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Abstract An outbreak of the COVID-19 pandemic is
a major public health disease as well as a challenging
task to people with comorbidity worldwide. Accord-
ing to a report, comorbidity enhances the risk factors
with complications of COVID-19. Here, we propose
and explore a mathematical framework to study the
transmission dynamics of COVID-19 with comorbid-
ity. Within this framework, the model is calibrated by
using new daily confirmed COVID-19 cases in India.
The qualitative properties of themodel and the stability
of feasible equilibrium are studied. The model experi-
ences the scenario of backward bifurcation by param-
eter regime accounting for progress in susceptibility
to acquire infection by comorbidity individuals. The
endemic equilibrium is asymptotically stable if recruit-
ment of comorbidity becomes higher without acquiring
the infection. Moreover, a larger backward bifurcation
regime indicates the possibility of more infection in
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susceptible individuals. A dynamics in the mean fluc-
tuation of the force of infection is investigated with
different parameter regimes. A significant correlation
is established between the force of infection and corre-
sponding Shannon entropy under the same parameters,
which provides evidence that infection reaches a sig-
nificant proportion of the susceptible.

Keywords COVID-19 · Comorbidity · Model
calibration · Backward bifurcation · Sensitivity
analysis · Shannon entropy

1 Introduction

COVID-19 was announced by the World health orga-
nization (WHO) as a major health hazard at the end of
2019. This was first seen inWuhan province, China [1].
After that this infectious disease has been spread out in
the whole world. To defeat the epidemic, the different
countries of the world were in a lockdown scenario,
the also successively unlock process due to socioeco-
nomic and political impacts [2–6]. Moreover, the mor-
tality and morbidity rate has varied across countries of
the worlds [7–9]. COVID-19 is often present in human
being as common symptoms, for example, cold-like ill-
ness including fever, muscle pain, fatigue, loss of taste
and smell, sore throat, and dry cough [10–13].

COVID-19 can be transmitted frompeople to people
through respiratory droplets from an infected human
being or direct contact with contaminated surfaces or
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objects [14,15]. As all vaccinations are in trial posi-
tions for the prevention of COVID-19. Various stud-
ies have pointed out the stage of comorbidity co-
infection (like lung disease, heart disease, diabetes,
etc) among the infected people. According to the Cen-
ters for Disease Control and Prevention, all people
with comorbidity or medical condition have more risk
to become infected than healthy or normal human
being [16–18]. From the survey of clinical reports,
this is further suggested that the confirmed COVID-
19 patients are most having comorbidity co-infection
which includes kidney disease, obesity those having
basal metabolic rate (BMR) more than thirty, type-2
diabetes, COPD (chronic obstructive pulmonary dis-
ease) [19–21]. Moreover, sometimes this confirmed
COVID-19 with comorbidity were admitted to the
intensive care unit (ICU).

New daily cases of COVID-19 follow a very
highly volatile pattern, i.e, deceasing-increasing arbi-
trarily [22,23]. To implement fruitful public health
measures in a scheduled time within a certain resource
according to geographical state [24], it is utmost essen-
tial to study the diffusion or force of infection among
the wider population. In order to explain this observa-
tion, entropy helps us to determine the heterogeneity
of a daily number of cases and time of highest dif-
fusion or force of infection [25]. Various methods of
measuring entropy, like weighted entropy [26], max-
imum entropy [27], evolutionary Entropy [28], struc-
tural Entropy [29] are employed to forecast and study
the transmission dynamics of pandemic like, COVID-
19 [30,31]. Here, the concept of Shannon entropy is
indeed used and seemed to be appropriate to determine
the spread of an epidemic as there is a significant anal-
ogy based on Boltzmann’s classical thermodynamical
paradigm [32].

Various mathematical models have been formulated
and studied the corresponding dynamics [33,34]. Lie
et al. proposed a data-driven COVID-19 model with
distributed delay [35]. Global dynamics of a COVID-
19 SEIR epidemic model has been investigated by
Khyar et al. [36]. Further, different authors have sug-
gested control strategies for disease transmission of
COVID-19 [37–39]. The main aim of this paper is to
study the qualitative behavior of COVID-19 transmis-
sion dynamics by bifurcation theory. Various qualita-
tive dynamics have been studied in different mathemat-
ical model [40–42]. For this purpose, data-driven mod-
eling is a powerful tool to investigate dynamical behav-

ior in infectious disease [43]. Various mathematical
models have been devolved as well as investigated the
transmission dynamic of COVID-19 [44–48]. Indeed,
considering comorbidity in modelling of COVID-19 is
of noteworthy interest in ongoing studies and also has
not been yet investigated according to literature.

The subsequent parts of the paper are as follows:
In Sect. 2, we propose and explore a mathematical
model of COVID-19 with comorbidity. The qualitative
dynamics is investigated at feasible equilibrium by per-
forming bifurcation analysis in Sect. 3. In Sect. 4, the
model is calibrated and sensitivity analysis is also per-
formed. Moreover, the transmission dynamics of mean
fluctuation in force of infection is studied bymeasuring
the corresponding Shannon entropy. Finally, in Sect. 5,
we discuss and conclude the results from our proposed
study.

2 Mathematical model

We develop here a SCEAIHR-type model by intro-
ducing threatened or comorbidity susceptible and hos-
pitalized individuals in the dynamics of COVID-19
(SARS-Cov-2). The model consists of seven compart-
ments, namely, susceptible individuals (S), comorbid-
ity susceptible individuals (C), exposed individuals (E),
asymptomatic individual (A), infected or infectious
individuals with clinical symptoms (I), diagnosed and
hospitalized individuals (H) and recovered individuals
with no more infections (R). The total number of indi-
viduals is N = S + C + E + A + I + H + R. Our
main aim is to study the dynamics of COVID-19 with
comorbidity co-infection. Based on a biological view-
point, we formulate a nonlinear mathematical model to
investigate the COVID-19 or SARS-Cov-2 pandemic
in a certain time window:

Ṡ = �s − βs(I + δa A + δh H)S

N
− φs S − μS

Ċ = φs S − ρβs(I + δa A + δh H)C

N
− μC

Ė = βs(I + δa A + δhH)S

N

+ ρβs(I + δa A + δhH)C

N
− (αe + μ)E

Ȧ = (1 − ξ)αeE − (γa + μ)A

İ = ξαeE − (γi + θ + μ)I
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Fig. 1 Schematic
illustration of SCEAIHR
model. The flow diagram
exhibits the interaction of
different stages of
individuals in the model:
susceptible (S), comorbidity
(C), exposed (E),
asymptomatic (A), infected
(I), hospitalized (H) and
recovered (R)

Ḣ = θ I − (γh + η + μ)H

Ṙ = γa A + γi I + γh H − μR (1)

The following initial values are considered in model
(1) as follows:

S(t0) = S0 ≥ 0,C(t0) = C0 ≥ 0,

E(t0) = E0 ≥ 0, A(t0) = A0 ≥ 0,

I (t0) = I 0 ≥ 0, H(t0) = H0 ≥ 0, R(t0) = R0 ≥ 0
(2)

Here, it is assumed that t ≥ t0, where t0 indicates
the initial date of the outbreak of COVID-19 for the
model (1). Susceptible individuals are generated by
the recruitment of persons by birth or immigration to
the community at a constant rate of �s . Population
decreases after infection and can be transmitted at a
rate βs I

N , δaβs A
N and δ2βs H

N by direct interaction between
susceptible individuals with symptomatic infected,
asymptomatic infected and hospitalized individuals
respectively and at a rate ρβs I

N , ρβsδa A
N and ρβsδh H

N by
direct interaction between co-morbid susceptible indi-
vidualswith symptomatic infected, asymptomatic indi-
viduals and hospitalized individuals respectively. Also,
susceptible individuals often develop co-morbidity at
a rate of φs . It is assumed that there is a recovery rate
for asymptomatic, symptomatic, and hospitalized indi-
viduals, such as γa , γi , and γh respectively. The model
incorporates certain demographic impacts by estimat-

ing the disease-induced mortality rate η of hospitalized
persons and natural death rate μ of each of the seven
subpopulations. After the disease incubation period,
1
αe
, a fraction ξ of the exposed individuals are symp-

tomatically infected and the remaining fraction (1− ξ)

become asymptomatically infected. The exposed pop-
ulation also decreased at a rate of μ due to natural
death. The pictorial diagram of our model is presented
in Fig. 1. The description of model parameters is pro-
vided in Table 1.

3 SCEAIHR model analysis

In this section, we study some basic properties of the
SCEAIHR model (1) such as positivity and bound-
edness, basic reproduction number, stability analysis
at biologically feasible equilibrium points with non-
negative initial conditions (S0,C0, E0, A0, I 0, H0, R0)

∈ R7.

Lemma 3.1 For initial values (2), the solutions of
SCEAIHR model (1) remain positive through out the
region in R7+ for all t > 0.

Proof To establish the positivity of the system (1), we
take any solution emerging from non-negative region
R7+ which remain positive for all t > 0. In order to
do this, we prove that the points of vector field on the
each hyper plane are bounded by non-negative region
R7+. In the system (1), we see that dS

dt |S=0 = �S ≥ 0,
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Table 1 The values of the parameters used in the SCEAIHR model (1)

Parameter Description Value Reference

�s = μ × N Average recruitment rate 4.7387 × 104 –

βs Transmission rate 1.6746 Estimated

δa Modification factor for asymptomatic 0.4499 Estimated

δh Modification factor for hospitalized 0.2918 Estimated

φs Rate of comorbidity development by susceptible 0.0000017 Estimated
1
μ

Average life expectancy at birth 70.4 years [50]

ρ Modification factor for comorbidity development 0.1433 Estimated
1
αe

COVID-19 incubation period 5.2 days [51]

ξ Fraction of exposed individuals to become infected 0.62 [52]

γa Recovery rate of asymptomatic individuals 0.73 [52]

γi Recovery rate of infected individuals 0.79 [52]

θ Average on hospitalized rate of infected individuals 0.1037 Estimated

γh Recovery rate of hospitalized individuals 0.8368 [53]

η Average case fatality rate 0.0156 [53]

dC
dt |C=0 = φs S ≥ 0, dE

dt |E=0 = βs
N (S+ρT )(I+δa A+

δh H) ≥ 0, d A
dt |A=0 = (1 − ξ)αeE ≥ 0, d I

dt |I=0 =
ξαeES ≥ 0, dH

dt |H=0 = θ I ≥ 0, dR
dt |R=0 = γa A +

γi I + γh H ≥ 0, Here, this assures the positivity of
solutions in the regionR7+.R7+ is established as positive
invariant set of SCEAIHR model. ��

Lemma 3.2 For initial values (2), the solutions of
SCEAIHR model (1) are uniformly bounded in the
region �.

Proof In order to prove boundedness, we sum up all
equations in the model (1), which provides N = S +
C + E + A + I + H + R. Differentiating both sides,
we get

dN

dt
= �s − μN ,

which implies lim
t→∞ sup N (t) ≤ �s

μ
. Without of loss

of generality, we can express all equations in model
(1) as lim

t→∞ i(t) ≤ �s
μ

; i = S,C, E, A, I, H, R. So, a

bounded set can be defined

� = {(S,C, E, A, I, H, R)

∈ R7+ : 0 ≤ S,C, E, A, I, H, R ≤ �s

μ
},

which is further a positive invariant set to the SCEAIHR
model (1). Therefore, all solution trajectories initiating
from interior of R7+ always remain within the domain
�. this assures that the growth of all individuals can’t
be unbounded or exponential for time time window. ��

3.1 Infection free equilibrium and basic reproduction
number

The basic reproduction number is a threshold value and
characterizes the infectious disease. This is denoted
by R0 and defined by the number of secondarily
infected individuals induced by single infected indi-
viduals as infectious during its incubation period
within susceptible individuals. R0 is a dimension-
less number and quantifies the expectation of decreas-
ing or increasing the disease outbreak. The sys-
tem (1) has infection free equilibrium ε0, given by
ε0(S0,C0, E0, A0, I 0, H0, R0) = ( �s

φs+μ
,

φs�s
μ(φs+μ)

,

0, 0, 0, 0, 0, 0). The compartment E, A, I, H in sys-
tem (1) are explicitly associated with disease outbreak.
Thus we get matrix F̃ , Ṽ for new infection and transi-
tion part respectively, given by

F̃ =

⎡
⎢⎢⎣

βs
N (S + ρC)(I + δa A + δh H)

0
0
0

⎤
⎥⎥⎦ ,

123



Dynamics of COVID-19 transmission with comorbidity 1201

Ṽ =

⎡
⎢⎢⎣

(αe + μ)E
−(1 − ξ)αeE + (γa + μ)A
−ξαeE + (γi + θ + μ)I
−θ I + (γa + η + μ)H

⎤
⎥⎥⎦ .

The variational matrix F = d F̃
dX and V = dṼ

dX , where

X = [E, A, I, H ]′
can be calculated at ε0(S0,C0, E0,

A0, I 0, H0, R0). The basic reproduction number is
dominant eigenvalue of matrix FV−1. So, we obtain

R0 = βsαe(ρφs + μ)

(φs + μ)(αe + μ)

[
δa(1 − ξ)

γa + μ
+ ξ

γi + θ + μ

+ θξδh

(γi + θ + μ)(γh + η + μ)

]
.

3.2 Stability of infection free equilibrium

Theorem 1 The infection-free equilibrium ε0 is locally
asymptotically stable if R0 < 1 and unstable R0 > 1.

Proof The variational matrix J of the system (1) is
given by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(ρφs + μ) 0 0 −μβsδa
φs+μ

− μβs
φs+μ

−μβsδh
φs+μ

0

φs −μ 0 −ρβsδaφs
φs+μ

−ρβsφs
φs+μ

−ρβsδhφs
φs+μ

0

0 0 −(αe + μ)
βsδa(μ+ρφs )

φs+μ
βs (μ+ρφs )

φs+μ
βsδh(μ+ρφs )

φs+μ
0

0 0 (1 − ξ)αa −(γa + μ) 0 0 0
0 0 ξαa 0 −(γi + θ + μ) 0 0
0 0 0 0 θ −(γh + η + μ) 0
0 0 0 γa γi γh −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

For our convenience, we consider

αe + μ = k1, γ2 + μ = k2,

γi + θ + μ = k3 and γh + η + μ = k4. (4)

The matrix Jε0 at ε
0 has unique and repeated eigen-

values as −(ρφs + μ) and −μ respectively. The rest
of eigenvalues are the roots of following equation as
follow:

βsαe(μ + ρφs)

φs + μ

[
δa(1 − ξ)(k3 + λ)(k4 + λ)

+ ξ(k2 + λ)(k4 + λ) + θξδh(k2 + λ)

]

− (k1 + λ)(k2 + λ)(k3 + λ)(k4 + λ) = 0.

which can be expressed as follow:

βsαe(μ + ρφs)

φs + μ

[
δa(1 − ξ)

(k1 + λ)(k2 + λ)

+ ξ

(k1 + λ)(k3 + λ)

+ θξδh

(k1 + λ)(k3 + λ)(k4 + λ)

]
= 1.

Denote

n1(λ) = δa(1 − ξ)

(k1 + λ)(k2 + λ)
+ ξ

(k1 + λ)(k3 + λ)

+ θξδh

(k1 + λ)(k3 + λ)(k4 + λ)

= n11(λ) + n12(λ) + n13(λ) (say).

Now substitute λ = x + iy, if 
(λ) ≥ 0, where, 
(λ)

represents real part of λ, then

|n11(λ)| ≤ δa(1 − ξ)

|(k1 + λ)‖(k2 + λ)| ≤ n11(x) ≤ n11(0)

|n12(λ)| ≤ ξ

|(k1 + λ)‖(k3 + λ)| ≤ n12(x) ≤ n12(0)

|n13(λ)| ≤ θξδh

|(k1 + λ)‖(k3 + λ)‖(k4 + λ)|
≤ n13(x) ≤ n13(0)

Consequently, n11(0) + n12(0) + n13(0) = n1(0) =
R0 < 1, which implies |n1(λ)| ≤ 1. So, eigenval-
ues corresponding characteristic equation n1(λ) = 1
have negative real parts for R0 < 1. Thus, for R0 <

1, all eigenvalues are negative. According to Routh–
Hurwitz stability criterion, infection free equilibrium
ε0 is locally asymptotically stable for R0 < 1. Again,
if we consider R0 > 1, i.e, n1(0) > 1, then

lim
λ→∞ n1(λ) = 0;
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then, there exits λ∗
1 > 0 so that n1(λ) = 1. This

means that there exits non-negative eigenvalue λ∗
1 > 0

in matrix Jε0 . Hence, infection free equilibrium ε0 is
unstable for R0 > 1. ��

3.3 Existence of endemic equilibrium

Here, we study the existence of endemic equilib-
rium. Let ε∗ = (S∗,C∗, E∗, A∗, I ∗, H∗, R∗) be any
endemic equilibrium of system (1). Moreover, The
force of infection is

ζ ∗ = βs(I ∗ + δa A∗ + δh H∗)
N∗ (5)

By solving the system (1) at equilibrium state, we
get S∗ = �s

ζ ∗+φs+μ
, C∗ = φs S∗

ρζ ∗+μ
, E∗ = ζ ∗k1(ζ ∗ +

ρφs
ρζ ∗+μ

)S∗, A∗ = αe(1−ξ)
k1k2

(ζ ∗ + ρφs
ρζ ∗+μ

)S∗, I ∗ =
αeξ
k1k3

(ζ ∗+ ρφs
ρζ ∗+μ

)S∗, H∗ = αeθξ
k1k3k4

(ζ ∗+ ρφs
ρζ ∗+μ

)S∗, and
R∗ = 1

μ
(
αe(1−ξ)γa

k1k2
)(ζ ∗+ ρφs

ρζ ∗+μ
+ αeξγi

k1k3
+ αeθξγh

k1k3k4
)(ζ ∗+

ρφs
ρζ ∗+μ

)S∗.
Substituting the all expressions into (5), we get the

non- zero equilibrium of (1) which satisfies quadratic
equation in ζ ∗ as follow:

P2ζ
∗2 + P1ζ

∗ + P0 = 0 (6)

where,

P2 = ρ[μk2k3k4 + k2k4ξαe(μ + γi )

+ k3k4αe(1 − ξ)(μ + γi ) + k2θξαe(μ + γh)]
P1 = [μ + k2k4αeξ{γi (μ + ρφs) − μβs}

+ k2θαeξ{γh(μ + ρβs) − μβsδh}
+ k3k4αe(1 − ξ){γa(μ + ρφs) − μβsγa}]

P0 = μk1k2k3k4(μ + φs)(1 − R0). (7)

From (6), we can obtain endemic equilibrium of (1).
Here, the coefficient A is always positive. The sign
of coefficient C depends on lesser or greater value of
R0 than unity. It can be noted that multiple endemic
equilibrium can be coexist for R0 < 1. Thus, we can
summarize as follows:

Theorem 2 The system (1) has

1. two endemic equilibrium if P0 > 0 and P1 < 0 and
P2
1 − 4P2P1 > 0.

2. at least one endemic equilibrium if P0 < 0 iff R0 >

1.
3. a unique endemic equilibrium if (P0 = 0 and P1 <

0) or P2
1 − 4P2P1 = 0.

4. no endemic equilibrium if P0 > 0 iff R0 < 1 and
P1 > 0.

From the above theorem, it can be noted that backward
bifurcation is possible due to the coexistence of stable
infection-free and endemic equilibrium for R0 < 1.
For this purpose, we find a critical value R∗

0 of R0 for
unique endemic equilibrium as follow:

R∗
0 = 1 − P2

1

4μk1k2k3k4(μ + φs)P2
.

Hence, backward bifurcation can occur with specific
restriction R∗

0 < R0 < 1. Now, we turn on the analysis
for backward bifurcation.

3.4 Backward bifurcation

In order to investigate backward bifurcation at endemic
equilibrium ε∗(S∗,C∗, E∗, A∗, I ∗, H∗, R∗), we apply
centre manifold theorem by considering bifurcation
parameter βs = β∗

s , corresponded to R0 = 1.
From variational matrix J in (3), we again consider

few entries as follows:

a14 = − μβsδa

φs + μ
, a15 = − μβs

φs + μ
,

a16 = − μβsδh

φs + μ
, a24 = −ρβsδaφs

φs + μ
,

a25 = − ρβsφs

φs + μ
, a26 − ρβsδhφs

φs + μ
,

a34 = βsδa(μ + ρφs)

φs + μ
, a35 = βs(μ + ρφs)

φs + μ
,

a36 = βsδh(μ + ρφs)

φs + μ
(8)

Now, the variational matrix of system (1) at βs = β∗
s

has right eigenvector corresponding to zero eigenvalue,
given by v = [v1, v2, v3, v4, v5, v6, v7]′

, where

v1 = − v3

a11

[
a14αe(1 − ξ)

k2
+ a15αeξ

k3
+ a16αeθξ

k3k4

]
,

v2 = v3

μ

[
− φs

a11

{
a16αe(1 − ξ)

k2
+ a15αeξ

k3
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+ a14αeθξ

k3k4

}
+ a24αe(1 − ξ)

k2
+ a25αeξ

k3

+ a26αeθξ

k3k4

]

v3 > 0, v4 = v3(1 − ξ)αe

k2
, v5 = v3ξαe

k3
,

v6 = v3θξαe

k3k4
,

v7 = v3

μ

[
γaαe(1 − ξ)

k2
+ γiαeξ

k3
+ γhαeθξ)

k3k4

]

Similarly, at at βs = β∗
s , the variational matrix of

system (1) has left eigenvector corresponding to zero
eigenvalue, givenbyw = [w1, w2, w3, w4, w5, w6, w7],
where

w1 = 0, w2 = 0, w3 > 0, w4 = w3a34
k2

,

w5 = w3

k3

(
a35 + θa36

k4

)
,

w6 = w3a36
k4

, w7 = 0.

We introduce a few notations for SCEAIHR model
system as follows: S = x1;C = x2; E = x3; A =
x4; I = x5; H = x6; R = x7; and dxi

dt = fi , where
i = 1, 2, . . . , 7.Now, we compute second order partial
of fi at infection-free equilibrium ε0 and obtain

∂2 f3
∂x1∂x4

= μβsδa(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x1∂x5

= μβs(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x1∂x6

= μβsδa(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x2∂x5

= −μ2βs(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x2∂x6

= −μ2βs(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x4∂x5

= −μβs(1 + δa)(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x4∂x6

= −μβs(δa + δh)(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x4∂x7

= −μβsδa(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x5∂x1

= μβsφs(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x5∂x2

= −μ2βs(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x5∂x6

= −μβs(1 + δh)(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x5∂x7

= −μβs(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x6∂x1

= μβsφsδh(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x6∂x2

= μ2βsδh(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x6∂x4

= −μβs(μ + ρφs)(δa + δh)

πs(φs + μ)
,

∂2 f3
∂x6∂x5

= −μβs(μ + ρφs)(1 + δh)

πs(φs + μ)
,
∂2 f3
∂x26

= −2
μβs(μ + ρφs)δh

πs(φs + μ)
,

∂2 f3
∂x6∂x7

= −μβsδh(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x6∂x3

= − μβsδh

πs(φs + μ)
,

∂2 f3
∂x4∂x1

= −μβsρφsδa(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x4∂x2

= μβsδa(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x4∂x3

= −μβsδa(μ + ρφs)

πs(φs + μ)
,
∂2 f3
∂x24

= 2
μβsδa(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x5∂x3

= −μβs(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x25

= −2
μβs(μ + ρφs)

πs(φs + μ)
,

∂2 f3
∂x2∂x4

= μβsδa(1 − ρ)

πs(φs + μ)
,

∂2 f3
∂x5∂x4

= −μβs(μ + ρφs)

πs(φs + μ)
.

The remaining partial derivatives at ε0 are zero. Now
we evaluate the coefficient a and b of well-established
Theorem 4.1 in Castillo-Chavez et al. [49] as follows:

a =
7∑

i, j,k=1

wkviv j
∂2 fk(0, β∗)

∂xi∂x j
, and

b =
7∑

i,k=1

wkvi
∂2 fk(0, 0)

∂xiβs
.

Now, we substitute all above values to find the coeffi-
cient a and b at threshold β∗ = β∗

s , we get

a = μβ∗

πs(φs + μ)
[(ρ − 1){v1v5(1 − φs)

+ v1v6(δa + φsδh) + v1v4δa(1 − φs)

+ 2μv2v5
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+ μv2v6(1 + δh) + 2v4v2δa}
− (μ + ρφs){v4v5(2 + δa)

+ 2v4v6(δa + δh) + 2v5v6

+ v7(v4δa + v5 + v6δh) + 2(v25 + v26 − v24)

+ v3(v4δa + v5)}]

and

b = w3(μ + ρφs)

φs + μ
(v4δa + v5 + v6δh) > 0.

Here, the value of b is always positive, the system (1)
undergoes backward bifurcation at R0 = 1 if a > 0,
i.e

ρ >
A + μB

A − φs B
, provided A − φs B > 0,

i.e, φs > A/B (9)

where,

A = v1v5(1 − φs) + v1v6(δa + φsδh)

+ v1v4δa(1 − φs) + 2μv2v5 + μv2v6(1 + δh)

+ 2v4v2δa

B = v4v5(2 + δa) + 2v4v6(δa + δh) + 2v5v6

+ v7(v4δa + v5 + v6δh) + 2(v25 + v26 − v24)

+ v3(v4δa + v5)

Theorem 3 The SCEAIHR model system (1) exhibits
a backward bifurcation at R0 = 1, if the parametric
restriction in (9) holds.

Moreover, as comorbidity individual becomes always
infected, backward bifurcation occurs in SCEAIHR
model. Now for a case, it can be noted that comorbid-
ity individuals do not get infection due to maintaining
social distancing, wearing mask and proper sanitation,
i.e, ρ = 0. The bifurcation coefficient a is as follow :

a = −(A + μB) < 0.

As, a < 0, b > 0, by Theorem 4.1 in Castillo-Chavez
et al., a transcritical bifurcation occurs at R0 = 1 for
ρ = 0 and endemic equilibrium and the endemic equi-
librium ε∗ is locally asymptotically stable for R0 > 1.
Here, a backward bifurcation do not exist for ρ = 0.

Theorem 4 The SCEAIHR model system (1) experi-
ences a transcritical bifurcation at R0 = 1 with para-
metric restriction in (9) holds, i.e, ρ = 0.

4 Computer simulation and results

In this section, we perform numerical simulation and
its biological interpretation to complement the analyt-
ical findings. In the previous section, local stability for
infection-free equilibriumand the existence of endemic
equilibrium are studied. Moreover, backward bifurca-
tion and transcritical bifurcation are observed. In order
to validate the analytical findings, we estimate param-
eter values of the SCEAIHR model (1).

4.1 Model calibration

For the duration from March, 25th 2020 to October,
31st 2020 is considered for model calibration. For this
analysis, we have taken daily COVID-19 cases in India.
Daily cases notified by COVID-19 were obtained for
India from [53]. Themodel (1) is fitted for newhospital-
izedCOVIDcases in India on a regular basis. Due to the
high infectivity, the notified patients become hospital-
ized quickly and it is also easy to confirm the hospital-
ized cases from the recorded results. We have enlisted
the main model parameters, which are estimated from
the data in Table 1. By adopting the model to the new
regular cases reported, six parameters of themodel have
been estimated, such as (a) transmission rate (βs), (b)
modification factor for asymptomatic (δa) and symp-
tomatic (δh), (c) rate of co-morbidity development by
susceptible individuals (φs), (d) modification factor for
comorbidity development (ρ) and (e) average hospital-
ized rate of infected individuals (θ ). The data will also
estimate some of the initial conditions of the model (1).
InMATLAB, the nonlinear least-square solver fmincon
has been used during the defined time span to fit the
simulated new daily data of COVID-19 recorded by
India. The 95% confidence area is generated by using
the Delayed Rejection Adaptive Metropolis (DRAM)
algorithm. A description of this model fitting technique
is given in [54]. Tables 1 and 2 provide the parameters
and initial conditions respectively, which are estimated
by the above technique. The fitting of India’s daily new
hospitalized COVID-19 cases is seen in Fig. 2. The
basic reproduction number is estimated at R0 = 1.3607
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Table 2 Estimated initial population sizes for India

Initial values Value Source

S(0) 1,037,297,349 Estimated

C(0) 1,803,340,169 Estimated

E(0) 3151 Estimated

A(0) 9995 [52]

I (0) 9997 [52]

J (0) 86 [53]

R(0) 1 [53]
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Fig. 2 The SCEAIHR model fitted to daily new confirmed
COVID-19 cases in India. Observed data points are shown in
black dots and the solid red line depicts the model simulated
curve

by using the fixed parameters from Table 1 and param-
eters that are estimated from the model.
In order to recognize the most significant parameters to
infected individual, we next perform sensitivity analy-
sis followed by uncertainty analysis.

4.2 Sensitivity analysis

We apply PRCC(Partial rank correlation coefficient)
method for sensitivity analysis and LHS (Latin hyper-
cube sampling) method for uncertainty analysis. A
detailed technique can obtained in Marino et. al, [55].
We assign uniform distribution the parameters namely,
βs , δa , δh ,ρ, θ ,φs η and ξ with 95%confidence domain.
We consider baseline values as parameter values. The
outputs are given in Table 3with bar diagram in Fig. 3a.
From Fig. 3a, it can be seen that βs , ρ and ξ are influ-
ential parameter to infected individual. Moreover, we
study the sensitivity indices of basic reproduction num-
ber R0. Here, only φs is negatively correlated, and βs ,

δa , ρ, and ξ are positively correlated to R0, given in
Fig. 3b.
As basic reproduction number (R0) quantifies the
expectation of decreasing or increasing the epidemic
evolution, we next study the effects of parameter vari-
ation on R0.

4.3 Effects of parametric variation on basic
reproduction number

We further study the effects of parameter variations
on basic reproduction number R0 under ρ × φs ∈
(0, 1] × (0, 0.1], ρ × βs ∈ (0, 1] × (0, 2], φs × βs ∈
(0, 0.1] × (0, 2] in Fig. 4. We observe that only the
increasing value of ρ can change R0 < 1 to R0 > 1
in Fig. 4a. From Fig. 4b, the increasing value simul-
taneously changes the value of R0. Further, it can be
also seen that the value of R0 always remains less
than one within the parametric plane of (φs, βs) ∈
(0, 0.1] × (0, 2].

4.4 Bifurcation diagram

On investigation of the existence of endemic equilib-
rium, we derive the sub-threshold range of bistable
equilibrium in the SCEAIHR model (1). Thus back-
ward bifurcation can be seen within the domain R∗

0 <

R0 < 1 (R∗
0 = 0.4617)with ρ ∈ [0.01, 0.8], given in

Fig. 5a, where two positive endemic equilibrium coex-
ist, i.e, asymptotically stable equilibrium (blue line) and
unstable equilibrium (red line). From an epidemiolog-
ical viewpoint, the scenario of backward bifurcation
indicates that the model possesses two endemic equi-
librium. However, infection-free equilibrium can exist
only for R0 < R∗

0 . Indeed, this restriction is sufficient
for the eradication of infection from the system. More-
over, it sometimes depends on the initial size of the
sub-population of model.

On the other hand, if comorbidity individuals do not
acquire infection, i.e, ρ = 0, the model (1) experiences
transcritical with φs ∈ [10 × 10−6, 2.7 × 10−5] given
in Fig. 5b. Here, only one endemic equilibrium (blue
line) and infection-free equilibrium (red line) exist for
R0 > 1. It indicates that force of infection is not strong
enough to spread out as all susceptible individuals take
the precaution of disease spreading, like, wearing a
mask, social distancing, maintaining sanitation.
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Table 3 Sensitivity indices
of the parameters of
SCEAIHR model (1) to I
and R0. Ii ; i= 100, 150, 200
th day

Description βs δa δh ρ θ φs η ξ

I100 0.3221 0.0622 0.0441 0.1918 −0.0418 −0.0235 −0.0321 −0.0914

I150 0.2214 0.0415 0.0350 0.1261 −0.0358 0.0113 −0.0372 −0.0811

I200 0.1786 0.0321 0.0271 0.0938 −0.0204 0.0225 −0.0407 −0.0830

R0 0.8400 0.4962 −0.0035 0.7630 −0.1093 −0.5842 −0.0636 0.3401

s a h s

-0.1

0

0.1

0.2

0.3

0.4

I

100th day
150th day
200th day

s a h s

-1

-0.5

0

0.5

1

R
0

(a) (b)

Fig. 3 a and b PRCC indicating sensitivity indices to infected
individual (I ) and basic reproduction number (R0). PRCCvalues
of various parameters with the level of significance 0.05. Sample

size = 500 for each parameters is taken based on LHS approach
with uniform probability distribution

Fig. 4 Contour plots indicating the nature of change in basic reproduction number(R0) of SCEAIHR model under parametric planes.
a R0 versus (ρ, φs) ∈ (0, 1] × (0, 0.1]. b R0 versus (ρ, βs) ∈ (0, 1] × (0, 2]. (c) R0 versus (φs , βs) ∈ (0, 0.1] × (0, 2]

Moreover, it can be also noted that increasing the
value of φs becomes a challenging task for the eradi-
cation of infection. Numerically, it can be seen that a
backward bifurcation regime increases gradually with
increases of φs with ρ ∈ [0.01, 0.8], given in Fig. 6.
Consequently, the value of R0 is essential to be reduced

to ensure the eradication of infection in such a way that
R∗
0 and R0 is close to one.

Now we study the variation of infection intensity. For
this purpose, we consider average of force of infection
for daily basis cases.
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Fig. 5 a R0 versus ζ ∗ plot indicating backward bifurcation
of SCEAIHR model in ρ ∈ [0.01, 0.8]. b R0 versus ζ ∗ plot
illustrating transcritical bifurcation of SCEAIHR model in φs ∈

[10 × 10−6, 2.7 × 10−5] with ρ = 0. All the remaining param-
eters values are reported in Table 1
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Fig. 6 Impacts of variation in φs , on backward bifurcation with
ρ ∈ [0.01, 0.8], keeping all parameters value remained same
as in Table 1. The diagram exhibits that the extent of backward
bifurcation regime increases gradually with the increasing of φs

4.5 Effects of parametric variation on force of
infection

Now we investigate the fluctuation of force of infec-
tion ζ ∗ by considering< ζ ∗ >= 1

N

∑N
i=1 ζ ∗(i), where

N being length of series {ζ ∗(i)}. Figure 7a, b exhibit
the fluctuations of average force of infection < ζ ∗ >

under φs ∈ (0, 0.1] and βs ∈ (0, 2] respectively.
From Fig. 7a, b, increasing and decreasing trend can
be observed in < ζ ∗ > respectively. It indicates that
average force of infection decreases with the increase
ofφs ∈ (0, 0.1] and average force of infection increases

with the increase of βs ∈ (0, 2] in the model (1). More-
over, in order to understand the combined effect under
(φs, βs) ∈ (0, 0.1]× (0, 2] on < ζ ∗ >, a matrix plot is
given in Fig. 7c. In Fig. 7c, it can be mentioned that the
average force of infection is dependent on value of φs

for any value of βs , defined in efferent color region of
increased value ofφs ∈ (0, 0.1]. In order to quantitative
measure the degree of disorder in force of infection.
Shannon entropy [32] is employed for this purpose.
Here, disorder means the non-uniform distribution of
infection under distribution of susceptible.

4.6 Entropy in force of infection

Shannon entropy is generally defined as

H = −
N∑
i=1

p(ζ ∗
i ) log(p(ζ ∗

i )

N being length of event ζ ∗
i and p(ζ ∗

i ) is probabil-
ity of event ζ ∗

i , i.e, relative frequency of occurrence
of non-recurrent event ζ ∗

i . The trend of En(ζ ∗
i ) on

φs ∈ (0, 0.1] and βs ∈ (0, 2] are shown in Fig. 8a, b.
Figure 8a shows that deceasing trend of En(ζ ∗

i ) with
increase of φs . On the contrary, En(ζ ∗

i ) increases with
βs in Fig. 8b. From Figs.7a, b and 8a, b, it can be noted
that the trend of En(ζ ∗

i ) is highly correlated with the
fluctuation in force of infection ζ ∗. Moreover, we also
plot in Fig. 8c to study the dependence of En(ζ ∗

i ) on
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Fig. 7 a, b represent φs versus ζ ∗ plot (with ρ ∈ (0, 0.1]) and
βs versus ζ ∗ plot (with βs ∈ (0, 2]). c represent ζ ∗ over (φs , βs)

matrix plot, where (φs , βs) ∈ (0.1] × (0, 2]. The corresponding

color bar indicates values of ζ ∗. The values of the other param-
eters are taken as same, shown in Table 1
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Fig. 8 a, b represent φs versus En(ζ ∗) plot (with φs ∈ (0, 0.1])
and βs versus En(ζ ∗) plot (with βs ∈ (0, 2]). (c) represent
En(ζ ∗) over (φs , βs) matrix plot, where (φs , βs) ∈ (0, 0.1] ×

(0, 2]. The corresponding color bar indicates values of En(ζ ∗).
The values of the other parameters are taken as same, shown in
Table 1

(φs, βs) ∈ (0, 0.1]×(0, 2]. Further comparing Figs. 7c
and 8, we observe similar pattern of increasing entropy
between ζ ∗ and En(ζ ∗). This result reveals the addi-
tional evidence about the measure of dynamical disor-
der in force of infection in the model (1) for parameter
regimes.

5 Discussion and conclusion

In this paper, we have proposed and studied a math-
ematical model for disease dynamics of COVID-19
accounting of impacts of comorbidities on the com-
plication of COVID-19. The proposed model has been
calibrated by using new daily cases of India. The qual-

itative properties of the model have been studied and
the basic reproduction number has been calculated by
the method of the next-generation matrix. The model
has asymptotically stable infection-free equilibrium for
less than a unity of basic reproduction number. Using
the center manifold theorem, the phenomena of back-
ward bifurcation have been observed for increasing
the modification factor of comorbidity development.
This indicates that infection persists for less than a
unity of basic reproduction number. The occurrence of
backward bifurcation assures the rich dynamics of the
model. From an epidemiological viewpoint, comorbid-
ity individuals acquire more re-infection due to lack of
surveillance and precautions likewearingmasks, social
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distancing, proper sanitation, etc. Further, endemic
equilibrium has become asymptotically stable if the
modification factor for comorbidity is zero (ρ = 0),
i,e. none of the comorbidity individual gets an infection
and keeps maintained themselves with high surveil-
lance. In these circumstances, more susceptible indi-
viduals have acquired infection and become exposed
individuals as basic reproduction is more than unity,
indeed, exposed individuals have a strong immunity to
prevent COVID-19 infection in this context. Moreover,
the increase of comorbidity development andmodifica-
tion factor simultaneously has increased the backward
bifurcation regimes. Consequently, this can lead to a
disaster situation.

Sensitivity analysis of the model reveals that trans-
mission rate (βs), modification factor of comorbidity
development (ρ), comorbidity development (φs) have
a significant influence on infected individuals and basic
reproduction number (R0). In order to control dis-
ease transmission, a policy might be implemented by
enhancing surveillance with proper maintaining sani-
tation and keep safe from infected individuals.

On investigation of the pattern of transmission
dynamics, the mean fluctuations of the force of infec-
tion have shown decreasing as well as increasing trend
with comorbidity development (φs) and transmission
rate (βs). Consequently, the combined effect has shown
an increasing trend to the average force of infection.
From the dynamical viewpoint, themeasure of disorder
in force of infection, i.e, the Shannon entropy has pro-
vided evidence towards the higher entropy production
indicating the more powerful force of infection, i.e, the
infection reaches a significant proportion in susceptible
individuals. This might lead to a devastating situation
in society regarding disease transmission.

Finally, our study assures that the increase of force
of infection builds up with the enhanced entropy pro-
duction attributed to highly disorder in epidemic evolu-
tion. The production of entropy are concepts that can be
helpful to guide computational biologists to elucidate
the associations between mean fluctuation and changes
in parameters to develop policy in disease control and
novel vaccination strategies. Thus, it would be useful to
include in future publications how vaccination policy
can be fruitful.
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