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Abstract: This paper presents a novel approach to designing beam codebooks for downlink multiuser
hybrid multiple-input–multiple-output (MIMO) wireless communication systems, leveraging multi-
agent reinforcement learning (MARL). The primary objective is to develop an environment-specific
beam codebook composed of non-interfering beams, learned by cooperative agents within the MARL
framework. Machine learning (ML)-based beam codebook design for downlink communications
have been based on channel state information (CSI) feedback or only reference signal received power
(RSRP), consisting of an offline training and user clustering phase. In massive MIMO, the full CSI
feedback data is of large size and is resource-intensive to process, making it challenging to implement
efficiently. RSRP alone for a stand-alone base station is not a good marker of the position of a receiver.
Hence, in this work, uplink CSI estimated at the base station along with feedback of RSRP and binary
acknowledgment of the accuracy of received data is utilized to design the beamforming codebook
at the base station. Simulations using sub-array antenna and ray-tracing channel demonstrate the
proposed system’s ability to learn topography-aware beam codebook for arbitrary beams serving
multiple user groups simultaneously. The proposed method extends beyond mono-lobe and fixed
beam architectures by dynamically adapting arbitrary shaped beams to avoid inter-beam interference,
enhancing the overall system performance. This work leverages MARL’s potential in creating efficient
beam codebooks for hybrid MIMO systems, paving the way for enhanced multiuser communication
in future wireless networks.

Keywords: multi-agent reinforcement learning; massive MIMO; millimeter wave; hybrid beamforming

1. Introduction

MIMO systems employ multiple antennas at both the transmitter and receiver ends to
enhance communication performance. MIMO technology leverages spatial diversity and
multiplexing to increase data throughput and link reliability without requiring additional
bandwidth or transmit power, making it fundamental in modern wireless communication
systems, including 4G and 5G networks.

A key component of MIMO systems is beamforming, a signal processing technique
used in antenna arrays for directional signal transmission or reception. By combining
elements in an antenna array so that signals at particular angles experience constructive
interference, beamforming improves signal quality and reduces interference. This spatial
filtering capability enhances the communication range and capacity.
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Building on the MIMO concept, massive MIMO employs hundreds or even thousands
of antennas at the base station. This large-scale antenna system significantly boosts spectral
and energy efficiency by spatially multiplexing a large number of users. Massive MIMO is
crucial for 5G and future networks, enabling high data rates and improved reliability.

Massive MIMO and hybrid beamforming are interdependent in modern wireless
communication systems, especially at millimeter-wave (mmWave) frequencies. While
massive MIMO boosts data rates and spectral efficiency, its practical implementation faces
challenges such as high hardware complexity and power consumption due to the need for
dedicated radio frequency (RF) chains for each antenna. Hybrid beamforming addresses
these challenges by combining analog and digital beamforming techniques, reducing the
number of RF chains needed while still achieving high array gains and spatial multiplexing
benefits. This makes massive MIMO systems more cost-effective and energy-efficient,
facilitating widespread deployment in 5G and beyond.

Moreover, hybrid beamforming in mmWave massive MIMO systems effectively ad-
dresses practical issues like severe path loss and high power consumption. Recent studies
show that hybrid beamforming can achieve a performance close to that of full digital beam-
forming with significantly lower complexity, enhancing the feasibility of implementing
massive MIMO in real-world scenarios [1].

Hybrid beamforming merges analog and digital techniques for efficient signal trans-
mission using compact, cost-effective quantized phase shifters. These phase shifters adjust
the signal phase at the antenna level, improving signal quality. Analog weights form beams
toward user groups, and digital weights handle MIMO tasks like interference cancellation
within the groups. Hybrid setups with fully connected subarray antennas can produce
multiple simultaneous beams, with phase-shifting states controlled by digital circuits for
real-time adaptation. This integration offers practical, near-optimal performance in modern
wireless systems. Advanced MIMO antenna designs integrating phase shifters highlight the
potential for enhanced beamforming performance in complex wireless environments [2].

Efficient performance in multi-user mmWave systems involves serving multiple pieces
of user equipment (UE) from each base station (BS) simultaneously. Precoding multi-
plexes different data streams to different users. However, fully digital baseband beam-
forming is impractical for multi-stream mmWave systems due to high costs and power
consumption [3].

In mmWave systems, the large number of antennas and very low signal-to-noise
ratio (SNR) before beamforming make it impractical to obtain full CSI for conventional
closed-loop precoding matrix calculations [4]. Therefore, alternative beamforming and
precoding techniques are necessary to achieve efficient performance while managing cost,
power, and CSI availability. This requirement drives research interest in the field of hybrid
beamforming in massive MIMO.

Hybrid precoding enables multiplexing multiple data streams by dividing processing
between analog and digital domains [5,6]. For example, low-complexity hybrid precoding
algorithms exploit the sparse nature of mmWave channels using basis pursuit algorithmic
concepts, assuming channel knowledge [5]. Similarly, low-complexity hybrid beamform-
ing algorithms for single-user single-stream MIMO-OFDM systems aim to maximize the
received signal strength or sum-rate over different sub-carriers [7]. However, these algo-
rithms were designed for single-user channels, limiting supported streams. In multi-user
systems, digital precoding in hybrid setups can design precoders that reduce interference
between users, making the development of near-optimal, low-complexity hybrid precoding
algorithms for multi-user mmWave systems particularly important.

Large antenna arrays with quantized phase shifters have challenges. These phase
shifters, with constant modulus, control only the phase, limiting applications to equal gain
transmission schemes to maximize SNR or diversity gain [8].

Both artificial intelligence (AI) and non-AI methods have been explored in the literature
to find optimal beamforming codebooks. A benchmark work [9] used deep learning (DL)
to find optimal codebooks for transmit beamforming and combining at user terminals,
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though it required channel matrix information at both the training and prediction phases.
Reinforcement learning (RL) offers a promising solution by eliminating the need for the
offline training phases of static deep networks and facilitating adaptive, situation-aware
systems capable of learning from the environment. Significant works, such as [10], have
implemented RL-based systems with Wolpertinger-variant architectures for beam codebook
design, preceded by beam-clustering to reduce the codebook size. Beam clustering in this
implementation is actuated through sensing beams. The author in [11] combined the
radar-aided direction of arrival (DoA) and direction of departure (DoD) estimation and
CS-based position estimation with hybrid beamforming for vehicular communication
systems, emphasizing accurate direction estimation to improve the beamforming efficiency.
In this work, author has eliminated CSI estimation feedback completely by using the
radar-based subsystem. Hybrid beamforming solutions for multi-user millimeter-wave
heterogeneous networks is developed in [12] where orthogonal matching pursuit-based
analog beamforming and minimum mean square error (MMSE)-based digital beamforming
is used.

To support multiple simultaneous users, the proposed work extends [10] by introduc-
ing MARL. MARL is an AI research area involving the development of intelligent agents
that cooperate or compete to achieve common or individual goals. In a fully cooperative
stochastic game, all agents share the same goal and work together to achieve it. Stochastic
games involve uncertain action outcomes, with outcome probabilities depending on the
current game state. In fully cooperative settings, centralized MARL is generally preferred
for effective action coordination among agents. In this work, agent coordination translates
to reducing interference between beams, serving different user groups simultaneously.
Interference between users within a group served by a single beam is minimized through
baseband precoding.

The authors in [10] utilized receiver signal strength (beamforming gain) for user clus-
tering and codebook learning. Although this metric simplifies the design, it underperforms
in nLOS environments and with user mobility. The analysis of average spatial autocorrela-
tion functions for individual multipath components in the 28 GHz mmWave band shows
that signals lose correlation after about two wavelengths in LOS environments and after
about five wavelengths in nLOS environments [13]. This unreliability of signal strength
alone challenges the learning agent’s ability to gather useful environmental information.

The agent architecture in [10] is adopted for each RL agent in the proposed design.
The Wolpertinger-variant structure adapts the continuous action space of deep deterministic
policy gradient (DDPG) to work with large discrete action spaces [14]. Multi-agent deep
deterministic policy gradient (MADDPG) is used to train the agents. MADDPG is designed
for multi-agent systems, maintaining local actor and critic networks for decision making
and action evaluation. During training, agents share experience replay buffers and learn
from collective experiences to enhance their policies. This combination of centralized
training and decentralized execution enables agents to learn effective strategies in complex
multi-agent environments.

1.1. Motivation

Quantized phase shifter with fixed numbers of bits makes the search space for beams
very large. For example, there will be 864 beams for a 64-element antenna array with
3 quantization bits. In a multiuser case with four RF chains, this number will equate
to 4 × 864. Finding optimal beams in such a finite but huge space is impractical with
exhaustive search or any other traditional technique. Hence, it is a convention to use a
beam codebook with large numbers of beams pointing in different directions in an effort
to maximize the gain to the users in that direction. This approach is not optimal as this
single-lobe beam, which matches filters to the array responses in a particular angle, is not
guaranteed to offer maximum possible gain for occluded, non-line of sight (nLOS) users.
Also, the large number of beams required in such a codebook renders the beam training
inefficient and time consuming, and hence, is inapplicable to mobile users. Additionally,
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an accurate array response is required to form such a beamsteering codebook which may
not be available for cost-effective systems as calibrating antenna arrays is a sophisticated
and costly process.

Motivated by the fact that the environment changes infrequently, the computation
power and time are traded for accuracy by utilizing uplink CSI estimated at the base
station, with re-clustering required only when the environment changes. CSI provides
good autocorrelation properties and is relatively immune to hardware imperfections in the
RF stage, making it suitable for beam learning applications. Perfect CSI is not assumed,
as the channel is seen through the RF lens in hybrid beamforming. However, it is shown, in
this work, that beam learning can be efficiently achieved even with uplink CSI estimates at
the BS, by using uplink channel envelope estimates at the BS as fingerprints of specific user
locations within the MARL framework.

It is important to note that a learned multibeam codebook differs from simply par-
allelizing multiple single beams. Unlike fixed codebook beams, learned beams are not
matched filters to the antenna array response and can adopt any arbitrary shape suitable
for the scattering environment of deployment. Consequently, this may result in beam
overlap, leading to inter-user interference, if cooperation between the beams for multiple
simultaneous users is not established. The proposed MARL-based approach addresses this
issue by cooperatively learning the beamforming vector for each beam per user group.

In summary, RL is employed for beam learning due to its online learning capability,
eliminating the need for an offline data collection phase. The Wolpertinger architecture is
utilized for its efficiency in exploring vast search spaces for beam configurations. MARL
is proposed to facilitate the selection of multiple parallel and diverse beams. Through
centralized training, MARL can identify environment-specific, arbitrarily shaped beams
that do not interfere with each other. Most existing approaches use RSRP only, which
simplifies the design but RSRP does not provide good auto-correlation and is not a reliable
indicator of a UE’s position. In this work, uplink CSI is utilized, which, although it may
not always replace downlink CSI for channel estimation in non-reciprocal systems with
hardware imperfections, it offers a better representation of the implicit location of the UE.

1.2. Contribution

An RF codebook design approach for hybrid precoding algorithms in downlink multi-
user mmWave systems is presented, demonstrating efficiency and effectiveness in mobile
user environments. The proposed method does not require CSI feedback but learns the
downlink beam codebook from RSRP feedback and CSI estimates for uplink sounding
reference signals (SRSs). By using uplink CSI from SRSs as fingerprints for specific user
locations, only sub-band sounding is needed. This increases the SNR at the base station,
facilitating cell edge UE recovery. The proposed system replaces traditional fixed codebook
beams with learned beams that adapt to the environment in an online process. The goal
of this proposed work is to create a robust beamforming codebook for the base station
in downlink communication, accommodating uncertain user locations even in mobile
scenarios. The contributions from the proposed work are summarized as follows:

1. A multiuser hybrid mmWave MIMO system model designed as a fully cooperative
stochastic game under the constraint of the quantized RF phase shifters is proposed.
A novel algorithm is developed to realize this model. By employing MADDPG to train
DDPG (Wolpertinger variant), this approach effectively minimizes interference among
simultaneous users, preventing overlapping beams. Unlike previous methods such
as [10], this work uniquely addresses and mitigates potential interference between
nearby beams with arbitrary shapes, ensuring the unparalleled performance and
reliability in beamforming for multiuser communication systems.

2. A reward function for the RL agent is proposed, considering the comprehensive
performance of the end-to-end communication system. The reward for each agent
is based on RSRP and binary ARQ status, indicating whether a particular sub-frame
scheduled for a specific user is successfully received (ACK) or not (NACK). This



Appl. Sci. 2024, 14, 7109 5 of 21

method allows the RL agent to maximize successful transmission rates by improving
the beamforming gain and reducing the interference among simultaneous user groups.
The cumulative reward function is optimized by MADDPG, enhancing the overall
system efficiency and reliability.

3. The proposed system is rigorously evaluated through simulations using a realistic ray
tracing channel model. This comprehensive testing spans various SNR and different
codebook sizes. The results demonstrate the system’s robustness and efficiency,
highlighting its adaptability and performance across diverse conditions.

Simulation results demonstrate that the proposed method can create optimized beam
patterns without needing feedback from downlink CSI, relying instead on RSRP, binary
ARQ status, and periodic channel estimates from a small sub-band within SRS sub-frames.
This deep reinforcement learning-based method efficiently selects beams for the downlink
RF codebook, requiring occasional updates, typically when there is a significant change in
the operating environment or the base station’s position. The following sections delve into
detailed discussions of the proposed systems, methods, algorithms, and results.

2. Multiuser Hybrid Beamforming System Model

The proposed multiuser system model is depicted in Figure 1, wherein a mmWave
MIMO base station, equipped with NBS antennas and NRF RF chain, is in communication
with M simultaneous users each having NM antennas and one RF chain through Nt streams.
Since each UE is assumed to be served by only one downlink stream and contains only
one RF chain, analog combining is applied at the UE. This configuration is similar to
works in [4]. The base station utilizes hybrid beamforming, employing a network of r-bit
quantized phase shifters.

Figure 1. Transceiver architecture for multiuser hybrid beamforming.

The decision to employ a single RF chain per UE is motivated by practical considera-
tions, aiming for lower complexity, cost, and power consumption. Conversely, the BS is
equipped with advanced digital signal processing (DSP) capabilities designed to effectively
handle multiple data streams.

BS attaches with each UE via one stream. This leads to a total of Nt = M streams,
where M represents the maximum number of simultaneous users the BS can serve at once.
This aligns with the count of RF chains at the BS (M ≤ NRF), possible through hybrid
schemes enabling spatial multiplexing and multi-user MIMO. This grants the BS the ability
to communicate concurrently with multiple UEs using several beams. Design of the end-to-
end communication system is shown in Figure 2. Parameter for each processing block in
Figure 2 is shown in Table 1.
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Figure 2. System model for data transmission and reception.

Table 1. Transceiver parameter table.

No. of users 4

Data streams per user 1

No. and type of base station antenna 32, ULA, isotropic, back-baffled

No. and type of receive antenna per user 4, ULA, non-back-baffled

Modulation type 16QAM

Frequency of operation 28 GHz

OFDM FFT length, CP length 256, 64

Encoder type, code rate (fixed) Convolutional, 1
3

In consideration of operational efficiency and hardware constraints, beamforming
codebooks are commonly resorted to in mmWave and massive MIMO systems to effectively
accommodate users. The sum rate achievable across all UEs is optimized using MADDPG
in the proposed approach. Through MADDPG, the RF codebook at the base station is
estimated. Represented by W, the beam codebook chosen by the base station consists
of N beamforming and combining vectors, each crafted in accordance with the structure
outlined in Equation (1).

w =
1√
NBS

[
ejθ1 , ejθ2 , ..., ejθNBS

]T
(1)

In this context, each phase shift θm is chosen from a finite set S containing 2r discrete
values, uniformly selected from the range of (−π, π). Here, the parameter r represents the
number of quantization bit used in phase shifters.

The BS employs baseband precoding denoted by FBB = [ fBB1 , fBB2 , ..., fBBM ] ∈ CNRF×M

to process the transmit signal s = [s1, s2, ..., sM]T ∈ CM in compliance with E
{

ssH}
= P

M IM,
assuming uniform power distribution among users. Notably, P signifies the average power.
RF precoders FRF ∈ CNBS×NRF , constructed using phase shifters are utilized to direct the
signal to NBS transmit antennas. Moreover, considering FRF consists of analog phase

shifters, constant equal-norm components in the RF precoder is assumed, i.e.,
∣∣∣[FRF]i,j

∣∣∣2 =

1
NBS

. Furthermore, the power constraint ||FRFFBB||2F = M is maintained through FBB
normalization. Consequently, the transmitted signal comprising NBS × 1 elements is given
as

x = FRFFBBs. (2)

considering Hk ∈ CNM×NBS be the channel matrix between BS and kth user, the received
signal for kth user for a narrowband block fading channel is given as

ỹk = Hk

M

∑
n=1

FRFFBBn sn + nk, (3)
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where nk ∈ CNM is the complex additive white Gaussian noise (AWGN) with nk ∼
CN

(
0, σ2 INM

)
. This signal ỹk is received by the kth user and is processed by the com-

biner WRFk ∈ CNM to obtain yk = WH
RFk

ỹk, i.e.,

yk = WH
RFk

Hk

M

∑
n=1

FRFFBBn sn + WH
RFk

nk, (4)

where RF combiners WRF are designed as quantized phase shifter so that
∣∣[WRFk

]
i

∣∣2 =
1/NM.

Achievable rate for the kth user assuming Gaussian symbol transmission through the
channel is given as

Rk = log2

∣∣∣∣∣∣∣1 +
P
M

∣∣∣WH
RFk

HkFRFFBBk

∣∣∣2
P
M ∑n ̸=k

∣∣∣WH
RFk

HkFRFFBBk

∣∣∣2 + σ2

∣∣∣∣∣∣∣ (5)

Subsequently, the achievable sum rate for the system is given as [9]

R̄ =
M

∑
k=1

Rk. (6)

In this proposed work, FRF as the beams of the learned codebook is acquired. WRF
through conventional beam sweeping is obtained, as detailed in Section 3. The acquisition
of FBB occurs in the second step of a two-step procedure, as outlined in [4]. It is important
to note that, in this proposed work, the focus is solely on learning FRF. The contribution
can also be conceptualized as adaptive beam sectoring that is aware of the environment.

Channel Model

In this work, the ray tracing channel model is employed for simulation purposes.
Stochastic channel models lack the spatial detail required for accurate beamforming simu-
lations, making deterministic models like ray tracing preferable for such tasks. Ray tracing
channel models treat electromagnetic waves as rays, accounting for interactions like re-
flection and diffraction with various surfaces in the environment. These models provide
detailed insights into signal propagation, aiding in the design and optimization of wireless
communication systems.

The ray tracing channel model is applied to an OpenStreetMap (.osm) file correspond-
ing to Canary Wharf in London, UK. The latitude and longitude coordinates (51.50375,
−0.01843) specify the BS location. The map is sourced from https://www.openstreetmap.
org (accessed on 1 August 2023), providing crowd-sourced map data worldwide. Loaded
into MATLAB for ray tracing simulation, the map defines transmitter and receiver sites.
Multiple receivers are initialized with respective positions, simulating non-stationary users
traversing the area. High-rise structures are represented using concrete as the building ma-
terial.

Figure 3 depicts the ray tracing environment, where one UE experiences LOS condi-
tions while the other encounters nLOS conditions.

https://www.openstreetmap.org
https://www.openstreetmap.org
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Figure 3. Topographic map of ray tracing environment with one LOS and one nLOS user. Radiation
pattern for the 32 antenna BS is also shown forming beams toward each users.

3. Proposed Beam Learning with MARL

The implementation of the MARL can be broken down into sub-tasks, namely data
collection through an initial access procedure, data preprocessing, and MARL agent training.
Agent training in MARL is performed through continuous interaction with the environment
and data collection and preprocessing are executed simultaneously. This processes are
explained subsequently.

3.1. Data Collection through Initial Access Procedure

The codebook learning process is initiated by first obtaining a fixed conventional
codebook through the initial access procedures and beam management procedures outlined
in the 5G New Radio (5GNR) technical report. The steps involved in this fixed codebook
learning process are summarized as follows:

Procedure 1: When a connection is established between a transmitter and a receiver,
an initial beam alignment is required. This involves finding an optimal transmit–receive
beam pair that maximizes the signal strength between the devices. Various methods like
synchronization signal blocks (SSBs) and reference signals are used to aid in this process.
This is shown in Figure 4.

Figure 4. SSB beam search method in initial access procedure.

Procedure 2: Refining transmit-end beam via non-zero-power CSI-RS and SRS. Af-
ter initial beam acquisition, this beam management aims to refine the beams to improve the
communication link further. In this step, reference signals are sent in different directions
using finer beams within the initial angular range. UE or BS assesses these beams with the
fixed receive beam and selects the best transmit beam.

This proposed system initially employs a standard beamforming procedure and gradu-
ally transitions into a more efficient MARL-based system over time. This method essentially
substitutes standard codebook beams with learned beams on a one-to-one correspondence



Appl. Sci. 2024, 14, 7109 9 of 21

basis. The angular spacing between nearby beams is determined by the number of beams,
which corresponds to the number of agents in the MARL framework. This approach sim-
plifies implementation without necessitating alterations to the existing infrastructure. Once
the codebook is learned, it can be utilized until the link’s performance deteriorates due to
significant changes in the deployment site.

In this research, the procedures for initial beam acquisition and subsequent beam
learning are segmented into the following major steps:

1. SSB beam sweeping;
2. Beam measurement and determination at UE;
3. Beam reporting to BS by UE;
4. Send SRS to BS from UE for uplink transmit end beam refinement and also for MARL-

based downlink transmit end beam refinement. This procedure differs from method in
5GNR by the fact that the standard used NZ-CSI-RS for downlink transmit end beam
refinement. This requires CSI feedback from UE and can work only with traditional
matched filter-based codebooks as full-channel estimate feedback from UE which
is required for non-codebook based beamforming is unavailable or impractical to
achieve and resource intensive;

5. Send NZ-CSI-RP to UE only to obtain RSRP feedback (RSRP consumes very little
resource);

6. Decode received SRS and estimate uplink Channel at BS;
7. Send RSRP measurement in SRS to UE for beam refinement at UE;
8. At BS, use RSRP and channel estimate acquired in step 5 and step 6 to learn downlink

transmit end beam codebook through the proposed MARL algorithm.

3.2. Components of the Proposed MARL-Based Codebook Learning System and Its Implementation

To make MARL applicable, the environment must be modeled as a Markov process.
In [10], this is achieved by incorporating the current beamforming vector as a function of
the previous beamforming vector. A similar approach as in [10] is followed, extending this
method by also considering the partial and imperfect CSI acquired by the BS during uplink
SRS transmission by the UE. The operation of the entire system is illustrated in Figure 5,
with each processing block and signal flow explained subsequently.

Figure 5. Block diagram of the proposed MARL-based beamforming codebook design.
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RL is a type of machine learning where an agent learns to make decisions by per-
forming actions and receiving feedback from the environment in the form of rewards or
penalties. This learning process involves trial-and-error, where the agent seeks to maximize
cumulative rewards over time. Unlike supervised learning, where the correct actions are
provided by a teacher, RL agents must discover optimal actions through interaction with
the environment. This approach is formalized through frameworks like Markov decision
processes, which provide a mathematical foundation for modeling decision-making sce-
narios involving uncertainty and delayed rewards. RL has been successfully applied in
various domains, including robotics, game playing, and autonomous control systems, due
to its ability to handle complex, dynamic environments. Recent advancements in deep
reinforcement learning, which combines RL with deep neural networks, have led to signifi-
cant breakthroughs, such as achieving human-level performance in complex games like
Go and Atari. This field continues to evolve, offering promising solutions for real-world
applications where adaptive, intelligent behavior is required.

The proposed MARL algorithm builds upon the Wolpertinger Architecture [14], fol-
lowing a similar approach to that described in [10]. The Wolpertinger architecture in
reinforcement learning is a sophisticated framework designed to address the challenges
associated with large discrete action spaces. This architecture integrates the strengths of
deep reinforcement learning with efficient action exploration mechanisms. It operates
by embedding the discrete action space into a continuous representation, allowing for
more efficient searching and action selection. The Wolpertinger policy effectively reduces
the computational complexity by narrowing down potential actions through a k-nearest
neighbors approach, ensuring that the most promising actions are evaluated without
exhaustive searching. This makes it particularly useful in applications such as content
caching at the edge of wireless networks and optimizing beamforming in MIMO systems,
where traditional methods struggle with the vast number of possible actions. By efficiently
managing large action spaces, the Wolpertinger architecture enhances the scalability and
applicability of reinforcement learning in complex, real-world scenarios, ensuring robust
and effective decision making.

The Wolpertinger architecture adapts the DDPG, originally crafted for continuous ac-
tion spaces, to function within a discrete action space through the utilization of a K-nearest
neighbor (KNN) classifier. To address non-stationary environment issues in a multi-agent
RL system with continuous action spaces, the MADDPG offers a solution. MADDPG
achieves this through centralized training and decentralized execution. To accommodate a
discrete action space in MARL, an improvisation on MADDPG is made by implementing
each agent in MARL using the Wolpertinger architecture. Thus, the proposed MARL
essentially embodies MADDPG, with each agent designed to adhere to the Wolpertinger ar-
chitecture.

The proposed beam learning problem presents a significant challenge due to the large
number of possible actions. For instance, considering a base station with 32 antennas,
3-bit phase shifters, and 4 RF channels, each agent faces around 832 potential actions. This
complexity is further compounded with additional antennas and higher-resolution phase
shifters, rendering conventional deep Q-network frameworks impractical.

Additionally, multi-agent deep Q-networks suffer from instability and renders the
environment non-stationary. To overcome these limitations, the Wolpertinger architecture
is introduced, offering a solution for navigating spaces with extensive sets of discrete
actions [14]. This architecture, rooted in the actor–critic framework, is trained using
the DDPG algorithm [15]. Notably, the Wolpertinger architecture incorporates a KNN
classifier, enabling DDPG to effectively handle tasks with discrete, finite, yet exceptionally
high-dimensional action spaces. Below, a concise overview of the key components of the
Wolpertinger architecture is provided.

Actor Networks: The actor maps states from the observation space to actions, serving
as a function approximator for this mapping process. Since the actions obtained from
the actor fall into a continuous action space, the predicted action may not align perfectly
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with the action space of the problem. Therefore, this prediction is referred to as a proto
action and is quantized by a KNN classifier to obtain an action available in the discrete
action space.

KNN search: KNN search is employed to determine the nearest neighbor of the proto
action within the discrete action space. This algorithm utilizes the L2 distance, also known
as a squared Euclidean distance, as a metric to identify the closest vector to the proto
action. In essence, the KNN algorithm assesses the spatial proximity of the proto action to
the available discrete actions, helping to quantize and align the predicted action with the
specific options within the discrete action space.

Exploration noise process: Noise helps agents explore the environment more effec-
tively by injecting randomness into their actions. Exploration is essential in reinforcement
learning to discover new states and actions that can lead to better policies. Without explo-
ration, agents might get stuck in suboptimal policies. The noise added to actions is often
generated from a stochastic process, such as a Gaussian distribution, Ornstein–Uhlenbeck
process, or other types of noise sources. Ornstein–Uhlenbeck process is used in this work to
generate noise that is added to the actions of an agent. This noise has the property of being
temporally correlated, which means that it tends to stay close to its current value over short
time intervals, mimicking the behavior of real-world systems. The peak noise magnitude
needs to be such that after adding it to the action in element-wise manner produces a
resulting magnitude large enough to cover the full range of a phase shifter array.

Critic Networks: The critic network functions as a Q function, accepting both the
state and action inputs and generating the anticipated Q value for the specific state–action
combination. Given that the KNN function yields k potential actions, the critic network
evaluates k distinct state–action pairs (with a shared state), ultimately pinpointing the
action that attains the highest Q value among them.

Target Networks: The target network is a separate neural network that mirrors the
actor network. Its parameters are updated less frequently, providing a stable target for
the training process. The periodic update of the target network’s parameters enhances the
stability and convergence of the learning process, leading to improved training efficiency
and more accurate action value estimations.

In this scope, the input (state), outputs (action) and reward process of the MARL
algorithm are defined.

State: State comprises of the concatenated vector of the phases of an all-phase shifter
at time t and the average normalized envelop of the channel estimate obtained through
procedures given in step 1 through step 8 of the major steps mentioned in Section 3.1 of
Section 3.

Action: Action comprises element-wise changes of all the phases in the state vector at
time t.

Reward: Reward design is pivotal for shaping effective RL policies, efficiently achiev-
ing goals, and avoiding unintended behaviors. The reward function provides feedback,
guiding the agent to learn optimal behaviors by reinforcing actions that yield higher re-
wards and discouraging those that do not. Proper reward modeling ensures that the agent
learns efficiently and effectively, aligning its actions with the desired outcomes

3.3. Data Preprocessing

The SRS provides the BS with comprehensive channel information across the entire
bandwidth. Utilizing this information, the BS optimizes resource allocation, giving pref-
erence to areas with superior channel quality over other bandwidth segments. In this
proposed work, emphasis was placed on a central cluster consisting of four resource blocks
(RBs), each encompassing a bandwidth of 180 kHz. Within each RB, 12 subcarriers are
positioned at 15 kHz intervals, resulting in a combined bandwidth of 720 kHz. A frequency–
domain vector comprising 48 complex numbers is derived through channel estimation
across this contiguous frequency range. Given that only a narrow band of the entire spec-
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trum is required for the proposed algorithm, achieving high SNR for SRS transmission
is feasible.

For further analysis, this complex vector is transformed into its magnitude and then
downscaled by a factor of 2, resulting in a real-valued vector comprising 24 elements.
To ensure consistency, in the subsequent preprocessing stage, this 24-element vector is
normalized by dividing it by its maximum value. This procedure is iterated for each of the
four simultaneous users, producing four channel vectors.

The other part of the state vector input consists of the phases of the phase shifter
network for a particular RF chain of length NBS which is 32 in this case. This is also
normalized by the maximum absolute value of the phase vector. Here, four such phase
shifter vectors are obtained for four RF chains.

3.4. Proposed Algorithms

This section presents two algorithms for the online learning of the beam codebook
and a method for user clustering.

3.4.1. Proposed User Clustering through Beam Sweeping

A straightforward clustering approach based on a simple beam sweeping technique
is proposed. Users with similar channel characteristics are grouped together and served
by a single beam. This method allows the learning of interference-free arbitrary beams
using multiple agents within the MARL framework. Additionally, clustering divides the
complex task of finding beams across the entire azimuth into parallel sub-tasks, making
it more manageable and efficient for developing a multi-user, multi-beam beamforming
codebook. This simplification streamlines the acquisition process of a codebook comprising
multiple beams. In this work, user clustering is proposed as part of the initial access
procedure. The system begins with a traditional beam sweeping initial access procedure,
as described in Section 3.1 of Section 3, and updates the codebook as learning progresses.
A new UE requesting channel access is assumed to fall into a cluster corresponding to the
initial access beam index aligned with that UE. Once sufficient learning is achieved through
MARL, the codebook remains fixed in that learned state until further macro changes in
the environment occur. The number of UE channel clusters and the number of beams
are the same for both the untrained and trained codebooks because, in the proposed
MARL algorithm, each beam in a learned codebook corresponds to one beam in the initial
codebook. Hence, irrespective of the state of learning of the MARL agents, a new user
is assigned to the cluster corresponding to the beam index it obtains through the initial
access procedure.

3.4.2. Proposed Reward Function

The proposed reward processing is detailed in Algorithm 1. The reward function is
designed to satisfy two goals, namely maximizing the average beamforming gain, in turn
maximizing the sum rate of the system and reducing the inter-beam interference. In the
proposed approach, the end-to-end system is implemented, where the ARQ signal is sent by
the UE to the BS based on whether a frame was received correctly or not, and the received
ARQ is also used as an input for reward modeling, addressing concerns that RSRP alone
may provide a misleading indication of beamforming gain maximization in a multi-beam
system with interference.
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Algorithm 1 Proposed reward function

1: Initialize dynamic threshold for RSRP, Tht = 0.
2: Observe RSRP feedback from UE, RSRPt
3: Observe ACK/NACK (True/False) from UE. ARQt
4: if RSRPt > Tht and ARQt = True then
5: Rewardt = 2;
6: Tht = RSRPt;
7: else if RSRPt ≤ Tht and RSRPt > RSRPt−1 and ARQt = True then
8: Rewardt = 1;
9: else if RSRPt ≤ Tht and RSRPt ≤ RSRPt−1 and ARQt = True then

10: Rewardt = 0;
11: else if RSRPt > Tht and ARQt = False then
12: Rewardt = −1;
13: else
14: Rewardt = −2;
15: end if

3.4.3. Proposed MARL-Based Codebook Learning Function

Proposed MARL-based beam codebook learning for N agents is given in Algorithm 2.
The input to each actor network is the corresponding state. The state is the concatenation
of the 24 length channel vector given as NCH and 32 length phase vector which equals
NBS. Thus, the length of state vectors are NCH + NBS, which is 56 in this case. The output
of the actor networks also comprises the predicted phase update vectors which are of
length NBS, i.e., 32. The actor network includes a pair of hidden layers, each containing
10× (NCH + NBS) neurons equating to 560. These layers are subsequently activated using
rectified linear units (ReLU). The outcome of the actor network stands as the anticipated
action. This outcome is then passed through hyperbolic tangent (tanh) activations, which
are scaled by π.

Thus, the length of the input of each critic network for a four agents can be given
as (4× (NCH + NBS) + 4× NBS), i.e., 336 in this case. The output of the critic network is
the predicted Q value, which is a real valued scalar. Hence, output dimension of critic
network is 1. The critic network is composed of two hidden layers, each layer containing
5× (4× (NCH + NBS) + 4× NBS), i.e., 1680 neurons. Following this, ReLU activations are
applied to these layers.

Hyper parameter for the MARL is given in Table 2.

Table 2. Hyper parameter table for MARL.

Optimizer ADAM

Learning rate 0.01

Target soft update parameter 0.95

Replay buffer size 12,288

Batch size 1024

No of samples added to replay buffer before each network update 100
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Algorithm 2 Proposed MARL-based beam learning

1: Initialize actor networks, critic networks with random weights
2: Initialize target networks and with the weights of actor and critic networks
3: Initialize the replay memory D, minibatch size B, discount factor γ
4: Initialize reward processing algorithm
5: Initialize N beams with beam-steering codebook in procedure 2 of Section 3 for N

clusters and N agents.
6: Initialize a random process N for action exploration
7: For each agent, initialize random initial beamforming vector as state, x.
8: for t = 1 to max-episode-length do
9: For each agent i, select proto action ai = µθi + Nt w.r.t. the current policy and

exploration.
10: for each agent i, quantize proto action to valid beamforming vector with KNN for

k = 1.
11: Execute action a = (a1, a2, ...aN) and observe reward r (with Algorithm 1) and new

state x′

12: Store (x, a, r, x′) in replay buffer D
13: x ← x′

14: for agent i = 1 to N do
15: Sample a random minibatch of S samples (xj, aj, rj, x′

j
) from D

16: Set yj = rj
i + γQµ′

i
(
x′j, a′1, ..., a′N

)
|
a′k=µ′k

(
oj

k

)
17: Update critic by minimizing the loss L(θi) =

1
S ∑j

(
yj −Qµ

i

(
xj, aj

1, ..., aj
N

))2

18: Update actor using the sampled policy gradient:
19: ∇θi J ≈ 1

S ∑j∇θi µi

(
oj

i

)
∇ai Q

µ
i

(
xj, aj

1, ..., ai, ..., aj
N

)
|
ai=µi

(
oj

j

)
20: end for
21: Update target network parameter for each agent i:
22: θ′i ← τθi + (1− τ)θ′i
23: end for

3.5. Numerical Simulation with MARL

In this proposed work, a 120◦ sector of a cell for simulation purposes is modeled,
restricting transmissions within this azimuth range. Although the 4 RF channels can
concurrently serve 4 users within this angular space, real-world scenarios typically involve
more than four active users. To address this, users with similar channels are served
with a single beam. The assignment of each user to a specific beam, whether before or
after the MARL-based codebook learning process, is determined through beam sweeping.
Consequently, the number of beams in the learned codebook remains consistent with the
initial access codebook, which is adjustable for the performance assessment. Figure 6
illustrates the radiation pattern for one such codebook with nine beams, showcasing
variations for different quantization bits.

In the proposed MARL algorithm, the number of agents corresponds to the number
of beams utilized in the sector. This configuration effectively breaks down the task of
selecting a beam from a large set into finding a single beam within a smaller subset, thereby
enhancing the efficiency of the codebook learning process. An additional and significant
benefit of employing one agent per beam is the ability to identify optimal non-interfering
beams within the sector, even in nLOS scenarios. Each agent in the MARL algorithm strives
to maximize the individual beamforming gain while minimizing interference with other
agents, as reflected in the reward processing outlined in Algorithm 1.

Upon completion of the learning phase, the acquired codebook becomes readily
deployable within the initial access procedure. Users can now be efficiently served using
the learned codebook, rendering the traditional matched filter-based beam codebook
obsolete. This transition marks a significant advancement in the efficiency and adaptability
of beamforming techniques, as the learned codebook optimally caters to the dynamic
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needs and complexities of the communication environment without relying on pre-defined
beam patterns.

Figure 6. Radiation pattern for 32-element ULA antenna with number of phase shifter quantization
bits (a) 0 bits, (b) 2 bits, (c) 4 bits (d) 6 bits. Colored lines represent distinct radiation patterns
corresponding to specific steering angles in the azimuth plane.

This learned codebook is valid until there is no significant change in terms of macro
structures within the sector. Although such time will only be there occasionally, in the case
of such large changes in the structure or the replacement of the BS, learning has be initiated
again for all the beams.

Next, the analog beamforming codebook selection for the UE is carried out. In this
work, a conventional beamforming codebook tailored for the UE is employed. The process
of selecting beams from the codebook for the UE involves a standard beam search procedure,
encompassing steps such as sounding, measurement, and feedback.

In the final step, the baseband beamforming vector (FBB) at the BS is calculated. This
computation follows the procedure outlined in [4]. In this process, the BS formulates its
zero-forcing digital precoder FBB based on the quantized channel feedback received from
the UE. Due to the utilization of RF beamforming and the presence of sparse mmWave
channels, it is anticipated that the effective MIMO channel will be well-conditioned [16,17].
This favorable channel condition enables the utilization of a straightforward multi-user
digital beamforming strategy like zero-forcing, which can achieve a performance close to
the optimal level [18]. The algorithm for obtaining the baseband beamforming vector FBB
is detailed in the second stage of the procedure presented in [4].

4. Results and Discussion

This section highlights the performance of the proposed MARL technique. This is
demonstrated through a series of experiments where the agents are trained using the
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parameters outlined in Table 2. The effectiveness of the proposed MARL-based approach to
learning beam codebooks across various scenarios is assessed. Unlike the process of creating
a codebook for single-user MIMO systems, as discussed in [10], acquiring a beam codebook
with multiple beams for multiuser MIMO involves not only learning the codebook but also
identifying optimal combinations from a wide range of potential beamforming vectors.

Figure 7 illustrates the average beamforming gain relative to the number of beams
contained within the codebook, specifically in the LOS scenario. In this scenario, the BS
employs a uniform linear array with isotropic elements, oriented in a back-baffled configu-
ration. The graph demonstrates a consistent upward trend in average beamforming gain
with an increasing number of beams. In line with the observations made in [10], the result in
Figure 7 demonstrates nearly equivalent performance to a classical 32-beam beamsteering
codebook when employing only 6 beams. Notably, the proposed approach not only matches
but also surpasses the performance of [10]. This trend persists as the solution, employing
8 beams, consistently outperforms the 32-beam classical beamsteering codebook while
also exceeding the capabilities of [10]. This achievement is particularly significant because
it addresses a multiuser scenario with four co-channel users and a nonzero interference
probability, representing an improvement over the single-user MIMO configuration in [10].
It is important to note that traditionally, single-user and multiuser codebooks are identical,
meaning multiple beams from the same codebook are used for multiuser MIMO. For this
comparison, the single-user codebook learned by deep reinforcement learning (DRL) in [10]
is utilized and extended it to the multiuser case.

Figure 7. Comparison of average beamforming gain versus number of beams in the learned codebook
in LOS with 32-element ULA.

This demonstrates that, even with a simple clustering scheme, which eliminates the
need for extensive random beam searches with a large set of matched beams, the proposed
MARL approach, utilizing the designed reward function, can effectively understand the
wireless environment. The methodology illustrates its capability to dynamically adjust
beam configurations based on user distributions and environmental topography, signifi-
cantly reducing the beam training overhead in a massive MIMO system by minimizing the
number of beams required for effective communication in the learned codebook. This ad-
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justment effectively mitigates interference within densely populated urban environments,
leading to notable performance improvements.

Furthermore, users were strategically placed in nLOS areas within the scenario. The
simulation under nLOS conditions highlights the superiority of the proposed MARL
system compared to traditional beam codebooks and those proposed in [10]. In this
scenario, MARL outperforms the 32-beam classical beamsteering codebook and [10] with
just 4 beams. Given that only reflected paths of the channel are available under nLOS
conditions, this improvement underscores the adaptability of the MARL system to varying
environments. The simulation results for MARL under nLOS conditions are depicted in
Figure 8.

Figure 8. Comparison of average beamforming gain versus number of beams in the learned codebook
in nLOS with 32-element ULA.

Figure 8 clearly shows that the learned codebook with only 4 beams in nLOS out-
performs the traditional 32-beam beamsteering codebook. Additionally, as the number
of beams in the learned codebook increases, the performance of the proposed algorithm
approaches that of equal gain combining (EGC). This is notable because the EGC upper
bound is typically achievable only in a beamforming setup with perfect CSI and continuous
phase shifters. In contrast, the proposed approach uses only a partial, imperfect uplink
CSI estimated at the base station as a fingerprint of the channel and a marker of the UE’s
position, along with RSRP for reward modeling. This demonstrates the practicality and
effectiveness of the proposed method, even with limited and imperfect channel information.

This advantage is particularly evident in scenarios with blockages, where user signals
rely on reflections to reach the access point. The proposed solution demonstrates its adapt-
ability to the propagation environment by adjusting the beam pattern, thereby capturing
signals from multiple directions and gaining more power.

This ability to dynamically adjust and optimize the beam pattern in response to en-
vironmental conditions not only improves the performance in nLOS scenarios but also
highlights the potential of MARL-based hybrid beamforming in real-world applications
where blockages and reflections are common. By leveraging the capabilities of MARL,
the system can efficiently manage complex and variable propagation environments, ensur-
ing high data rates and reliable connectivity even under challenging conditions.
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The performance of MARL is contrasted against various hybrid precoding techniques
including manifold optimization (MO) [19], sparse orthogonal matching pursuit (SOMP)
algorithm [5], and the two-stage hybrid beamforming (TS-HB) algorithm [4]. Notably, MO
and SOMP were initially proposed for single-user scenarios, but for comparison, these
algorithms are adjusted to the multi-user context by adopting the interference cancellation
strategy outlined in [9]. In the simulation plot for no interference, the outcomes of fully-
digital beamforming and combining are traced. This approach effectively eliminates
interference, serving as a reference point in the evaluations.

Figure 9 shows a comparative analysis of the achievable sum-rate performance of
the algorithms across various SNR levels, assuming the perfect knowledge of CSI and the
available array response. The system parameters are set as follows: each BS has 32 antennas
(NBS = 32), each UE has 4 antennas (NM = 4), synthetic noise with an SNR of 20 dB,
and phase shifter quantization is performed with 3 bits (r = 3). The multiuser environment
consists of four simultaneous UEs (M = 4), each with five paths (L = 5). This consistent
configuration is maintained across all algorithms to ensure a fair comparison.

Figure 9. SNR vs. sum-rate comparison for perfect CSI and array response (NBS = 32, NM = 4, r = 3,
M = 4, L = 5).

For reference, fully digital beamforming and the MO algorithm, known for their near-
optimal analog and baseband precoders, have been included. Notably, the performance
of the proposed MARL approach closely matches that of the MO algorithm, consistently
achieving the highest sum-rate among all the algorithms. As evident from the simulation
results with perfect CSI shown in Figure 9, in a typical hybrid beamforming scenario with
ideal channel conditions and minimal interference, the sum-rate begins to plateau as the
system nears its maximum spatial multiplexing capability. At this point, the effects of
quantization noise and hardware imperfections become more pronounced. Additionally,
the log2(1 + SNR) term grows more slowly, approaching a logarithmic limit. This indicates
that the incremental gain in capacity (and thus sum-rate) diminishes as SNR increases.

A perfect CSI and array response data are typically unavailable. To assess the impact
of corrupted CSI and array response data on the performance of the proposed system,



Appl. Sci. 2024, 14, 7109 19 of 21

complex AWGN noise was added to both the array response and channel matrix. Figure 10
presents a comparative analysis of the sum-rate performance of the algorithms across
varying SNR levels, assuming noisy measurements.

Figure 10. SNR vs. sum-rate comparison with noisy measurement of CSI and array response
(NBS = 32, NM = 4, r = 3, M = 4 , L = 5).

Compared to DRL, SOMP, TS-HB, and CNN-MIMO [9], MARL demonstrates a supe-
rior performance. While SOMP was originally designed for single-user scenarios, it has
been adapted for multi-user contexts in this proposed work. Both SOMP and TS-HB require
the input of feasible sets F and W, which are the array response sets. Therefore, the precision
of these feasible sets significantly affects the performance of SOMP and TS-HB, as it relies
on the accuracy of both the channel matrices and array response sets. Corrupt channel and
array response data can result in a reduction in the average sum rate at low SNR, as shown
in Figure 10. While CNN-MIMO does not require feasible sets of beamforming vectors
during the prediction stage, they are necessary during the training stage to acquire labels.
Overall, these findings highlight the robustness of the proposed MARL-based approach for
downlink RF beamforming codebook design in multi-beam and multi-user MIMO systems.

To highlight the advantages and differences of each of the studied sachems over
one another, a table is formed as given in Table 3. As shown in Table 3, the proposed
MARL-based beamforming codebook design does not require any difficult-to-obtain or
unavailable data during either the training or evaluation phases. The results discussed so
far also demonstrate the robustness of MARL against noisy measurements.

Table 3. Comparison table for the different attributes of the studied methods.

Perfect CSI
Not Required

CSI Feedback
Not Required

Antenna Array
Response Not

Required

Multiuser Interference
Avoidance in RF

Beams

DOA /DOD Not
Required Online Training Non Iterative

Method

MO [19] × × × ✓ × × ×
TS-HB [4] × × × × ✓ × ×
SOMP [5] × × × ✓ × × ×
CNN-MIMO [9] ✓ × × ✓ ✓ × ✓

DRL [10] ✓ ✓ ✓ × ✓ ✓ ✓

MARL ✓ ✓ ✓ ✓ ✓ ✓ ✓
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5. Conclusions

The proposed MARL-based codebook learning design demonstrated the capability to
dynamically adjust beam configurations based on user distributions and environmental
topography, effectively mitigating the interference within densely populated urban envi-
ronments. Leveraging uplink CSI and RSRP for reward modeling, this method reduces the
need for extensive random beam searches and minimizes the number of beams required in
the learned codebook, significantly reducing the beam training overhead. The proposed
system outperformed traditional 32-beam beamsteering codebooks in both LOS and nLOS
conditions with fewer beams by using a simple clustering scheme and a designed reward
function that facilitated interference-free beam learning. MARL-based approach showcased
its adaptability by efficiently managing complex propagation environments, ensuring high
data rates and reliable connectivity even in challenging conditions. Comparative analysis
highlighted that the proposed MARL approach achieved performance close to the optimal
level, providing robust and efficient beamforming solutions for multiuser MIMO systems.
This research contributes to the field by offering a practical and efficient solution for beam-
forming in massive MIMO systems, paving the way for enhanced multiuser communication
in future wireless networks. However, the approach is not without limitations. One major
limitation is the complexity of the MARL framework, which may pose scalability issues
as the number of users and beams increases, potentially requiring higher computational
resources. Another limitation is the user clustering method, which requires the complete
reclustering and retraining of the MARL agents after significant environmental changes.
Additionally, the simulations were conducted in controlled environments using ray-tracing
models, and real-world deployments may present unforeseen challenges that could impact
the system’s performance and adaptability. Further research is needed to address these
limitations and enhance the robustness of the proposed method in diverse and dynamic
real-world scenarios.
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