNs are combined. The first one encodes the

input sequence into a single vector. Such vector is then fed into

the second RNN which acts as a decoder, generating the output

sequence. Recently, the approach presented in [37] aimed to train

a RNN based system to translate natural language definitions into

logic formulae in an end to end fashion, instead of the conventional

approach based on the usage of statistical NLP toolkits and a

catalog of handcrafted rules. Such rules can be learned by the

system with a reduced number of annotated examples, relieving

the knowledge engineer from the burden of manually encode and

maintain such rules set.

In [38], the network memory is built on the neural implemen-

tation of traditional data structures as Stacks, Queues and Double-

Ended Queues. Such network is trained for a generic language

transduction problem.

Convolutional Neural Networks (CNNs) are feed-forward ar-

chitectures that exploit local connectivity patterns: incoming con-

nections for a hidden unit comes from other units of the previous

layer which are similar w.r.t. the features they describe. Such

networks are trained in [39] to learn distributed representations of

sentences in different language without word alignment: the more

two sentences from different languages have a similar distributed

representation, the more are likely to have the same meaning. Such

distributed representation can be seen as a sort of representation in

a common, subsymbolic language. A similar approach specifically

developed for the sentiment analysis task is presented in [50].

Several deep learning based approaches have been evaluated in

Sentiment Analysis tasks. In [40], Recursive Neural Networks are

used to handle the syntactic tree structure of a sentence: following

the generated parse tree, the different distributed representations

of sentence parts are recursively built. The model is trained on the

Stanford Sentiment Treebank, which has annotation on the whole

parse tree. Authors of [41] learn a distributed representation of

reviews through Convolutional Neural Networks which are subse-

quently feed into Recurrent Neural Networks to learn distributed

representation of the viewed products and of the opinion holders.

In [42] a 7-layer deep Convolutional Neural Network has been

trained to identify the target of an opinion within a text fragment,

in conjunction with some linguistic patterns. An Extreme Learning

Machine approach implemented over the data analytics framework

Apache Spark1 has been proposed in [43]. The approach deals

with large amount of natural language text coming from the Social

Web.

3 MATERIAL

Here, we briefly describe the preparatory material we used for

developing the NeuroSent architecture. In particular, we focus on

the dataset used for evaluating our system from the multi-domain

perspectives and the basic tools used for building our model.

3.1 The Dranziera Dataset

The evaluation of our approach have been performed by following

the Dranziera protocol [44] in order to ease comparisons with

1. https://spark.apache.org/

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

5

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

future systems. The protocol is composed by a multi-domain

dataset of one million reviews crawled from product pages on

the Amazon web site and by a precise methodology (explained in

Section 6).

INPUT PROJECTION OUTPUT

iV (w(k−2⟩)

Reviews belong to twenty different domains, called in-

model domains (IMD): “Amazon Instant Video”, “Automotive”,

“Baby”, “Beauty”, “Books”, “Clothing Accessories”, “Electron-

iV (w(k⟩) w(k⟩

iV (w(k−1⟩)

ics”, “Health”, “Home Kitchen”, “Movies TV”, “Music”, “Office

Products”, “Patio”, “Pet Supplies”, “Shoes”, “Software”, “Sports

Outdoors”, “Tools Home Improvement”, “Toys Games”, and

“Video Games”.

For each domain, we extracted twenty-five thousands positive

and twenty-five thousands negative reviews that have been split in

five folds containing five thousands positive and five thousands

negative reviews each. This way the dataset is balanced with

respect to both the polarities of the reviews and to the domain

which they belong to. The choice between positive and negative

documents has been inspired by the strategy used in [4], where

reviews with 4 or 5 stars have been marked as positive, while

the ones having 1 or 2 stars have been marked as negative.

Furthermore, each domain dataset is balanced with respect to

positive and negative polarities as well. The choice of having a

balanced dataset is based on our idea not to provide a dataset

which reflects the same proportion of the reality. Indeed, the

proportion measured in the training set reflects only a part of

the reality; thus, an unbalanced dataset would be misleading

during systems training. Instead, by providing a balanced dataset,

systems are able to analyze the same number of positive and

negative contexts for each domain. This way, built models are

supposed to be fairly used in any kind of opinion inference testing

environment.

The split of each domain in five folds allows to easily have a

clear distinction between the samples used for training the system

and the ones used for testing it. Most of the work in the literature

cites the dataset used, but without specifying which part has been

used for the training phase and which for the testing phase.

Besides the domains available in the Dranziera dataset, we

used other 7 test sets. These test sets were necessary for measuring

the general effectiveness of the proposed approach in inferring

polarities of documents belonging to domains different from the

ones included in the models. These domains have been called out-

model domains (OMD): “Cell Phones Accessories”, “Gourmet

Foods”, “Industrial Scientific”, “Jewelry”, “Kindle Store”, “Mu-

sical Instruments”, and “Watches”.

3.2 Neural Word Embeddings

The training of word embeddings have been performed on a differ-

ent dataset in order to verify the generalization of our embeddings.

We used the Blitzer dataset [4] to pre-train the word embeddings

that will be used to represent words feeding our neural network

model. We extracted the plain text from the Blitzer dataset and

tokenized it as is using the Stanford CoreNLP Toolkit [45]. No

further processing has been performed against the text. We used

the skip-gram model to learn our word embeddings. The main

intuition behind this model is that, given a word w(k⟩ at the k-th

position within a sentence, it tries to predict the most probable

surrounding context, as depicted in Fig. 1.

The word is represented as its index i within the vocabulary

V and fed into a projection layer that turns this index into a

continuous vector given by the corresponding i-th row in the layer

iV (w(k+1⟩)

iV (w(k+2⟩)

Fig. 1: The Skip-gram model.

weight matrix. Such vector is subsequently used to predict the

surrounding words. At the end of the training process, the weights

of the layer will be the embedding matrix of our vocabulary. The

Skip-gram Model has been presented in detail in [46].

3.3 Deep Learning Library

Deeplearning4j 2 (DL4J) is an open-source, distributed deep-

learning library written for Java and Scala. The library integrates

Hadoop and Spark technologies and it is designed to be used

in business environments on distributed GPUs and CPUs. DL4J

aims to be a cutting-edge framework providing fast-prototyping

capabilities also to non researchers. It is largely customizable and

can import neural net models from most major frameworks via

Keras, 3 including TensorFlow, 4 Caffe, 5 Torch, 6 and Theano, 7

bridging the gap between the Python and the Java Virtual Machine

ecosystems, with a cross-team toolkit for data scientists, and data

engineers.

The DL4J has been used in our work for developing the neural

network model described in Section 4. From the implementation

perspective, the DL4J library has been used as back-end layer

instantiating the structure of our neural model. In particular, our

network has been build by starting from the ComputationGraph-

Configuration class 8. This class is a configuration object for

neural networks with arbitrary connection structure. It is analo-

gous to the MultiLayerConfiguration, but it allows considerably

greater flexibility for building network architectures. Specifically,

the network architecture is a directed cyclic graph, where each

vertex in the graph may for example be a layer or a vertex/object

that defines arbitrary forward and backward pass functionality.

A ComputationGraphConfiguration object may have an arbitrary

number of inputs (multiple independent inputs, possibly of differ-

ent types), and an arbitrary number of output layers. The latter

is the reason for which we adopted this class for developing our

network. Indeed, our model foresees two separate output layers:

a first layer for computing the belonging degree of a document

with respect to each domain, and a second layer supporting the

computation of document polarity with respect to each domain.

Section 5 discusses the actual integration of the network and its

usage.

2. https://deeplearning4j.org

3. https://keras.io/

4. https://www.tensorflow.org/

5. http://caffe.berkeleyvision.org/

6. http://torch.ch/

7. https://github.com/Theano/Theano

8. The official DL4J example can be found at https://goo.gl/vYtex3

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.tensorflow.org/
http://caffe.berkeleyvision.org/
http://torch.ch/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

6

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

· ·
Ⓢ

| |
∈

| |
∈ ∈

4 NETWORK DESCRIPTION

The main idea underlying our approach is the following: we

summarize the whole review into a single distributed vector (the

so called encoding phase) and use it to predict the binary polarity

– positive or negative – of the review. We also exploit domain

identification as a parallel task: given the same embedding vector,

we want to predict the belonging of the review to one of the 20

domains in our dataset. The network is trained jointly on both

task. In this section, after a brief overview about the notation and

hyper-parameter. We used a recurrent layer to encode our input

sentence. In such layers, the activation of the hidden layer at the

k-th time step, depends on the current input and on the activation

at the previous step. Generically, we have that:

h(k⟩ = g(x(k⟩, h(k−1⟩; θenc); (2)

where g is the so called cell function that depends on a set of

parameters θenc that are learned during the training phase. The

final vector is the activation of the last time step, namely:

conventions we used, the different components of the network

models we tested will be described in detail, while and overall
enc(s) = c = h(n⟩ = g(x(n⟩, h(n−1⟩; θ

enc). (3)

representation is provided in Figure 2.

4.1 Notation and Conventions.

We used bold uppercase letters for matrices, say W, and bold

lowercase for vectors, say b. When representing a vector explicitly

in its components, we use square brackets and subscripts to

indicate the position of each component within the vector, like

in x = [x1, . . . , xn]. To represent a time series, we use the

superscript between angle brackets for the components. So, if a

l × h matrix is a time series of l vectors of size h, we write

We used the well known LSTM cell function (see [34]) to im-

plement our encoder. LSTM cells have the capability to maintain a

memory of the input they have seen across a large number of time

steps, partially overcoming the problem of gradient vanishing. The

cell is internally structured with four gates, namely the forget gate

f , the input gate i, the cell update gate g, and the output gate o.

At each time step, we have that:

f (k⟩ = σ(Wf x(k⟩ + Uf h(k−1⟩ + bf);
i(k⟩ = σ(Wix(k⟩ + Uih(k−1⟩ + bi);

H = [h(1⟩, . . . , h(l⟩]. Similarly, if a vector represents a time g(k⟩ = tanh(W x(k⟩ + U h(k−1⟩ + b); (4)

series of scalar, we will write x = [x(1⟩, . . . , x(n⟩]. Finally, we

will indicate the set of parameters of our model with the capital
o(k⟩

= σ(Wox

g

(k⟩

+ Uoh

g

(k−1⟩

g

+ bo);

Greek letter θ.

4.2 Input and Embedding Layer.

We represent a review as a sequence of words, followed by a

conventional symbol <EOS> that marks the end of the sequence.

Each word is represented with its position, or index, within the

vocabulary V of all the known words in our model. If the word

book is the 23rd word in our vocabulary, we will have that

iV (book) = 23.

Given a sentence as a temporal sequence of symbols, each

of which representing a word, say s = [s(1⟩, . . . , s(n⟩ =
<EOS>], we represent it as the the sequence of the indexes

in the vocabulary V of each word, is = [i(1⟩, . . . , i(n⟩] =
[iV (s(1⟩), . . . , iV (s(n⟩) = iV (<EOS>)]. The k-th item of such

sequence will be the index in the vocabulary V of the k-th word

in the sentence. From now on, we will omit both the vocabulary

subscript and the word argument and will write just i(k⟩ to indicate

the k-th element of the indexes sequence.

Each index in the vocabulary corresponds to a row in the

embedding matrix E R|V |×d, which is the distributed word

vector for the given word—where V is the dimension of the

vocabulary and d is the dimension of the word vector, an hyper-

parameter of the model.

Said x(k⟩ the word embedding for the k-th word in the sen-

tence and i(k⟩ the index of the word, we have that x(k⟩ = E[i(k⟩].
Our sentence can be represented as a sequence of word embed-

ding vectors, X = [x(1⟩, . . . , x(n⟩]. Such embedding matrix is

previously learned via the skip-gram model (presented in 3.2) in a

separate phase.

4.3 The Encoding Layer.

The meaning of the sentence must be captured into a single

distributed vector. This operation is called encoding. Given a

sentence s of n words, we indicate the result of the encoding

phase as enc(s) = c, where c ∈ Rh. The dimension h is an

where θenc = [Wf , Uf , bf , Wi, Ui, bi, Wg, Ug, bg,
Wo, Uo, bo] is the set of parameters to be learned. The cell state

q(k⟩ is updated according to the following:

q(k⟩ = f (k⟩ Ⓢ q(k−1⟩ + i(k⟩ Ⓢ g(k⟩; (5)

where the symbol represents the element-wise product

between two vectors, σ() the sigmoid function and the tanh()
function can be replaced by any other nonlinear function. Intu-

itively we can see how the forget gate f (k⟩ controls how much

of the previous cell state gets into the current state, while the

input gate controls how much of the cell update signal gets into it.

Finally, the cell activation is given by the:

h(k⟩ = o(k⟩ Ⓢ tanh(q(k⟩); (6)

where the output gate controls the output signal coming from

the cell state.

4.4 Output Layers and Loss Functions.

Since we are training the network jointly for the task of domain

and polarity identification, we have two output layers, one for each

task. Detailed descriptions follow.

4.4.1 Domain identification

The output layer for the domain identification models the proba-

bility of the review – the input sentence – to belong to one of the

domains in our dataset. We feed the encoder output, the vector c,

into a projection layer ending up into:

y = softmax(Wyc + by); (7)

where Wy Rh×|D|; by R|D|, said D the set of all the

domains in the dataset. The vector y is a vector of dimension D ,
with one component per domain. The softmax operator ensures

all the components of the vector to fall within the interval [0; 1]
and that their value sums up to 1: in this way, the value of the

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

7

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Σ

|

∈ ∈

| |

Σ

{ }

dpred(s) ppred(s)

PREDICTION

OUTPUT

ENCODING

EMBEDDING

h(n⟩ = enc(s) = c

x(n⟩ = <EOS>

INPUT i(This) i(book) i(is) ... i(<EOS>)

Fig. 2: The generic network architecture

j-th component of the vector will represent the probability that

the input review belongs to the j-th domain:

yj = p(domain(s) = j|θ). (8)

The predicted domain is the one whose probability is the

maximum, namely:

dpred = arg max p(domain(s) = j θ). (9)
j

Said ŷ as the gold truth value for a given sentence, we compute

the loss function for the given example as the categorical cross

entropy between the gold truth and the predicted output vector:

|D|

Ls = − ŷj log(yj). (10)

j=1

Please note that ŷ is a one-hot vector, with a component of

value 1 for the correct domain and components of value 0 for all

the other. The parameters of this layer that must be learned during

the training phase are θy = [Wy, by].

4.4.2 Polarity identification

The output layer for the polarity identification is slightly different

from the one used for the domain. The output is still a vector of

dimension |D|, one for each known domain, filled with values in

the interval [−1; 1], obtained via the following:

z = tanh(Wzc + bz); (11)

where Wz Rh×|D|; bz R|D|. Each component of the

vector represents a sort of polarity score for that domain, namely:

zj = p(polarity(s) = j|θ). (12)

We compute the loss function for this task from the z vector.

The gold truth value for the polarity is represented with another

vector ẑ of D dimensions, filled with 0 except for the position

corresponding to the proper domain, where the value of the

negative or positive label, namely 0; 1 is set. We use the

categorical cross entropy as the loss function. The contribution

to the loss function value from each example will be:

|D|

Ls = − p̂j log(pj). (13)

j=1

The final polarity prediction is performed after a weighted sum

with the different domain probabilities. The process is described

in detail in Section 5.3. The parameters of this layer that must be

learned during the training phase are θz = [Wz, bz].

5 PLATFORM ARCHITECTURE

Figure 3 shows the overall architecture of the proposed approach.

This architecture has been entirely developed in Java with the

support of the DL4J library (see Section 3.3 for details) and it is

composed by three main phases:

• Generation of Word vectors (Section 5.1): raw text, appro-

priately tokenized using the Stanford CoreNLP Toolkit, is

provided as input to a 2-layers neural network implement-

ing the skip-gram approach described in Section 3.2 with

the aim of generating word vectors.

• Learning of Sentiment Model (Section 5.2): word vectors

are used for training a recurrent neural network imple-

menting two output layers supporting the two classification

tasks mentioned in the previous section: “polarity classi-

fication”, where the word vector sequence is classified as

positive or negative, and “domain classification” in which

it is provided an overlap degree between the word vector

sequence and each domain used for training the model.

• Computation of Document Polarity (Section 5.3): numeric

data provided by the output layers are aggregated for

inferring the overall polarity value of a text.

In the following subsections, we describe in more detail each

phase by providing also the settings used for managing our data.

y z

h(1⟩ h(2⟩ h(3⟩

. . .

x(1⟩ x(2⟩ x(3⟩

. . .

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

8

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

∈

∈

Fig. 3: Architecture of the proposed approach.

5.1 Generation of Word Vectors

The generation of the word vectors has been performed by

applying the skip-gram algorithm mentioned in Section 3.2 on

the raw natural language text extracted from the Blitzer dataset.

The rationale behind the choice of this dataset focuses on three

reasons:

• the dataset contains only opinion-based documents. This

way, we are able to build word embeddings describing

only opinion-based contexts.

• the dataset is multi-domain. Information contained into the

generated word embeddings comes from specific domains,

thus it is possible to evaluate how the proposed approach is

general by testing the performance of the created model on

test sets containing documents coming from the domains

used for building the model or from other domains.

• the dataset is smaller with respect to other corpora used in

the literature for building other word embeddings that are

currently freely available, like the Google News ones. 9

Indeed, as introduced in Section 1, one of our goal is to

demonstrate how we can leverage the use of dedicated

resources for generating word embeddings, instead of

corpora’s size, for improving the effectiveness of classi-

fication systems.

These three points represent the main original contributions

of this work, in particular the aspect of considering only opinion-

based information for generating word embeddings. While em-

beddings currently available are created from big corpora of

general purpose texts (like news archives or Wikipedia pages),

ours are generated by using a smaller corpus containing documents

strongly related to the problem that the model will be thought for.

On the one hand, this aspect may be considered a limitation of

the proposed solution due to the requirement of training a new

model in case of problem change. However, on the other hand,

the usage of dedicated resources would lead to the construction of

more effective models.

Word embeddings have been generated by the Word2Vec

implementation integrated into the Deeplearning4j library briefly

presented in Section 3.3. The algorithm has been set up with the

following parameters: the size of the vector to 64, the size of the

window used as input of the skip-gram algorithm to 5, and the

minimum word frequency was set to 1. The reason for which we

kept the minimum word frequency set to 1 is to avoid the loss

of rare but important words that can occur in domain specific

documents like the ones contained in the Blitzer dataset.

9. https://github.com/mmihaltz/word2vec-GoogleNews-vectors

5.2 Learning of The Sentiment Model

The sentiment model is built by starting from the word embed-

dings generated during the previous phase. In Section 4.4, we

already introduced both the tasks performed by our model and

we generally refer to Section 4 for the mathematical details of

our approach. Here, we summarize the main steps performed for

building our model, from the conversion of the input sentences to

the strategy used for inferring the overall polarity of a document.

The first step consists in converting each textual sentence con-

tained within the dataset into the corresponding numerical matrix

S where we have in each row the word vector representing a single

word of the sentence, and in each column an embedding feature.

Given a sentence s, we extract all tokens ti, with i [0, n], and

we replace each ti with the corresponding embedding w. During

the conversion of each word in its corresponding embedding, if

such embedding is not found, the word is discarded. At the end of

this step, each sentence contained in the training set is converted

in a matrix S = [w(1⟩, . . . , w(n⟩].
Before giving all matrices as input to the neural network, we

need to include both padding and masking vectors in order to train

our model correctly. Padding and masking allows us to support

different training situations depending on the number of the input

vectors and on the number of predictions that the network has to

provide at each time step. In our scenario, we work in a many- to-

one situation where our neural network has to provide one

prediction (sentence polarity and domain overlap) as result of the

analysis of many input vectors (word embeddings).

Padding vectors are required because we have to deal with the

different length of sentences. Indeed, the neural network needs to

know the number of time steps that the input layer has to import.

This problem is solved by including, if necessary, into each matrix

Sk, with k [0, z] and z the number of sentences contained in

the training set, null word vectors that are used for filling empty

word’s slots. These null vectors are accompanied by a further

vector telling to the neural network if data contained in a specific

positions has to be considered as an informative embedding or not.

Figure 4 shows an example where we have two sentences of

different lengths in the training set and how they are represented

when they are sent to the input layer of the neural network. From

the left, in the first block we have the original sentence; in the

second block we extracted the relevant terms that are three for the

first sentence, and two for the second one. Then, for each word, we

get the corresponding word vector. Finally, we create input masks

vectors through which we are able to tell to the neural network

that the third element of the second sentence does not exist.

Beside padding, masking is needed for telling to the neural

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

9

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

| |

| |

· ·

T

Fig. 4: Example of sentence transformation and association with the input mask.

network that the prediction does not have to be provided for each

step, but only at the end of each vector sequence, as mentioned

above. Figure 5 shows how we addressed this problem. By

supposing to have four word vectors in our sentence, at each step,

the network reads one word vector and, after consumed the last

one, the prediction is computed and the error is back propagated.

As it is possible to observe in Figure 5: (i) we do not use the

mask for the input layer because all vectors have to be considered

(exception is done for the vectors that are used as padding); and,

(ii) we use a mask associated with each output layer in order to

have the prediction only after the elaboration of the last time step.

using the Stochastic Gradient Descent with 1000 epochs and a

learning rate of 0.002.

5.3 Computation of Document Polarity

The operation of computing the entire polarity of a document

is performed by combining the numeric data provided by the

two output layers of the network. As explained earlier, one of

the assumptions of the proposed approach is to exploit possible

linguistic overlaps between different domains for compensating

missing knowledge from the training set. From here, the intuition

of using two output layers: the first one for computing the belong-

ing degree between a sentence and each domain, and the second

one for computing the polarity of the document with respect to

each domain. Given y the vector of dimension D containing the

belonging degree of a sentence to each domain, and z, the vector of

dimension D containing the polarity score for each domain, the

overall predicted polarity of a document T is computed by scaling

the dot product between the two vectors by their dimension, as

follow:

p =
y · z

|D|

(14)

Fig. 5: How input and output mask are set in our scenario.

A final note concerns the back propagation of the error.

Training recurrent neural networks can be quite computationally

demanding in cases when each training instance is composed by

many time steps. A possible optimization is the use of truncated

back propagation through time (BPTT) that was developed for

reducing the computational complexity of each parameter update

in a recurrent neural network. On the one hand, this strategy allows

to reduce the time needed for training our model. However, on the

other hand, there is the risk of not flowing backward the gradients

for the full unrolled network. This prevents the full update of all

network parameters. For this reason, even if we work with recur-

rent neural networks, we decided to do not implement a BPTT

approach but to use the default backpropagation implemented into

the DL4J library.

Concerning information about network structure, the input

layer was composed by 64 neurons (i.e. embedding vector size),

the hidden RNN layer was composed by 128 nodes, and the output

layers contained 20 nodes each. The network has been trained by

For completeness, please consider the following numerical

example. Let us assume to have three domains A, B, and C and a

document j for which hold the following values:

y1 = d(A) = 0.81,

y2 = d(B) = 0.12,

y3 = d(C) = 0.07,

z1 = p(A) = 0.72,

z2 = p(B) = 0.32,

z3 = p(C) = −0.45,

where d() and p() represents the domain belonging degree

and the polarity score for a given domain, respectively. The

polarity score of the document j will be:

p =
(0.81 · 0.72) + (0.12 · 0.32) + (0.07 · −0.45)

= 0.1967,

3
(15)

where a value greater or equal than zero indicates a positive

polarity, while the polarity is considered negative if the score is

less than zero.

6 EVALUATION

The NeuroSent approach discussed in Section 4 and the platform

presented in Section 5 have been evaluated by adopting the

Dranziera protocol 10 [44]. The dataset adopted in our evaluation

10. All the material used for the evalua-
tion and the built models are available at
http://www.maurodragoni.com/research/opinionmining/dranziera/protocol.php

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.maurodragoni.com/research/opinionmining/dranziera/protocol.php

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

10

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

−

campaign has been introduced in Section 3. Here, we describe the

implemented validation procedure and we discuss the obtained

results.

6.1 Evaluation Procedure

The validation procedure leverage on a five-fold cross evaluation

setting in order to validate the robustness of the proposed solution.

The approach has been compared with seven baselines:

• Support Vector Machine (SVM): classification was run

with a linear kernel type by using the Libsvm [47]. Libsvm

uses a sparse format so that zero values do not need to be

captured for training files. This can cause training time to

be longer, but keeps Libsvm flexible for sparse cases.

• Naive Bayes (NB) and Maximum Entropy (ME): the

MALLET: MAchine Learning for LanguagE Toolkit [48]

was used for classification by using both Naive Bayes

and Maximum Entropy algorithms. For the experiments

conducted in our evaluation, the Maximum Entropy clas-

sification has been performed by using a Gaussian prior

variance of 1.0.

• Domain Belonging Polarity (DBP): we computed the text

polarity by using only information of the domain that

a document belongs to. This means that the linguistic

overlap between domains has not been considered.

• Domain Detection Polarity (DDP): we computed the text

polarity by using only information of the domain guessed

as the most appropriate for the document that has to be

evaluated. This means that the similarity between text

content and domain is preferred with respect to the domain

used for tagging the text.

• IRMUDOSA System [49]: the text polarity is computed by

aggregating fuzzy polarities associated with each opinion

concept. This approach implements a multi-domain strat-

egy where polarities computed over different domains are

aggregated by using the Equation 14. In our evaluation, we

applied the approach described in [49] to the Dranziera

dataset.

• Convolutional Neural Network [50] (CNN): we compared

our architecture with a classic CNN. Models have been

trained with the embeddings created from the Blitzer

dataset.

• Google Word Embeddings (GWE): we trained our models

by using the pre-trained Google-News word vectors 11

instead of the ones created from the Blitzer dataset. The

goal of this comparison is to show how the embeddings

created by using a smaller, but more opinion-oriented,

dataset may lead to better results with respect to the use of

bigger, but general, embeddings.

For each baseline, we measured the overall accuracy, the

precision and recall averaged over the two classes (positive and

negative) and the F1-score. In the end, we reported their averages

together with the standard deviation measured over the five folds.

The same baselines have been used to evaluate the model

against the OMD test sets. In this case, the DBP baseline has not

been applied due to the mismatch between the domains used for

building the model and the ones contained in the test sets. Each

OMD test set has been applied to all five models built, and the

scores averaged.

11. https://github.com/mmihaltz/word2vec-GoogleNews-vectors

6.2 Results

Here, we show the results of the evaluation campaign conducted

to validate the presented approach. Tables 1 and 2 present a

summary of the performance obtained by NeuroSent and by the

seven baselines on IMD and OMD, respectively. The first column

contains the name of the approach, the second, third, and fourth

contain the average precision, recall and F1 score computed over

all domains, while the fifth contains the average standard deviation

computed on the F1 score during the cross-fold validation. Finally,

the sixth and seventh columns contain the minimum and the

maximum F1 score measured during the evaluation.

Table 1 shows the results obtained on the domains contained

in the Dranziera dataset; while in Table 2, we presented the

results obtained by testing our approach on documents coming

from domains that are not contained in the Dranziera dataset.

For completeness, we reported the comparison between the

accuracies obtained by the evaluated system for each domain.

Table 3 and 4 presents the results on the domains contained or

not within the Dranziera dataset, respectively.

By considering the overall results obtained on the IMD and

reported in Table 1, we may observe how NeuroSent outperforms

the considered baselines. The measured F1 scores (average, mini-

mum, and maximum) are higher of around 6% with respect to the

GWE and CNN baselines and of more than 8 10% with respect

to the others. This first consideration demonstrated the superiority

of the use of word embeddings with respect to strategies that do

not implement this technique. The poor performance of the classic

machine learning approaches: SVM, NB, and ME, are surprising.

A more in depth analysis of the results obtained by these three

baselines shown how these approaches failed in classifying long

reviews containing many opinion-based sentences.

A similar rank can be observed by analyzing the precision and
recall values, where the differences between NeuroSent and the

baselines remains more or less the same. Concerning the stability

of the algorithm, we can notice that the exploitation of the domain

information leads to a higher standard deviation. In both IMD

and OMD test sets, the domain-based approaches registered a

higher standard deviation with respect to the SVM, NB, and ME

baselines.

A last consideration can be done concerning the detailed

results reported in Table 3: in 18 out of 20 domains, the proposed

approach outperforms the other baselines. The only exceptions

are the “Amazon Instant Video” and “Patio” domains, where,

respectively, the GWE and CNN baselines registered a small

improvement with respect to F1 score obtained by NeuroSent.

The second overall evaluation concerns the analysis of the

results obtained on the set of OMD. Results are shown in Table 2.

The first thing that we may observe is how the effectiveness

obtained by the proposed system is very close to the one obtained

in the IMD evaluation. Indeed, the difference between the two F1

averages is less than 1%. This aspect remarked the capability of

the proposed approach of working in a cross-domain environment

and of exploiting the domain linguistic overlaps for estimating

the overall document polarity. Concerning detailed results, here

the improvement of NeuroSent is clearer. The only exception

is the “Watches” domain, where the CNN baseline obtained an

improvement of around 3% with respect to NeuroSent. On the

contrary, for all the other domains, our approach outperforms all

the baselines of more than 5%.

In this second evaluation, it is also possible to notice how the

IRMUDOSA baseline obtained a higher precision with respect

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

11

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TABLE 1: Comparison between the results obtained by the baselines and the ones obtained by NeuroSent on the Dranziera dataset.

Approach Avg. Precision Avg. Recall Avg. F1 Avg. Deviation Avg. Min. F1 Avg. Max. F1

Support Vector Machine 0.6890 0.7097 0.6987 0.0119 0.6636 0.7395

Naive-Bayes 0.6956 0.6915 0.6929 0.0062 0.6544 0.7205

Maximum Entropy 0.7073 0.7085 0.7074 0.0098 0.6543 0.7357

Domain Belonging Polarity 0.7108 0.7331 0.7218 0.0228 0.7153 0.7543

Domain Detection Polarity 0.6731 0.7546 0.7115 0.0384 0.7121 0.7456

IRMUDOSA System 0.7410 0.7984 0.7686 0.0154 0.7469 0.7981

CNN Architecture 0.8037 0.7727 0.7879 0.0516 0.7026 0.8647

Google Word Embeddings 0.8008 0.7921 0.7964 0.0042 0.7537 0.8413

NeuroSent 0.8515 0.8407 0.8460 0.0102 0.7966 0.8730

TABLE 2: Comparison between the results obtained by the baselines and the ones obtained by NeuroSent on the domains not contained

in the Dranziera dataset.

Approach Avg. Precision Avg. Recall Avg. F1 Avg. Deviation Avg. Min. F1 Avg. Max. F1

Support Vector Machine 0.6507 0.6437 0.6571 0.0090 0.6004 0.6950

Naive-Bayes 0.6435 0.6459 0.6260 0.0023 0.6103 0.6683

Maximum Entropy 0.6524 0.6475 0.6501 0.0038 0.6302 0.6905

Domain Belonging Polarity - - - - - -

Domain Detection Polarity 0.6609 0.6931 0.6766 0.0096 0.6706 0.7198

IRMUDOSA System 0.8115 0.6985 0.7508 0.0160 0.6889 0.7755

CNN Architecture 0.7848 0.8120 0.7982 0.0457 0.6543 0.8675

Google Word Embeddings 0.7930 0.7864 0.7896 0.0078 0.7597 0.8328

NeuroSent 0.8442 0.8343 0.8392 0.0125 0.8054 0.8712

TABLE 3: Detailed results obtained on domains contained within the Dranziera dataset by the baselines and by NeuroSent.

Domain Tested System
SVM NB ME DBP DDP IRMUDOSA CNN GWE NeuroSent

Amazon Instant Video 0.7017 0.6544 0.7026 0.7230 0.7147 0.7751 0.8002 0.8047 0.8017

Automotive 0.7166 0.7172 0.7172 0.7202 0.6943 0.7412 0.7335 0.7829 0.8537

Baby 0.6885 0.6929 0.7155 0.7088 0.6938 0.7652 0.8405 0.7964 0.8518

Beauty 0.6982 0.7023 0.7230 0.7481 0.7341 0.7797 0.8279 0.8099 0.8550

Books 0.6923 0.6873 0.6887 0.6957 0.6926 0.7315 0.7848 0.7537 0.7966

Clothing Accessories 0.6988 0.6904 0.7224 0.8038 0.7856 0.8462 0.7778 0.8115 0.8696

Electronics 0.6851 0.6880 0.6988 0.7309 0.7035 0.7492 0.7945 0.7711 0.8641

Health 0.6717 0.7205 0.6629 0.6887 0.6867 0.7527 0.7794 0.7865 0.8611

Home Kitchen 0.7217 0.7178 0.6900 0.7137 0.6929 0.7683 0.7474 0.8189 0.8686

Movies TV 0.7354 0.6915 0.7160 0.7030 0.7122 0.7743 0.7453 0.7913 0.8090

Music 0.6936 0.6701 0.6542 0.7171 0.7216 0.7834 0.7635 0.7713 0.8083

Office Products 0.7321 0.6910 0.7314 0.7298 0.7017 0.7523 0.7990 0.8028 0.8730

Patio 0.6875 0.6923 0.7142 0.7024 0.6926 0.7459 0.8566 0.8026 0.8564

Pet Supplies 0.6817 0.7078 0.7302 0.6680 0.6626 0.7195 0.8164 0.7908 0.8361

Shoes 0.6705 0.7164 0.7276 0.8324 0.8115 0.8434 0.8143 0.8413 0.8655

Software 0.7395 0.6762 0.6872 0.7196 0.7151 0.7462 0.7913 0.7645 0.8479

Sports Outdoors 0.6685 0.7050 0.7314 0.7084 0.7129 0.7927 0.7581 0.8151 0.8669

Tools Home Improvement 0.7325 0.6896 0.7356 0.6842 0.6887 0.7438 0.7920 0.7905 0.8518

Toys Games 0.6636 0.6664 0.6948 0.7383 0.7108 0.8018 0.7673 0.8365 0.8624

Video Games 0.6954 0.6808 0.7038 0.6999 0.7012 0.7590 0.7286 0.7853 0.8206

Average 0.6987 0.6929 0.7074 0.7218 0.7115 0.7686 0.7878 0.7964 0.8460

to the GWE one. By considering that also the IRMUDOSA

system implements a polarity computation algorithm based on

the aggregation of domain polarities, this outcome confirms that a

solution based on exploiting overlapping information coming from

different domains is an effective approach that has to be investigate

in depth in the future. Thus, we may state that the exploitation of

domain linguistic overlaps is a suitable solution for compensating

the possible lack of knowledge when limited training sets are used

for building opinion models.

Finally, we want to report some considerations about the

efficiency of the platform. The time required for building the entire

sentiment model was around 8.5 hours (single core equivalent)

on a server equipped with a double Xeon X5650 and 32Gb of

RAM. While, during the testing session, on the same machine,

the computation of a single document polarity required an average

of 658ms. This result supports the possible implementation of the

polarity computation component as a real-time service due to the

low time required for computing document polarity.

6.3 Error Analysis

We performed a detailed error analysis concerning the perfor-

mance of the proposed strategy. Figures 6 and 7 report the set

of confusion matrices for the IMD and the OMD test sets, respec-

tively. In general, we can observe how our strategy tends to provide

false negative predictions. An in depth analysis of some incorrect

predictions highlighted that the embedded representations of some

positive opinion words are very close to the space region of

negative opinion words. Even if we may state that the confidence

about positive predictions is very high, this scenario leads to have

a predominant negative classification for borderline instances.

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

12

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

TABLE 4: Detailed results obtained on domains that are not contained within the Dranziera dataset by the baselines and by NeuroSent.

Domain Tested System
SVM NB ME DBP DDP IRMUDOSA CNN GWE NeuroSent

Cell Phones Accessories 0.6671 0.6209 0.6904 - 0.6675 0.7032 0.7385 0.7597 0.8431

Gourmet Foods 0.6376 0.6257 0.6384 - 0.6738 0.7638 0.8194 0.7898 0.8227

Industrial Scientific 0.6175 0.6234 0.6301 - 0.6392 0.6821 0.7457 0.7717 0.8155

Jewelry 0.6003 0.6191 0.6423 - 0.6628 0.7826 0.7578 0.8328 0.8712

Kindle Store 0.6877 0.6102 0.6337 - 0.7105 0.7560 0.7774 0.7635 0.8054

Musical Instruments 0.6949 0.6140 0.6827 - 0.6938 0.7811 0.8226 0.8018 0.8597

Watches 0.6944 0.6682 0.6330 - 0.6889 0.7867 0.8825 0.8080 0.8567

Average 0.6571 0.6260 0.6501 - 0.6766 0.7508 0.7982 0.7896 0.8392

On the one hand, a possible action for improving the ef-

fectiveness our strategy is to increase the granularity of the

embeddings (i.e. augmenting the size of the embedding vectors)

in order to increase the distance between the positive and negative

polarities space regions. On the other hand, by increasing the size

of embedding vectors, the computational time for building, or

updating, the model and for evaluating a single instance increases

as well. Part of the future work, will be the analysis of more

efficient neural network architectures able to manage augmented

embedding vectors without negatively affecting the efficiency of

the platform.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented NeuroSent: a tool for multi-domain

sentiment analysis exploiting linguistic overlaps between domains

for inferring document polarity. The tool implements a deep

learning architecture using distributed vectors to represent words.

Models are built by using a recurrent neural network trained

with information extracted from the Blitzer dataset, a small

but opinion-oriented collection of user-generated reviews. The

inference of the overall polarity of a document is performed by

combining belonging degrees of a document to each domain and

domain-specific polarities scores computed by the model.

The performance of the system has been evaluated by applying

the Dranziera protocol. Results shown the effectiveness of the

proposed approach with respect to the baselines demonstrating its

viability. Moreover, the protocol used for the evaluation enables an

easy reproducibility of the experiments and the comparison with

other systems.

Future work will focus on two main directions: (i) the inte-

gration of knowledge embeddings and (ii) the injection of fuzzy

logic for representing uncertainty associated with word embed-

dings. Concerning the integration of knowledge embeddings, we

want to build embeddings describing complex sentiment patterns

instead of single terms (or concepts). This way, the system will

be able to learn more complex linguistic constructs with the

aim of improving the overall classification effectiveness. While,

concerning the injection of fuzzy logic, our intent is to represent

each embedding’s feature by using fuzzy sets. On the one hand,

this solution allows to manage uncertainty associated with each

feature; however, on the other hand, the complexity of the overall

architecture will increase. The challenge will focus on finding an

efficient way to manage all such information. Some effort will

be also focused on the creation of domain-dependent sentiment

lexicons and on validating their effectiveness with respect to

general purpose ones.

Finally, we foresee the integration of a concept extraction

approach in order to provide the system with further semantic ca-

pabilities, for example the extraction of finer-grained information,

that can be used during the model construction.

REFERENCES

[1] E. Cambria and B. White, “Jumping NLP curves: A review of
natural language processing research [review article],” IEEE Comp.
Int. Mag., vol. 9, no. 2, pp. 48–57, May 2014. [Online]. Available:
http://dx.doi.org/10.1109/MCI.2014.2307227

[2] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? sentiment classi-
fication using machine learning techniques,” in Proceedings of EMNLP.
Philadelphia: Association for Computational Linguistics, July 2002, pp.
79–86.

[3] B. Liu and L. Zhang, “A survey of opinion mining and sentiment
analysis,” in Mining Text Data, C. C. Aggarwal and C. X. Zhai, Eds.
Springer, 2012, pp. 415–463.

[4] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for sentiment classification,” in
ACL 2007, Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics, June 23-30, 2007, Prague, Czech
Republic, J. A. Carroll, A. van den Bosch, and A. Zaenen, Eds. The
Association for Computational Linguistics, 2007. [Online]. Available:
http://aclweb.org/anthology-new/P/P07/P07-1056.pdf

[5] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain
sentiment classification via spectral feature alignment,” in Proceedings
of the 19th International Conference on World Wide Web, WWW 2010,
Raleigh, North Carolina, USA, April 26-30, 2010, M. Rappa, P. Jones,
J. Freire, and S. Chakrabarti, Eds. ACM, 2010, pp. 751–760. [Online].
Available: http://doi.acm.org/10.1145/1772690.1772767

[6] E. Cambria, “Affective computing and sentiment analysis,” IEEE
Intelligent Systems, vol. 31, no. 2, pp. 102–107, March-April 2016.
[Online]. Available: http://dx.doi.org/10.1109/MIS.2016.31

[7] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts,” in Proceedings
of the 42nd Annual Meeting of the Association for Computational
Linguistics, 21-26 July, 2004, Barcelona, Spain., D. Scott, W. Daelemans,
and M. A. Walker, Eds. ACL, 2004, pp. 271–278. [Online]. Available:
http://aclweb.org/anthology-new/P/P04/

[8] N. Jakob and I. Gurevych, “Extracting opinion targets in a single and
cross-domain setting with conditional random fields,” in Proceedings
of the 2010 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2010, 9-11 October 2010, MIT Stata Center,
Massachusetts, USA, A meeting of SIGDAT, a Special Interest Group
of the ACL. ACL, 2010, pp. 1035–1045. [Online]. Available:
http://www.aclweb.org/anthology/D10-1101

[9] W. Jin, H. H. Ho, and R. K. Srihari, “OpinionMiner: A novel
machine learning system for web opinion mining and extraction,”
in Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Paris, France, June 28
- July 1, 2009, J. F. E. IV, F. Fogelman-Soulié, P. A. Flach, and
M. J. Zaki, Eds. ACM, 2009, pp. 1195–1204. [Online]. Available:
http://doi.acm.org/10.1145/1557019.1557148

[10] B. Liu, M. Hu, and J. Cheng, “Opinion observer: Analyzing and
comparing opinions on the web,” in Proceedings of the 14th international
conference on World Wide Web, WWW 2005, Chiba, Japan, May 10-14,
2005, A. Ellis and T. Hagino, Eds. ACM, 2005, pp. 342–351. [Online].
Available: http://doi.acm.org/10.1145/1060745.1060797

[11] Y. Wu, Q. Zhang, X. Huang, and L. Wu, “Phrase dependency parsing
for opinion mining,” in Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2009, 6-
7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest

http://www.ieee.org/publications_standards/publications/rights/index.html
http://dx.doi.org/10.1109/MCI.2014.2307227
http://aclweb.org/anthology-new/P/P07/P07-1056.pdf
http://doi.acm.org/10.1145/1772690.1772767
http://dx.doi.org/10.1109/MIS.2016.31
http://aclweb.org/anthology-new/P/P04/
http://www.aclweb.org/anthology/D10-1101
http://doi.acm.org/10.1145/1557019.1557148
http://doi.acm.org/10.1145/1060745.1060797

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

13

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Fig. 6: Confusion matrices for the predictions on the In-Model Domains.

Fig. 7: Confusion matrices for the predictions on the Out-Model Domains.

http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

14

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Group of the ACL. ACL, 2009, pp. 1533–1541. [Online]. Available:
http://www.aclweb.org/anthology/D09-1159

[12] Q. Su, X. Xu, H. Guo, Z. Guo, X. Wu, X. Zhang, B. Swen,
and Z. Su, “Hidden sentiment association in Chinese web opinion
mining,” in Proceedings of the 17th International Conference on
World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008,
J. Huai, R. Chen, H. Hon, Y. Liu, W. Ma, A. Tomkins, and
X. Zhang, Eds. ACM, 2008, pp. 959–968. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367627

[13] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using
distant supervision,” CS224N Project Report, Standford University, 2009.

[14] L. Barbosa and J. Feng, “Robust sentiment detection on twitter from
biased and noisy data,” in COLING 2010, 23rd International Conference
on Computational Linguistics, Posters Volume, 23-27 August 2010,
Beijing, China, C. Huang and D. Jurafsky, Eds. Chinese Information
Processing Society of China, August 2010, pp. 36–44. [Online].
Available: http://aclweb.org/anthology-new/C/C10/C10-2005.pdf

[15] E. Cambria and A. Hussain, Sentic Computing: A Common-Sense-Based
Framework for Concept-Level Sentiment Analysis. Springer, 2015.

[16] Q. F. Wang, E. Cambria, C. L. Liu, and A. Hussain, “Common sense
knowledge for handwritten Chinese recognition,” Cognitive Computa-
tion, vol. 5, no. 2, pp. 234–242, June 2013.

[17] E. Cambria and A. Hussain, “Sentic album: Content-, concept-, and
context-based online personal photo management system,” Cognitive
Computation, vol. 4, no. 4, pp. 477–496, December 2012.

[18] A. Gangemi, V. Presutti, and D. R. Recupero, “Frame-based detection
of opinion holders and topics: A model and a tool,” IEEE Comp.
Int. Mag., vol. 9, no. 1, pp. 20–30, 2014. [Online]. Available:
https://doi.org/10.1109/MCI.2013.2291688

[19] D. R. Recupero, V. Presutti, S. Consoli, A. Gangemi, and A. G.
Nuzzolese, “Sentilo: Frame-based sentiment analysis,” Cognitive
Computation, vol. 7, no. 2, pp. 211–225, 2015. [Online]. Available:
https://doi.org/10.1007/s12559-014-9302-z

[20] D. Bollegala, D. J. Weir, and J. A. Carroll, “Cross-domain sentiment
classification using a sentiment sensitive thesaurus,” IEEE Trans. Knowl.
Data Eng., vol. 25, no. 8, pp. 1719–1731, August 2013.

[21] R. Xia, C. Zong, X. Hu, and E. Cambria, “Feature ensemble plus sample
selection: Domain adaptation for sentiment classification,” IEEE Int.
Systems, vol. 28, no. 3, pp. 10–18, May-June 2013.

[22] N. Ponomareva and M. Thelwall, “Semi-supervised vs. cross-domain
graphs for sentiment analysis,” in Recent Advances in Natural Language
Processing, RANLP 2013, 9-11 September, 2013, Hissar, Bulgaria,
G. Angelova, K. Bontcheva, and R. Mitkov, Eds. RANLP 2013
Organising Committee/ACL, 2013, pp. 571–578. [Online]. Available:
http://aclweb.org/anthology/R/R13/R13-1075.pdf

[23] A. C.-R. Tsai, C.-E. Wu, R. T.-H. Tsai, and J. Y. jen Hsu, “Building a
concept-level sentiment dictionary based on commonsense knowledge,”
IEEE Int. Systems, vol. 28, no. 2, pp. 22–30, March 2013.

[24] M. Dragoni, A. G. B. Tettamanzi, and C. da Costa Pereira, “Propagating
and aggregating fuzzy polarities for concept-level sentiment analysis,”
Cognitive Computation, vol. 7, no. 2, pp. 186–197, April 2015. [Online].
Available: http://dx.doi.org/10.1007/s12559-014-9308-6

[25] M. Dragoni, “Shellfbk: An information retrieval-based system for multi-
domain sentiment analysis,” in Proceedings of the 9th International
Workshop on Semantic Evaluation, ser. SemEval ’2015. Denver,
Colorado: Association for Computational Linguistics, June 2015, pp.
502–509.

[26] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,”
Diploma, Technische Universität München, 1991.

[27] J. Schmidhuber, “Deep learning in neural networks: An overview,”
CoRR, vol. abs/1404.7828, 2014. [Online]. Available: http://arxiv.org/
abs/1404.7828

[28] Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1561/2200000006

[29] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” Journal of Machine Learning Resources,
vol. 3, pp. 1137–1155, Mar. 2003. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=944919.944966

[30] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” The
Journal of Machine Learning Resources, vol. 12, pp. 2493–2537, 2011.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1953048.2078186

[31] C. Goller and A. Kuchler, “Learning task-dependent distributed repre-
sentations by backpropagation through structure,” in Neural Networks,
1996., IEEE International Conference on, vol. 1. IEEE, 1996, pp. 347–
352.

[32] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural scenes
and natural language with recursive neural networks,” in Proceedings of
the 28th international conference on machine learning (ICML-11), 2011,
pp. 129–136.

[33] G. Mesnil, X. He, L. Deng, and Y. Bengio, “Investigation of recurrent-
neural-network architectures and learning methods for spoken language
understanding,” in INTERSPEECH 2013, 14th Annual Conference of
the International Speech Communication Association, Lyon, France,
August 25-29, 2013, 2013, pp. 3771–3775. [Online]. Available:
http://www.isca-speech.org/archive/interspeech 2013/i13 3771.html

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[35] W. Zaremba and I. Sutskever, “Learning to execute,” CoRR, vol.
abs/1410.4615, 2014. [Online]. Available: http://arxiv.org/abs/1410.4615

[36] K. Cho, B. van Merrienboer, Ç . Gülçehre, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder-decoder
for statistical machine translation,” CoRR, vol. abs/1406.1078, 2014.
[Online]. Available: http://arxiv.org/abs/1406.1078

[37] G. Petrucci, C. Ghidini, and M. Rospocher, “Ontology learning in the
deep,” in Knowledge Engineering and Knowledge Management: 20th
International Conference, EKAW 2016, Bologna, Italy, November 19-23,
2016, Proceedings 20. Springer, 2016, pp. 480–495.

[38] E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom,
“Learning to transduce with unbounded memory,” CoRR, vol.
abs/1506.02516, 2015. [Online]. Available: http://arxiv.org/abs/1506.
02516

[39] K. M. Hermann and P. Blunsom, “Multilingual distributed representa-
tions without word alignment,” arXiv preprint arXiv:1312.6173, 2013.

[40] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Stroudsburg, PA: Association
for Computational Linguistics, October 2013, pp. 1631–1642.

[41] T. Chen, R. Xu, Y. He, Y. Xia, and X. Wang, “Learning user and
product distributed representations using a sequence model for sentiment
analysis,” IEEE Comp. Int. Mag., vol. 11, no. 3, pp. 34–44, 2016.
[Online]. Available: https://doi.org/10.1109/MCI.2016.2572539

[42] S. Poria, E. Cambria, and A. F. Gelbukh, “Aspect extraction
for opinion mining with a deep convolutional neural network,” Knowl.-
Based Syst., vol. 108, pp. 42–49, 2016. [Online]. Available:
https://doi.org/10.1016/j.knosys.2016.06.009

[43] L. Oneto, F. Bisio, E. Cambria, and D. Anguita, “Statistical
learning theory and ELM for big social data analysis,” IEEE Comp.
Int. Mag., vol. 11, no. 3, pp. 45–55, 2016. [Online]. Available:
https://doi.org/10.1109/MCI.2016.2572540

[44] M. Dragoni, A. G. B. Tettamanzi, and C. da Costa Pereira,
“DRANZIERA: An evaluation protocol for multi-domain opinion min-
ing,” in Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC 2016), N. Calzolari, K. Choukri,
T. Declerck, S. Goggi, M. Grobelnik, B. Maegaard, J. Mariani, H. Mazo,
A. Moreno, J. Odijk, and S. Piperidis, Eds. Paris, France: European
Language Resources Association (ELRA), May 2016.

[45] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, ACL 2014, June 22-27,
2014, Baltimore, MD, USA, System Demonstrations. The Association
for Computer Linguistics, 2014, pp. 55–60. [Online]. Available:
http://aclweb.org/anthology/P/P14/P14-5010.pdf

[46] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[47] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM TIST, vol. 2, no. 3, pp. 27:1–27:27, 2011.

[48] A. K. McCallum, “Mallet: A machine learning for language toolkit.”
http://mallet.cs.umass.edu, 2002.

[49] G. Petrucci and M. Dragoni, “The IRMUDOSA system at ESWC-2016
challenge on semantic sentiment analysis,” in Semantic Web Challenges -
Third SemWebEval Challenge at ESWC 2016, Heraklion, Crete, Greece,
May 29 - June 2, 2016, Revised Selected Papers, ser. Communications
in Computer and Information Science, H. Sack, S. Dietze, A. Tordai,
and C. Lange, Eds., vol. 641. Springer, 2016, pp. 126–140. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-46565-4 10

[50] I. Chaturvedi, E. Cambria, and D. Vilares, “Lyapunov filtering of
objectivity for spanish sentiment model,” in 2016 International Joint
Conference on Neural Networks, IJCNN 2016, Vancouver, BC, Canada,
July 24-29, 2016. IEEE, 2016, pp. 4474–4481. [Online]. Available:
https://doi.org/10.1109/IJCNN.2016.7727785

http://www.ieee.org/publications_standards/publications/rights/index.html
http://www.aclweb.org/anthology/D09-1159
http://doi.acm.org/10.1145/1367497.1367627
http://aclweb.org/anthology-new/C/C10/C10-2005.pdf
https://doi.org/10.1109/MCI.2013.2291688
https://doi.org/10.1007/s12559-014-9302-z
http://aclweb.org/anthology/R/R13/R13-1075.pdf
http://dx.doi.org/10.1007/s12559-014-9308-6
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://dx.doi.org/10.1561/2200000006
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=1953048.2078186
http://www.isca-speech.org/archive/interspeech_2013/i13_3771.html
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1506.02516
http://arxiv.org/abs/1506.02516
https://doi.org/10.1109/MCI.2016.2572539
https://doi.org/10.1016/j.knosys.2016.06.009
https://doi.org/10.1109/MCI.2016.2572540
http://aclweb.org/anthology/P/P14/P14-5010.pdf
http://mallet.cs.umass.edu/
http://dx.doi.org/10.1007/978-3-319-46565-4_10
https://doi.org/10.1109/IJCNN.2016.7727785

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2717879, IEEE
Transactions on Affective Computing

15

1949-3045 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Mauro Dragoni is a researcher at the Pro-
cess and Data Intelligence unit in Fondazione
Bruno Kessler, Trento, Italy. He received his
PhD from the University of Milan in 2010. His
main research topics concerns Knowledge Man-
agement, Cognitive Computing, Information Re-
trieval, and Machine Learning by focusing on
the development of real-world prototypes as out-
come of his research activities.

Giulio Petrucci is a PhD candidate of Univer-
sity of Trento, Trento, Italy. He is carrying his
research in the Data and Knowledge Manage-
ment and the Process and Data Intelligence
units in Fondazione Bruno Kessler, Trento, Italy.
His main research focus is on Deep Learning
techniques for knowledge extraction from natural
language text.

http://www.ieee.org/publications_standards/publications/rights/index.html

