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Abstract—Multi-domain sentiment analysis consists in estimating the polarity of a given text by exploiting domain-specific information. 

One of the main issues common to the approaches discussed in the literature is their poor capabilities of being applied on domains 

which are different from those used for building the opinion model. In this paper, we will present an approach exploiting the linguistic 

overlap between domains to build sentiment models supporting polarity inference for documents belonging to every domain. Word 

embeddings together with a deep learning architecture have been implemented into the NeuroSent tool for enabling the building of 

multi-domain sentiment model. The proposed technique is validated by following the Dranziera protocol in order to ease the 

repeatability of the experiments and the comparison of the results. The outcomes demonstrate the effectiveness of the proposed 

approach and also set a plausible starting point for future work. 
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1 INTRODUCTION 

Sentiment Analysis is a natural language processing (NLP) 

task [1] which aims at classifying documents according to the 

opinion expressed about a given subject [2]. Generally speaking, 

sentiment analysis aims at determining the attitude of a speaker 

or a writer with respect to a topic or the overall tonality of a 

document. In the recent years, the exponential increase in the use 

of the Web for exchanging public opinions about events, facts, 

products, etc. led to an extensive usage of sentiment analysis 

approaches, especially for marketing purposes. 

The paper [3] formalizes the sentiment analysis problem by 

representing an “opinion” as a quintuple: 

⟨oj , fjk, soijkl, hi, tl⟩ (1) 

where  oj  is  a  target  object,  fjk  is  a  feature  of  the  object  oj , 

soijkl is the opinion polarity value given by the opinion holder hi 
about the feature fjk, and tl  is the timestamp when the opinion 

is expressed. The value of soijkl can be classified as positive, 

negative, or neutral. In general, different and more fine-grained 

rating schemes can be used as well, depending on the level of 

satisfaction the opinion holder has with respect to the specific  

object feature. 

Many works available in the literature address the sentiment 

analysis problem without distinguishing domain specific informa- 

tion of documents when sentiment models are built. The necessity 

of investigating this problem from a multi-domain perspective is 

led by the different influence that a term might have in different 

contexts. Let us consider the following examples. In the first one, 

we have an emotion-based context where the adjective “cold” is 

used differently based on the feeling, or mood, of the opinion 

holder: 

1) Our new colleague behaves in a very cold way with us. 

2) A cold drink is the best thing we can drink when the 

temperature is very hot. 
 

 

Submitted on June 3, 2017 

In the second example instead we have a subjective-based 

context where the adjective “small” is used differently based on 

the product category reviewed by a user: 

 

1) The sideboard is small and it is not able to contain a lot 

of stuff. 

2) The small dimensions of this decoder allow to move it 

easily. 

 

In the first context, we considered two different emotional 

domains: in the first one, a person is commenting about the 

behavior of his colleague by using the adjective “cold” with a 

negative polarity. Instead, in the second one, a person is referring 

to the adjective cold in a positive way as a good solution for the 

described situation. 

Instead, in the second context, we considered the interpretation 

of texts referring to two different domains: “Furnishings” and 

“Electronics”. In the first one, the polarity of the adjective “small” 

is negative because it highlights an issue of the described item. 

On the other hand, in the second domain, the polarity of same 

adjective may be considered positive. 

The multiple facets with which textual information can be an- 

alyzed requires the design of approaches able to address different 

domains. The idea of adapting terms polarity to different domains 

emerged only in the last decade [4]. Multi-domain sentiment anal- 

ysis approaches discussed in the literature (surveyed in Section 2) 

focus on building models for transferring information between 

pairs of domains [5]. While on the one hand such approaches 

allow to propagate specific domain information to others, their 

drawback is the necessity of building new transfer models every 

time a new domain has to be analyzed. Thus, such approaches 

do not have a great generalization capability of analyzing texts, 

because transfer models are limited to the N domains used for 

building the models. 

The contribution presented in this paper aims at addressing 

the challenge of working in a multi-domain environment. The 
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described approach, implemented into the NeuroSent tool, is 

based on the following pillars: 

• the use of word embeddings for representing each word 

contained in raw sentences; 

• the word embeddings are generated from an opinion-based 

corpus instead of a general purpose one (like news or 

Wikipedia); 

• the design of a deep learning technique exploiting the 

generated word embeddings for training the sentiment 

model; 

• the use of multiple output layers for combining domain 

overlap scores with domain-specific polarity predictions. 

The last point enables the exploitation of linguistic overlaps 

between domains, which can be considered one of the pivotal 

assets of our approach. This way, the overall polarity of a 

document is computed by aggregating, for each domain, the 

domain-specific polarity value multiplied by a belonging degree 

representing the overlap between the embedded representation of 

the whole document and the domain itself. The use of this strategy 

ease the validation of our approach from two perspectives: (i) 

to measure the effectiveness of our model on the domains used 

for creating the model itself, and (ii) to observe how our model 

behaves in classifying document coming from domains different 

from the ones adopted for building the model (i.e. generalization 

of our approach). This point represents an innovative aspect with 

respect to the state of the art of multi-domain sentiment analysis. 

The paper is structured as follows. Section 2 presents a survey 

on works about sentiment analysis in both the single and the multi- 

domain environment and provides a brief review of some advances 

in the field of NLP that have successfully exploited deep learning 

approaches. In Section 3, we included information about the ma- 

terial used for developing our approach. Then, Section 4 provides 

the elements for understanding how our deep network works from 

a mathematical perspective. In Section 5, we present the overall 

architecture of NeuroSent that is evaluated in Section 6. Finally, 

Section 7 concludes the article. 

 
2 RELATED WORK 

In this Section, we briefly review the main contributions in the 

field of sentiment analysis and opinion mining, first from a general 

standpoint and then with a particular attention to the multi-domain 

scenario. A brief overview of significant recent contributions in 

the NLP field that based on deep learning approaches follows, 

pointing out some application to the sentiment analysis task. 

 
2.1 Sentiment Analysis and Opinion Mining 

The topic of sentiment analysis has extensively been studied in the 

literature [3], [6], where several techniques have been proposed 

and validated. 

Machine learning techniques are the most common approaches 

used for addressing the sentiment analysis problem. For instance, 

in [2] and [7] the authors compared the performance of Naive- 

Bayes, Maximum Entropy, and Support Vector Machines classi- 

fiers in sentiment analysis, using different features like considering 

only unigrams, bigrams, combination of both, incorporating parts 

of speech and position information, or considering only adjectives. 

The recent massive growth of online product reviews paved 

the way for using sentiment analysis techniques in marketing 

activities. The issue of detecting the different opinions concerning 

the same product expressed in the same review emerged as a chal- 

lenging problem. This task has been carried out by identifying the 

aspect of the product that a sentence in the opinion may refer to. In 

the literature, many approaches have been proposed: conditional 

random fields (CRF) [8], hidden Markov models (HMM) [9], 

sequential rule mining [10], dependency tree kernels [11], and 

clustering [12]. 

Recently, the application of sentiment analysis approaches 

attracted a lot of interest also in the social networks research 

field [13]. The use of social networks for expressing opinions and 

comments about products, political or social events, significantly 

increased in the last years. However, the analysis of the social 

network environment brought to light new challenges mainly 

related to (i) the different ways people express their opinions (i.e. 

multi-modality) and to (ii) the management of noisy data contained 

in social network texts [14]. 

The social dimension of the Web fostered the development 

of multi-disciplinary approaches combining computer and social 

sciences to improve the interpretation, recognition, and processing 

of opinions and sentiments expressed in social networks. The 

synergy between these approaches has been called sentic com- 

puting [15]. Sentic computing has been employed for address- 

ing several cognitive-inspired problems like the classification of 

natural language text [16] and the extraction of emotions from 

images [17]. 

Real-world solutions have been also developed. For example 

the authors of SENTILO [18], [19] presented an approach where a 

neo-Davinsonian theory of meaning is the backbone of a strategy 

used to process the text. This approach is then hybridized with 

Semantic Web technologies. 

 
2.2 Multi-Domain Sentiment Analysis 

According to the nomenclature widely used in the literature (see 

[4]), we call domain a set of documents about similar topics, e.g. 

a set of reviews about similar products like mobile phones, books, 

movies, etc.. The massive availability of multi domain corpora 

in which similar opinions are expressed about different domains 

opened the scenario for new challenges. Researchers tried to train 

models capable to acquire knowledge from a specific domain 

and then to exploit this knowledge for working on documents 

belonging to different ones. This strategy was called domain 

adaptation. The use of domain adaptation techniques demonstrated 

that opinion classification is highly sensitive to the domain from 

which the training data is extracted. The reason is that when using 

the same words, and even the same language constructs, we may 

obtain different opinions, depending on the domain. The classic 

scenario occurs when the same word has positive connotations 

in one domain and negative connotations in another one, as we 

showed within the examples presented in Section 1. 

Several approaches related to multi-domain sentiment analysis 

have been proposed. Roughly speaking, all of these approaches 

rely on one of the following ideas: (i) the transfer of learned 

classifiers across different domains [4], [5], [20], [21], and (ii) 

the use of propagation of labels through graph structures [22], 

[23], [24], [25]. 

While on the one hand such approaches demonstrated their 

effectiveness in working in a multi-domain environment, on the 

other hand they suffered by the limitation in adapting to domain 

that are different from those used for building the model. With 

respect to this issue, our approach, by starting from a limited 
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number of domain-based labeled data, is able to build models 

supporting the polarity inference of texts belonging to unseen 

domains. The model is then capable to deal with documents that 

are radically different from the ones used in the training process. 

 
2.3 Deep Learning in NLP and Sentiment Analysis 

Neural networks are a well known family of statistical learn- 

ing models which have been largely exploited for problems of 

classification, regression and clustering. Along the years, they 

have been employed in different areas: image processing, time 

series analysis, digital signal processing, and NLP. A well known 

problem in training multi-layered networks in gradient-based 

methods and backpropagation is the vanishing gradient problem, 

first demonstrated in [26]: a smaller and smaller fraction of the 

error is backpropagated back through these layers, significantly 

slowing down the training process. Recently, the widespread of 

the Graphical Processing Unit (GPU) computing architectures 

provided researchers with a significantly increased amount of 

computational power, allowing to overcome such problem, even if 

only in a pragmatical way, as remarked in [27]. In this scenario, a 

new interest flourished in deep network architectures, which were 

already theoretically established and proved to be advantageous 

(see [28]). As a consequence, different complex network architec- 

tures exploiting different neural cell models, have been used for 

several tasks achieving remarkable results. A sort of new discipline 

arisen, commonly referred to as deep learning, aiming to exploit 

such systems to reduce the gap between Machine Learning and 

classical Artificial Intelligence. 

The main feature of these systems is that they can easily 

deal with distributed representations of text, which are extremely 

flexible and robust. Moreover, the dimensions of distributed vector 

space models are typically smaller of vocabulary dimensions, 

helping to avoiding the curse of dimensionality. Deep networks 

have been used to build a distributed representations of single 

words and to train a language model in the seminal work [29]. 

In [30] a single network architecture is trained to perform several 

typical NLP tasks: part-of-speech tagging, chunking, named entity 

recognition, and semantic role labeling. The main advantage of a 

unified learning process is that it is less dependent on intermediate 

representations or task-specific features: this ends up in a signifi- 

cant reduction of feature engineering costs. In such approach, the 

distributed representation of words are learned from large amount 

of unlabeled training data. 

In Recursive Neural Networks (RecNNs, see [31]) two input 

vectors from a sequence are combined into a single vector of the 

same dimension, which is itself recursively combined with another 

vector from the input space: as long as we go through the recur- 

sion, the resulting vector will hold the distributed representation 

of larger chunks of text. Such architectures have been successfully 

used to parse Natural Language sentences, as in [32]. 

Recurrent Neural Networks (RNNs) are fed sequentially: at 

each step, their state depends on the current input value and on 

their state at the previous step. This aspect makes them particularly 

suitable to model natural language sentences as a sequence of 

words. A pivotal aspect of such architecture is that, as long as 

we keep feeding it, we obtain a distributed representation that 

goes beyond the single word. The usage of RNN architectures in 

the slot filling task has been explored in [33], with a minimum 

memory effect through windowing the input sequence. Long 

Short-Term Memory (LSTM) units (see [34]) in order to achieve 

more powerful memory capabilities, are used in [35] where a RNN 

is trained to execute short fragment of python code in a sequence- 

to-sequence translation fashion. In [36], Gated Recursive Units 

(GRUs) are used for a machine translation task. Such units are 

conceptually simpler and computationally less expensive than 

LSTM ones, providing though a shorter term memory. In this 

approach, two RNNs are combined. The first one encodes the 

input sequence into a single vector. Such vector is then fed into 

the second RNN which acts as a decoder, generating the output 

sequence. Recently, the approach presented in [37] aimed to train 

a RNN based system to translate natural language definitions into 

logic formulae in an end to end fashion, instead of the conventional 

approach based on the usage of statistical NLP toolkits and a 

catalog of handcrafted rules. Such rules can be learned by the 

system with a reduced number of annotated examples, relieving 

the knowledge engineer from the burden of manually encode and 

maintain such rules set. 

In [38], the network memory is built on the neural implemen- 

tation of traditional data structures as Stacks, Queues and Double- 

Ended Queues. Such network is trained for a generic language 

transduction problem. 

Convolutional Neural Networks (CNNs) are feed-forward ar- 

chitectures that exploit local connectivity patterns: incoming con- 

nections for a hidden unit comes from other units of the previous 

layer which are similar w.r.t. the features they describe. Such 

networks are trained in [39] to learn distributed representations of 

sentences in different language without word alignment: the more 

two sentences from different languages have a similar distributed 

representation, the more are likely to have the same meaning. Such 

distributed representation can be seen as a sort of representation in 

a common, subsymbolic language. A similar approach specifically 

developed for the sentiment analysis task is presented in [50]. 

Several deep learning based approaches have been evaluated in 

Sentiment Analysis tasks. In [40], Recursive Neural Networks are 

used to handle the syntactic tree structure of a sentence: following 

the generated parse tree, the different distributed representations 

of sentence parts are recursively built. The model is trained on the 

Stanford Sentiment Treebank, which has annotation on the whole 

parse tree. Authors of [41] learn a distributed representation of 

reviews through Convolutional Neural Networks which are subse- 

quently feed into Recurrent Neural Networks to learn distributed 

representation of the viewed products and of the opinion holders. 

In [42] a 7-layer deep Convolutional Neural Network has been 

trained to identify the target of an opinion within a text fragment, 

in conjunction with some linguistic patterns. An Extreme Learning 

Machine approach implemented over the data analytics framework 

Apache Spark1 has been proposed in [43]. The approach deals 

with large amount of natural language text coming from the Social 

Web. 

 

3 MATERIAL 

Here, we briefly describe the preparatory material we used for 

developing the NeuroSent architecture. In particular, we focus on 

the dataset used for evaluating our system from the multi-domain 

perspectives and the basic tools used for building our model. 

 

3.1 The Dranziera Dataset 

The evaluation of our approach have been performed by following 

the Dranziera protocol [44] in order to ease comparisons with 

1. https://spark.apache.org/ 
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future systems. The protocol is composed by a multi-domain 

dataset of one million reviews crawled from product pages on 

the Amazon web site and by a precise methodology (explained in 

Section 6). 

INPUT PROJECTION OUTPUT 

 

iV (w(k−2⟩) 

Reviews belong to twenty different domains, called in- 

model domains (IMD): “Amazon Instant Video”, “Automotive”, 

“Baby”, “Beauty”, “Books”, “Clothing Accessories”, “Electron- 

 
iV (w(k⟩) w(k⟩ 

iV (w(k−1⟩) 

ics”, “Health”, “Home Kitchen”, “Movies TV”, “Music”, “Office 

Products”, “Patio”, “Pet Supplies”, “Shoes”, “Software”, “Sports 

Outdoors”, “Tools Home Improvement”, “Toys Games”, and 

“Video Games”. 

For each domain, we extracted twenty-five thousands positive 

and twenty-five thousands negative reviews that have been split in 

five folds containing five thousands positive and five thousands 

negative reviews each. This way the dataset is balanced with 

respect to both the polarities of the reviews and to the domain 

which they belong to. The choice between positive and negative 

documents has been inspired by the strategy used in [4], where 

reviews with 4 or 5 stars have been marked as positive, while 

the ones having 1 or 2 stars have been marked as negative. 

Furthermore, each domain dataset is balanced with respect to 

positive and negative polarities as well. The choice of having a 

balanced dataset is based on our idea not to provide a dataset 

which reflects the same proportion of the reality. Indeed, the 

proportion measured in the training set reflects only a part of 

the reality; thus, an unbalanced dataset would be misleading 

during systems training. Instead, by providing a balanced dataset, 

systems are able to analyze the same number of positive and 

negative contexts for each domain. This way, built models are 

supposed to be fairly used in any kind of opinion inference testing 

environment. 

The split of each domain in five folds allows to easily have a 

clear distinction between the samples used for training the system 

and the ones used for testing it. Most of the work in the literature 

cites the dataset used, but without specifying which part has been 

used for the training phase and which for the testing phase. 

Besides the domains available in the Dranziera dataset, we 

used other 7 test sets. These test sets were necessary for measuring 

the general effectiveness of the proposed approach in inferring 

polarities of documents belonging to domains different from the 

ones included in the models. These domains have been called out- 

model domains (OMD): “Cell Phones Accessories”, “Gourmet 

Foods”, “Industrial Scientific”, “Jewelry”, “Kindle Store”, “Mu- 

sical Instruments”, and “Watches”. 

 
3.2 Neural Word Embeddings 

The training of word embeddings have been performed on a differ- 

ent dataset in order to verify the generalization of our embeddings. 

We used the Blitzer dataset [4] to pre-train the word embeddings 

that will be used to represent words feeding our neural network 

model. We extracted the plain text from the Blitzer dataset and 

tokenized it as is using the Stanford CoreNLP Toolkit [45]. No 

further processing has been performed against the text. We used 

the skip-gram model to learn our word embeddings. The main 

intuition behind this model is that, given a word w(k⟩ at the k-th 

position within a sentence, it tries to predict the most probable 

surrounding context, as depicted in Fig. 1. 

The word is represented as its index i within the vocabulary 

V and fed into a projection layer that turns this index into a 

continuous vector given by the corresponding i-th row in the layer 

iV (w(k+1⟩) 

 
iV (w(k+2⟩) 

Fig. 1: The Skip-gram model. 

 

weight matrix. Such vector is subsequently used to predict the 

surrounding words. At the end of the training process, the weights 

of the layer will be the embedding matrix of our vocabulary. The 

Skip-gram Model has been presented in detail in [46]. 

 
3.3 Deep Learning Library 

Deeplearning4j 2 (DL4J) is an open-source, distributed deep- 

learning library written for Java and Scala. The library integrates 

Hadoop and Spark technologies and it is designed to be used 

in business environments on distributed GPUs and CPUs. DL4J 

aims to be a cutting-edge framework providing fast-prototyping 

capabilities also to non researchers. It is largely customizable and 

can import neural net models from most major frameworks via 

Keras, 3 including TensorFlow, 4 Caffe, 5 Torch, 6 and Theano, 7 

bridging the gap between the Python and the Java Virtual Machine 

ecosystems, with a cross-team toolkit for data scientists, and data 

engineers. 

The DL4J has been used in our work for developing the neural 

network model described in Section 4. From the implementation 

perspective, the DL4J library has been used as back-end layer 

instantiating the structure of our neural model. In particular, our 

network has been build by starting from the ComputationGraph- 

Configuration class 8. This class is a configuration object for 

neural networks with arbitrary connection structure. It is analo- 

gous to the MultiLayerConfiguration, but it allows considerably 

greater flexibility for building network architectures. Specifically, 

the network architecture is a directed cyclic graph, where each 

vertex in the graph may for example be a layer or a vertex/object 

that defines arbitrary forward and backward pass functionality. 

A ComputationGraphConfiguration object may have an arbitrary 

number of inputs (multiple independent inputs, possibly of differ- 

ent types), and an arbitrary number of output layers. The latter 

is the reason for which we adopted this class for developing our 

network. Indeed, our model foresees two separate output layers: 

a first layer for computing the belonging degree of a document 

with respect to each domain, and a second layer supporting the 

computation of document polarity with respect to each domain. 

Section 5 discusses the actual integration of the network and its 

usage. 

2. https://deeplearning4j.org 

3. https://keras.io/ 

4. https://www.tensorflow.org/ 

5. http://caffe.berkeleyvision.org/ 

6. http://torch.ch/ 

7. https://github.com/Theano/Theano 

8. The official DL4J example can be found at https://goo.gl/vYtex3 
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4 NETWORK DESCRIPTION 

The main idea underlying our approach is the following: we 

summarize the whole review into a single distributed vector (the 

so called encoding phase) and use it to predict the binary polarity 

– positive or negative – of the review. We also exploit domain 

identification as a parallel task: given the same embedding vector, 

we want to predict the belonging of the review to one of the 20 

domains in our dataset. The network is trained jointly on both 

task. In this section, after a brief overview about the notation and 

hyper-parameter. We used a recurrent layer to encode our input 

sentence. In such layers, the activation of the hidden layer at the 

k-th time step, depends on the current input and on the activation 

at the previous step. Generically, we have that: 

h(k⟩  = g(x(k⟩, h(k−1⟩; θenc); (2) 

where g is the so called cell function that depends on a set of 

parameters θenc that are learned during the training phase. The 

final vector is the activation of the last time step, namely: 

conventions we used, the different components of the network 

models we tested will be described in detail, while and overall 
enc(s) = c = h(n⟩ = g(x(n⟩, h(n−1⟩; θ 

 
enc ). (3) 

representation is provided in Figure 2. 

 
4.1 Notation and Conventions. 

We used bold uppercase letters for matrices, say W, and bold 

lowercase for vectors, say b. When representing a vector explicitly 

in its components, we use square brackets and subscripts to 

indicate the position of each component within the vector, like 

in x = [x1, . . . , xn]. To represent a time series, we use the 

superscript between angle brackets for the components. So, if a 

l × h matrix is a time series of l vectors of size h, we write 

We used the well known LSTM cell function (see [34]) to im- 

plement our encoder. LSTM cells have the capability to maintain a 

memory of the input they have seen across a large number of time 

steps, partially overcoming the problem of gradient vanishing. The 

cell is internally structured with four gates, namely the forget gate 

f , the input gate i, the cell update gate g, and the output gate o. 

At each time step, we have that: 

f (k⟩ = σ(Wf x(k⟩ + Uf h(k−1⟩ + bf ); 
i(k⟩ = σ(Wix(k⟩ + Uih(k−1⟩ + bi); 

H  =  [h(1⟩, . . . , h(l⟩]. Similarly, if a vector represents a time g(k⟩ = tanh(W x(k⟩ + U h(k−1⟩ + b ); (4) 

series of scalar, we will write x = [x(1⟩, . . . , x(n⟩]. Finally, we 

will indicate the set of parameters of our model with the capital 
o(k⟩ 

 

= σ(Wox 

g 

(k⟩ 
 

+ Uoh 

g 

(k−1⟩ 

g 

+ bo); 

Greek letter θ. 

 
4.2 Input and Embedding Layer. 

We represent a review as a sequence of words, followed by a 

conventional symbol <EOS> that marks the end of the sequence. 

Each word is represented with its position, or index, within the 

vocabulary V of all the known words in our model. If the word 

book is the 23rd word in our vocabulary, we will have that 

iV (book) = 23. 

Given a sentence as a temporal sequence of symbols, each 

of which representing a word, say s = [s(1⟩, . . . , s(n⟩ = 
<EOS>], we represent it as the the sequence of the indexes 

in  the  vocabulary  V  of  each  word,  is  =   [i(1⟩, . . . , i(n⟩]   = 
[iV (s(1⟩), . . . , iV (s(n⟩) = iV (<EOS>)]. The k-th item of such 

sequence will be the index in the vocabulary V of the k-th word 

in the sentence. From now on, we will omit both the vocabulary 

subscript and the word argument and will write just i(k⟩ to indicate 

the k-th element of the indexes sequence. 

Each index in the vocabulary corresponds to a row in the 

embedding matrix E R|V |×d, which is the distributed word 

vector for the given word—where V is the dimension of the 

vocabulary and d is the dimension of the word vector, an hyper- 

parameter of the model. 

Said x(k⟩ the word embedding for the k-th word in the sen- 

tence and i(k⟩ the index of the word, we have that x(k⟩ = E[i(k⟩]. 
Our sentence can be represented as a sequence of word embed- 

ding vectors, X = [x(1⟩, . . . , x(n⟩]. Such embedding matrix is 

previously learned via the skip-gram model (presented in 3.2) in a 

separate phase. 

 
4.3 The Encoding Layer. 

The meaning of the sentence must be captured into a single 

distributed vector. This operation is called encoding. Given a 

sentence s of n words, we indicate the result of the encoding 

phase as enc(s) = c, where c ∈ Rh. The dimension h is an 

where  θenc  =  [Wf ,  Uf ,  bf ,  Wi,  Ui,  bi,  Wg,  Ug,  bg, 
Wo, Uo, bo] is the set of parameters to be learned. The cell state 

q(k⟩ is updated according to the following: 

q(k⟩ = f (k⟩ Ⓢ q(k−1⟩ + i(k⟩ Ⓢ g(k⟩; (5) 

where the symbol represents the element-wise product 

between two vectors, σ( ) the sigmoid function and the tanh( ) 
function can be replaced by any other nonlinear function. Intu- 

itively we can see how the forget gate f (k⟩ controls how much 

of the previous cell state gets into the current state, while the 

input gate controls how much of the cell update signal gets into it. 

Finally, the cell activation is given by the: 

h(k⟩ = o(k⟩ Ⓢ tanh(q(k⟩); (6) 

where the output gate controls the output signal coming from 

the cell state. 

 
4.4 Output Layers and Loss Functions. 

Since we are training the network jointly for the task of domain 

and polarity identification, we have two output layers, one for each 

task. Detailed descriptions follow. 

 

4.4.1 Domain identification 

The output layer for the domain identification models the proba- 

bility of the review – the input sentence – to belong to one of the 

domains in our dataset. We feed the encoder output, the vector c, 

into a projection layer ending up into: 

y = softmax(Wyc + by); (7) 

where Wy   Rh×|D|; by   R|D|, said D the set of all the 

domains in the dataset. The vector y is a vector of dimension D , 
with one component per domain. The softmax operator ensures 

all the components of the vector to fall within the interval [0; 1] 
and that their value sums up to 1: in this way, the value of the 
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Fig. 2: The generic network architecture 

 

j-th component of the vector will represent the probability that 

the input review belongs to the j-th domain: 
 

yj  = p(domain(s) = j|θ). (8) 

The predicted domain is the one whose probability is the 

maximum, namely: 

 

dpred = arg max p(domain(s) = j θ). (9) 
j 

Said ŷ as the gold truth value for a given sentence, we compute 

the loss function for the given example as the categorical cross 

entropy between the gold truth and the predicted output vector: 

|D| 

Ls = − ŷj log(yj). (10) 

j=1 

Please  note  that  ŷ  is  a  one-hot  vector,  with  a  component  of 

value 1 for the correct domain and components of value 0 for all 

the other. The parameters of this layer that must be learned during 

the training phase are θy = [Wy, by]. 
 

4.4.2 Polarity identification 

The output layer for the polarity identification is slightly different 

from the one used for the domain. The output is still a vector of 

dimension |D|, one for each known domain, filled with values in 

the interval [−1; 1], obtained via the following: 

z = tanh(Wzc + bz); (11) 

where Wz    Rh×|D|; bz     R|D|. Each component of the 

vector represents a sort of polarity score for that domain, namely: 

 

zj  = p(polarity(s) = j|θ). (12) 

We compute the loss function for this task from the z vector. 

The gold truth value for the polarity is represented with another 

vector ẑ of   D   dimensions, filled with 0 except for the position 

corresponding to the proper domain, where the value of the 

negative or positive label, namely 0; 1 is set. We use the 

categorical cross entropy as the loss function. The contribution 

to the loss function value from each example will be: 

 
|D| 

Ls = − p̂j log(pj). (13) 

j=1 
 

The final polarity prediction is performed after a weighted sum 

with the different domain probabilities. The process is described 

in detail in Section 5.3. The parameters of this layer that must be 

learned during the training phase are θz = [Wz, bz]. 

 
5 PLATFORM ARCHITECTURE 

Figure 3 shows the overall architecture of the proposed approach. 

This architecture has been entirely developed in Java with the 

support of the DL4J library (see Section 3.3 for details) and it is 

composed by three main phases: 

• Generation of Word vectors (Section 5.1): raw text, appro- 

priately tokenized using the Stanford CoreNLP Toolkit, is 

provided as input to a 2-layers neural network implement- 

ing the skip-gram approach described in Section 3.2 with 

the aim of generating word vectors. 

• Learning of Sentiment Model (Section 5.2): word vectors 

are used for training a recurrent neural network imple- 

menting two output layers supporting the two classification 

tasks mentioned in the previous section: “polarity classi- 

fication”, where the word vector sequence is classified as 

positive or negative, and “domain classification” in which 

it is provided an overlap degree between the word vector 

sequence and each domain used for training the model. 

• Computation of Document Polarity (Section 5.3): numeric 

data provided by the output layers are aggregated for 

inferring the overall polarity value of a text. 

In the following subsections, we describe in more detail each 

phase by providing also the settings used for managing our data. 

y z 

h(1⟩ h(2⟩ h(3⟩ 

. . . 

x(1⟩ x(2⟩ x(3⟩ 

. . . 
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Fig. 3: Architecture of the proposed approach. 

 

5.1 Generation of Word Vectors 

The generation of the word vectors has been performed by 

applying the skip-gram algorithm mentioned in Section 3.2 on 

the raw natural language text extracted from the Blitzer dataset. 

The rationale behind the choice of this dataset focuses on three 

reasons: 

• the dataset contains only opinion-based documents. This 

way, we are able to build word embeddings describing 

only opinion-based contexts. 

• the dataset is multi-domain. Information contained into the 

generated word embeddings comes from specific domains, 

thus it is possible to evaluate how the proposed approach is 

general by testing the performance of the created model on 

test sets containing documents coming from the domains 

used for building the model or from other domains. 

• the dataset is smaller with respect to other corpora used in 

the literature for building other word embeddings that are 

currently freely available, like the Google News ones. 9 

Indeed, as introduced in Section 1, one of our goal is to 

demonstrate how we can leverage the use of dedicated 

resources for generating word embeddings, instead of 

corpora’s size, for improving the effectiveness of classi- 

fication systems. 

These three points represent the main original contributions 

of this work, in particular the aspect of considering only opinion- 

based information for generating word embeddings. While em- 

beddings currently available are created from big corpora of 

general purpose texts (like news archives or Wikipedia pages), 

ours are generated by using a smaller corpus containing documents 

strongly related to the problem that the model will be thought for. 

On the one hand, this aspect may be considered a limitation of 

the proposed solution due to the requirement of training a new 

model in case of problem change. However, on the other hand, 

the usage of dedicated resources would lead to the construction of 

more effective models. 

Word embeddings have been generated by the Word2Vec 

implementation integrated into the Deeplearning4j library briefly 

presented in Section 3.3. The algorithm has been set up with the 

following parameters: the size of the vector to 64, the size of the 

window used as input of the skip-gram algorithm to 5, and the 

minimum word frequency was set to 1. The reason for which we 

kept the minimum word frequency set to 1 is to avoid the loss 

of rare but important words that can occur in domain specific 

documents like the ones contained in the Blitzer dataset. 

9. https://github.com/mmihaltz/word2vec-GoogleNews-vectors 

5.2 Learning of The Sentiment Model 

The sentiment model is built by starting from the word embed- 

dings generated during the previous phase. In Section 4.4, we 

already introduced both the tasks performed by our model and 

we generally refer to Section 4 for the mathematical details of 

our approach. Here, we summarize the main steps performed for 

building our model, from the conversion of the input sentences to 

the strategy used for inferring the overall polarity of a document. 

The first step consists in converting each textual sentence con- 

tained within the dataset into the corresponding numerical matrix 

S where we have in each row the word vector representing a single 

word of the sentence, and in each column an embedding feature. 

Given a sentence s, we extract all tokens ti, with i      [0, n], and 

we replace each ti with the corresponding embedding w. During 

the conversion of each word in its corresponding embedding, if 

such embedding is not found, the word is discarded. At the end of 

this step, each sentence contained in the training set is converted 

in a matrix S = [w(1⟩, . . . , w(n⟩]. 
Before giving all matrices as input to the neural network, we 

need to include both padding and masking vectors in order to train 

our model correctly. Padding and masking allows us to support 

different training situations depending on the number of the input 

vectors and on the number of predictions that the network has to 

provide at each time step. In our scenario, we work in a many- to-

one situation where our neural network has to provide one 

prediction (sentence polarity and domain overlap) as result of the 

analysis of many input vectors (word embeddings). 

Padding vectors are required because we have to deal with the 

different length of sentences. Indeed, the neural network needs to 

know the number of time steps that the input layer has to import. 

This problem is solved by including, if necessary, into each matrix 

Sk, with k [0, z] and z the number of sentences contained in 

the training set, null word vectors that are used for filling empty 

word’s slots. These null vectors are accompanied by a further 

vector telling to the neural network if data contained in a specific 

positions has to be considered as an informative embedding or not. 

Figure 4 shows an example where we have two sentences of 

different lengths in the training set and how they are represented 

when they are sent to the input layer of the neural network. From 

the left, in the first block we have the original sentence; in the 

second block we extracted the relevant terms that are three for the 

first sentence, and two for the second one. Then, for each word, we 

get the corresponding word vector. Finally, we create input masks 

vectors through which we are able to tell to the neural network 

that the third element of the second sentence does not exist. 

Beside padding, masking is needed for telling to the neural 
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Fig. 4: Example of sentence transformation and association with the input mask. 

 

network that the prediction does not have to be provided for each 

step, but only at the end of each vector sequence, as mentioned 

above. Figure 5 shows how we addressed this problem. By 

supposing to have four word vectors in our sentence, at each step, 

the network reads one word vector and, after consumed the last 

one, the prediction is computed and the error is back propagated. 

As it is possible to observe in Figure 5: (i) we do not use the 

mask for the input layer because all vectors have to be considered 

(exception is done for the vectors that are used as padding); and, 

(ii) we use a mask associated with each output layer in order to 

have the prediction only after the elaboration of the last time step. 

 

 
 

 

using the Stochastic Gradient Descent with 1000 epochs and a 

learning rate of 0.002. 

 

5.3 Computation of Document Polarity 

The operation of computing the entire polarity of a document 

is performed by combining the numeric data provided by the 

two output layers of the network. As explained earlier, one of 

the assumptions of the proposed approach is to exploit possible 

linguistic overlaps between different domains for compensating 

missing knowledge from the training set. From here, the intuition 

of using two output layers: the first one for computing the belong- 

ing degree between a sentence and each domain, and the second 

one for computing the polarity of the document with respect to 

each domain. Given y the vector of dimension D containing the 

belonging degree of a sentence to each domain, and z, the vector of 

dimension D containing the polarity score for each domain, the 

overall predicted polarity of a document T is computed by scaling 

the dot product between the two vectors by their dimension, as 

follow: 

p  = 
y · z 

|D| 

 

(14) 

 

 

 

 

 
 

 

 
 

Fig. 5: How input and output mask are set in our scenario. 

 
A final note concerns the back propagation of the error. 

Training recurrent neural networks can be quite computationally 

demanding in cases when each training instance is composed by 

many time steps. A possible optimization is the use of truncated 

back propagation through time (BPTT) that was developed for 

reducing the computational complexity of each parameter update 

in a recurrent neural network. On the one hand, this strategy allows 

to reduce the time needed for training our model. However, on the 

other hand, there is the risk of not flowing backward the gradients 

for the full unrolled network. This prevents the full update of all 

network parameters. For this reason, even if we work with recur- 

rent neural networks, we decided to do not implement a BPTT 

approach but to use the default backpropagation implemented into 

the DL4J library. 

Concerning information about network structure, the input 

layer was composed by 64 neurons (i.e. embedding vector size), 

the hidden RNN layer was composed by 128 nodes, and the output 

layers contained 20 nodes each. The network has been trained by 

For completeness, please consider the following numerical 

example. Let us assume to have three domains A, B, and C and a 

document j for which hold the following values: 

y1 = d(A) = 0.81, 

y2 = d(B) = 0.12, 

y3 = d(C) = 0.07, 

z1 = p(A) = 0.72, 

z2 = p(B) = 0.32, 

z3 = p(C) = −0.45, 

where d( ) and p( ) represents the domain belonging degree 

and the polarity score for a given domain, respectively. The 

polarity score of the document j will be: 

p = 
(0.81 · 0.72) + (0.12 · 0.32) + (0.07 · −0.45)  

= 0.1967,
 

3 
(15) 

where a value greater or equal than zero indicates a positive 

polarity, while the polarity is considered negative if the score is 

less than zero. 

 

6 EVALUATION 

The NeuroSent approach discussed in Section 4 and the platform 

presented in Section 5 have been evaluated by adopting the 

Dranziera protocol 10 [44]. The dataset adopted in our evaluation 

10. All the material used for the evalua- 
tion and the built models are available at 
http://www.maurodragoni.com/research/opinionmining/dranziera/protocol.php 
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campaign has been introduced in Section 3. Here, we describe the 

implemented validation procedure and we discuss the obtained 

results. 

 
6.1 Evaluation Procedure 

The validation procedure leverage on a five-fold cross evaluation 

setting in order to validate the robustness of the proposed solution. 

The approach has been compared with seven baselines: 

• Support Vector Machine (SVM): classification was run 

with a linear kernel type by using the Libsvm [47]. Libsvm 

uses a sparse format so that zero values do not need to be 

captured for training files. This can cause training time to 

be longer, but keeps Libsvm flexible for sparse cases. 

• Naive Bayes (NB) and Maximum Entropy (ME): the 

MALLET: MAchine Learning for LanguagE Toolkit [48] 

was used for classification by using both Naive Bayes 

and Maximum Entropy algorithms. For the experiments 

conducted in our evaluation, the Maximum Entropy clas- 

sification has been performed by using a Gaussian prior 

variance of 1.0. 

• Domain Belonging Polarity (DBP): we computed the text 

polarity by using only information of the domain that 

a document belongs to. This means that the linguistic 

overlap between domains has not been considered. 

• Domain Detection Polarity (DDP): we computed the text 

polarity by using only information of the domain guessed 

as the most appropriate for the document that has to be 

evaluated. This means that the similarity between text 

content and domain is preferred with respect to the domain 

used for tagging the text. 

• IRMUDOSA System [49]: the text polarity is computed by 

aggregating fuzzy polarities associated with each opinion 

concept. This approach implements a multi-domain strat- 

egy where polarities computed over different domains are 

aggregated by using the Equation 14. In our evaluation, we 

applied the approach described in [49] to the Dranziera 

dataset. 

• Convolutional Neural Network [50] (CNN): we compared 

our architecture with a classic CNN. Models have been 

trained with the embeddings created from the Blitzer 

dataset. 

• Google Word Embeddings (GWE): we trained our models 

by using the pre-trained Google-News word vectors 11 

instead of the ones created from the Blitzer dataset. The 

goal of this comparison is to show how the embeddings 

created by using a smaller, but more opinion-oriented, 

dataset may lead to better results with respect to the use of 

bigger, but general, embeddings. 

For each baseline, we measured the overall accuracy, the 

precision and recall averaged over the two classes (positive and 

negative) and the F1-score. In the end, we reported their averages 

together with the standard deviation measured over the five folds. 

The same baselines have been used to evaluate the model 

against the OMD test sets. In this case, the DBP baseline has not 

been applied due to the mismatch between the domains used for 

building the model and the ones contained in the test sets. Each 

OMD test set has been applied to all five models built, and the 

scores averaged. 

11. https://github.com/mmihaltz/word2vec-GoogleNews-vectors 

6.2 Results 

Here, we show the results of the evaluation campaign conducted 

to validate the presented approach. Tables 1 and 2 present a 

summary of the performance obtained by NeuroSent and by the 

seven baselines on IMD and OMD, respectively. The first column 

contains the name of the approach, the second, third, and fourth 

contain the average precision, recall and F1 score computed over 

all domains, while the fifth contains the average standard deviation 

computed on the F1 score during the cross-fold validation. Finally, 

the sixth and seventh columns contain the minimum and the 

maximum F1 score measured during the evaluation. 

Table 1 shows the results obtained on the domains contained 

in the Dranziera dataset; while in Table 2, we presented the 

results obtained by testing our approach on documents coming 

from domains that are not contained in the Dranziera dataset. 

For completeness, we reported the comparison between the 

accuracies obtained by the evaluated system for each domain. 

Table 3 and 4 presents the results on the domains contained or 

not within the Dranziera dataset, respectively. 

By considering the overall results obtained on the IMD and 

reported in Table 1, we may observe how NeuroSent outperforms 

the considered baselines. The measured F1 scores (average, mini- 

mum, and maximum) are higher of around 6% with respect to the 

GWE and CNN baselines and of more than 8    10% with respect 

to the others. This first consideration demonstrated the superiority 

of the use of word embeddings with respect to strategies that do 

not implement this technique. The poor performance of the classic 

machine learning approaches: SVM, NB, and ME, are surprising. 

A more in depth analysis of the results obtained by these three 

baselines shown how these approaches failed in classifying long 

reviews containing many opinion-based sentences. 

A similar rank can be observed by analyzing the precision and 
recall values, where the differences between NeuroSent and the 

baselines remains more or less the same. Concerning the stability 

of the algorithm, we can notice that the exploitation of the domain 

information leads to a higher standard deviation. In both IMD 

and OMD test sets, the domain-based approaches registered a 

higher standard deviation with respect to the SVM, NB, and ME 

baselines. 

A last consideration can be done concerning the detailed 

results reported in Table 3: in 18 out of 20 domains, the proposed 

approach outperforms the other baselines. The only exceptions 

are the “Amazon Instant Video” and “Patio” domains, where, 

respectively, the GWE and CNN baselines registered a small 

improvement with respect to F1 score obtained by NeuroSent. 

The second overall evaluation concerns the analysis of the 

results obtained on the set of OMD. Results are shown in Table 2. 

The first thing that we may observe is how the effectiveness 

obtained by the proposed system is very close to the one obtained 

in the IMD evaluation. Indeed, the difference between the two F1 

averages is less than 1%. This aspect remarked the capability of 

the proposed approach of working in a cross-domain environment 

and of exploiting the domain linguistic overlaps for estimating 

the overall document polarity. Concerning detailed results, here 

the improvement of NeuroSent is clearer. The only exception 

is the “Watches” domain, where the CNN baseline obtained an 

improvement of around 3% with respect to NeuroSent. On the 

contrary, for all the other domains, our approach outperforms all 

the baselines of more than 5%. 

In this second evaluation, it is also possible to notice how the 

IRMUDOSA baseline obtained a higher precision with respect 
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TABLE 1: Comparison between the results obtained by the baselines and the ones obtained by NeuroSent on the Dranziera dataset. 
 

Approach Avg. Precision Avg. Recall Avg. F1 Avg. Deviation Avg. Min. F1 Avg. Max. F1 

Support Vector Machine 0.6890 0.7097 0.6987 0.0119 0.6636 0.7395 

Naive-Bayes 0.6956 0.6915 0.6929 0.0062 0.6544 0.7205 

Maximum Entropy 0.7073 0.7085 0.7074 0.0098 0.6543 0.7357 

Domain Belonging Polarity 0.7108 0.7331 0.7218 0.0228 0.7153 0.7543 

Domain Detection Polarity 0.6731 0.7546 0.7115 0.0384 0.7121 0.7456 

IRMUDOSA System 0.7410 0.7984 0.7686 0.0154 0.7469 0.7981 

CNN Architecture 0.8037 0.7727 0.7879 0.0516 0.7026 0.8647 

Google Word Embeddings 0.8008 0.7921 0.7964 0.0042 0.7537 0.8413 

NeuroSent 0.8515 0.8407 0.8460 0.0102 0.7966 0.8730 

TABLE 2: Comparison between the results obtained by the baselines and the ones obtained by NeuroSent on the domains not contained 

in the Dranziera dataset. 
 

Approach Avg. Precision Avg. Recall Avg. F1 Avg. Deviation Avg. Min. F1 Avg. Max. F1 

Support Vector Machine 0.6507 0.6437 0.6571 0.0090 0.6004 0.6950 

Naive-Bayes 0.6435 0.6459 0.6260 0.0023 0.6103 0.6683 

Maximum Entropy 0.6524 0.6475 0.6501 0.0038 0.6302 0.6905 

Domain Belonging Polarity - - - - - - 

Domain Detection Polarity 0.6609 0.6931 0.6766 0.0096 0.6706 0.7198 

IRMUDOSA System 0.8115 0.6985 0.7508 0.0160 0.6889 0.7755 

CNN Architecture 0.7848 0.8120 0.7982 0.0457 0.6543 0.8675 

Google Word Embeddings 0.7930 0.7864 0.7896 0.0078 0.7597 0.8328 

NeuroSent 0.8442 0.8343 0.8392 0.0125 0.8054 0.8712 

TABLE 3: Detailed results obtained on domains contained within the Dranziera dataset by the baselines and by NeuroSent. 
 

Domain Tested System 
SVM NB ME DBP DDP IRMUDOSA CNN GWE NeuroSent 

Amazon Instant Video 0.7017 0.6544 0.7026 0.7230 0.7147 0.7751 0.8002 0.8047 0.8017 

Automotive 0.7166 0.7172 0.7172 0.7202 0.6943 0.7412 0.7335 0.7829 0.8537 

Baby 0.6885 0.6929 0.7155 0.7088 0.6938 0.7652 0.8405 0.7964 0.8518 

Beauty 0.6982 0.7023 0.7230 0.7481 0.7341 0.7797 0.8279 0.8099 0.8550 

Books 0.6923 0.6873 0.6887 0.6957 0.6926 0.7315 0.7848 0.7537 0.7966 

Clothing Accessories 0.6988 0.6904 0.7224 0.8038 0.7856 0.8462 0.7778 0.8115 0.8696 

Electronics 0.6851 0.6880 0.6988 0.7309 0.7035 0.7492 0.7945 0.7711 0.8641 

Health 0.6717 0.7205 0.6629 0.6887 0.6867 0.7527 0.7794 0.7865 0.8611 

Home Kitchen 0.7217 0.7178 0.6900 0.7137 0.6929 0.7683 0.7474 0.8189 0.8686 

Movies TV 0.7354 0.6915 0.7160 0.7030 0.7122 0.7743 0.7453 0.7913 0.8090 

Music 0.6936 0.6701 0.6542 0.7171 0.7216 0.7834 0.7635 0.7713 0.8083 

Office Products 0.7321 0.6910 0.7314 0.7298 0.7017 0.7523 0.7990 0.8028 0.8730 

Patio 0.6875 0.6923 0.7142 0.7024 0.6926 0.7459 0.8566 0.8026 0.8564 

Pet Supplies 0.6817 0.7078 0.7302 0.6680 0.6626 0.7195 0.8164 0.7908 0.8361 

Shoes 0.6705 0.7164 0.7276 0.8324 0.8115 0.8434 0.8143 0.8413 0.8655 

Software 0.7395 0.6762 0.6872 0.7196 0.7151 0.7462 0.7913 0.7645 0.8479 

Sports Outdoors 0.6685 0.7050 0.7314 0.7084 0.7129 0.7927 0.7581 0.8151 0.8669 

Tools Home Improvement 0.7325 0.6896 0.7356 0.6842 0.6887 0.7438 0.7920 0.7905 0.8518 

Toys Games 0.6636 0.6664 0.6948 0.7383 0.7108 0.8018 0.7673 0.8365 0.8624 

Video Games 0.6954 0.6808 0.7038 0.6999 0.7012 0.7590 0.7286 0.7853 0.8206 

Average 0.6987 0.6929 0.7074 0.7218 0.7115 0.7686 0.7878 0.7964 0.8460 

 

to the GWE one. By considering that also the IRMUDOSA 

system implements a polarity computation algorithm based on 

the aggregation of domain polarities, this outcome confirms that a 

solution based on exploiting overlapping information coming from 

different domains is an effective approach that has to be investigate 

in depth in the future. Thus, we may state that the exploitation of 

domain linguistic overlaps is a suitable solution for compensating 

the possible lack of knowledge when limited training sets are used 

for building opinion models. 

Finally, we want to report some considerations about the 

efficiency of the platform. The time required for building the entire 

sentiment model was around 8.5 hours (single core equivalent) 

on a server equipped with a double Xeon X5650 and 32Gb of 

RAM. While, during the testing session, on the same machine, 

the computation of a single document polarity required an average 

of 658ms. This result supports the possible implementation of the 

polarity computation component as a real-time service due to the 

low time required for computing document polarity. 

 
6.3 Error Analysis 

We performed a detailed error analysis concerning the perfor- 

mance of the proposed strategy. Figures 6 and 7 report the set 

of confusion matrices for the IMD and the OMD test sets, respec- 

tively. In general, we can observe how our strategy tends to provide 

false negative predictions. An in depth analysis of some incorrect 

predictions highlighted that the embedded representations of some 

positive opinion words are very close to the space region of 

negative opinion words. Even if we may state that the confidence 

about positive predictions is very high, this scenario leads to have 

a predominant negative classification for borderline instances. 
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TABLE 4: Detailed results obtained on domains that are not contained within the Dranziera dataset by the baselines and by NeuroSent. 
 

Domain Tested System 
SVM NB ME DBP DDP IRMUDOSA CNN GWE NeuroSent 

Cell Phones Accessories 0.6671 0.6209 0.6904 - 0.6675 0.7032 0.7385 0.7597 0.8431 

Gourmet Foods 0.6376 0.6257 0.6384 - 0.6738 0.7638 0.8194 0.7898 0.8227 

Industrial Scientific 0.6175 0.6234 0.6301 - 0.6392 0.6821 0.7457 0.7717 0.8155 

Jewelry 0.6003 0.6191 0.6423 - 0.6628 0.7826 0.7578 0.8328 0.8712 

Kindle Store 0.6877 0.6102 0.6337 - 0.7105 0.7560 0.7774 0.7635 0.8054 

Musical Instruments 0.6949 0.6140 0.6827 - 0.6938 0.7811 0.8226 0.8018 0.8597 

Watches 0.6944 0.6682 0.6330 - 0.6889 0.7867 0.8825 0.8080 0.8567 

Average 0.6571 0.6260 0.6501 - 0.6766 0.7508 0.7982 0.7896 0.8392 

 

On the one hand, a possible action for improving the ef- 

fectiveness our strategy is to increase the granularity of the 

embeddings (i.e. augmenting the size of the embedding vectors) 

in order to increase the distance between the positive and negative 

polarities space regions. On the other hand, by increasing the size 

of embedding vectors, the computational time for building, or 

updating, the model and for evaluating a single instance increases 

as well. Part of the future work, will be the analysis of more 

efficient neural network architectures able to manage augmented 

embedding vectors without negatively affecting the efficiency of 

the platform. 

 
7 CONCLUSION AND FUTURE WORK 

In this paper, we presented NeuroSent: a tool for multi-domain 

sentiment analysis exploiting linguistic overlaps between domains 

for inferring document polarity. The tool implements a deep 

learning architecture using distributed vectors to represent words. 

Models are built by using a recurrent neural network trained 

with information extracted from the Blitzer dataset, a small 

but opinion-oriented collection of user-generated reviews. The 

inference of the overall polarity of a document is performed by 

combining belonging degrees of a document to each domain and 

domain-specific polarities scores computed by the model. 

The performance of the system has been evaluated by applying 

the Dranziera protocol. Results shown the effectiveness of the 

proposed approach with respect to the baselines demonstrating its 

viability. Moreover, the protocol used for the evaluation enables an 

easy reproducibility of the experiments and the comparison with 

other systems. 

Future work will focus on two main directions: (i) the inte- 

gration of knowledge embeddings and (ii) the injection of fuzzy 

logic for representing uncertainty associated with word embed- 

dings. Concerning the integration of knowledge embeddings, we 

want to build embeddings describing complex sentiment patterns 

instead of single terms (or concepts). This way, the system will 

be able to learn more complex linguistic constructs with the 

aim of improving the overall classification effectiveness. While, 

concerning the injection of fuzzy logic, our intent is to represent 

each embedding’s feature by using fuzzy sets. On the one hand, 

this solution allows to manage uncertainty associated with each 

feature; however, on the other hand, the complexity of the overall 

architecture will increase. The challenge will focus on finding an 

efficient way to manage all such information. Some effort will 

be also focused on the creation of domain-dependent sentiment 

lexicons and on validating their effectiveness with respect to 

general purpose ones. 

Finally, we foresee the integration of a concept extraction 

approach in order to provide the system with further semantic ca- 

pabilities, for example the extraction of finer-grained information, 

that can be used during the model construction. 
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Fig. 6: Confusion matrices for the predictions on the In-Model Domains. 

 

 

 

 
 

 

 
 

Fig. 7: Confusion matrices for the predictions on the Out-Model Domains. 
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