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Abstract. Task And Motion Planning (TAMP) is the problem of
finding a solution to an automated planning problem that includes
discrete actions executable by low-level continuous motions. This
field is gaining increasing interest within the robotics community
as it significantly enhances robot’s autonomy in real-world appli-
cations. Many solutions and formulations exist, but no clear stan-
dard representation has emerged. In this paper, we propose a general
and open-source framework for modeling and benchmarking TAMP
problems. Moreover, we introduce an innovative meta-technique to
solve TAMP problems involving moving agents and multiple task-
state-dependent obstacles. This approach enables using any off-the-
shelf task planner and motion planner while leveraging a geometric
analysis of the motion planner’s search space to prune the task plan-
ner’s exploration, enhancing its efficiency. We also show how to spe-
cialize this meta-engine for the case of an incremental SMT-based
planner. We demonstrate the effectiveness of our approach across
benchmark problems of increasing complexity, where robots must
navigate environments with movable obstacles. Finally, we integrate
state-of-the-art TAMP algorithms into our framework and compare
their performance with our achievements.

1 Introduction

Task And Motion Planning (TAMP) is the problem of finding high-
level plans to accomplish assigned tasks (task planning), as well as
the motions needed to execute these plans (motion planning). Con-
sider a warehouse robot collecting items and placing them in bins
for shipment. At the task level, it determines the sequence of ac-
tions needed, such as collecting items and navigating. At the motion
level, it plans the movements considering obstacles. Merely sequenc-
ing task and motion planning may lead to ineffective solutions, with
the robot possibly moving directly toward the goal, ignoring obsta-
cles. In contrast, integrating these components effectively allows the
robot’s plan to adapt dynamically. For instance, if a pallet blocks an
aisle, the robot will try to move it before proceeding further.

A wide range of solutions and formulations exist, but no clear
standard representation has emerged [19]. In this paper, we propose
a formalization and implementation for modeling TAMP problems
related to navigation tasks with multiple movable objects, which is
independent of specific planners and languages. We also offer an
open-source modeling tool within the open-source Unified Planning
(UP) library1 to facilitate the integration of setups and planners for
evaluation and comparison. To validate our approach, we provide an
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exhaustive benchmarks suite aligned with existing TAMP evaluation
criteria [19], addressing challenges like infeasible task actions, large
task spaces, and balancing task complexity with motion execution.

Furthermore, we integrate into our framework a planning tech-
nique tailored to this class of problems that allows to combine off-
the-shelf automated planners with off-the-shelf motion planners. We
exploit the Meta-Engine feature of the UP library to instantiate our
framework with any task planner available through the library. Then,
we use the Open Motion Planning Library (OMPL) [28] to plan mo-
tions (but any other solver could be exploited). Our approach fits
into the category of interleaved TAMP [12, 5]: a Benders Decom-
position [2] of the TAMP problem where the task planner decides a
candidate plan disregarding the motion constraints. Then, the motion
planner refines the plan by adding the motion details. If it fails, it an-
alyzes the reason for the failure and derives an explanation that the
task planner can use to prune its search for new plans. In this sense,
the core of our approach is what we call topological refinement: we
approximate the area explored by the motion planner, derive the en-
countered obstacles, and exploit them to formulate new constraints
that we add at the task level. This refinement allows us to prune en-
tire symbolic space regions rather than just the immediate unrealiz-
able action, as typically done in traditional TAMP approaches.

One drawback of off-the-shelf automated planners is the need to
restart the task planning search with each new constraint learned.
Hence, we also present TAMPEST (Task And Motion Planning by
Encoding into Satisfiability Testing): a simple but effective algorithm
based on Satisfiability Modulo Theory (SMT) [1] that leverages the
incrementality of modern SMT solvers to avoid restarts.

Finally, we integrate PDDLSTREAM [11], a solver increasingly
used in TAMP, into our framework, making it one of the solvers
supported by the UP library. Our TAMP formulation, compatible
with any UP-supported solver, is automatically converted to PDDL-
Stream’s format, allowing it to solve TAMP problems without cus-
tomization. This integration demonstrates our ability to separate
problem formulation from the solving algorithm, empowering users
to compare various solvers using identical problem formulations and
input data. We include a thorough experimental assessment, com-
paring various task planners, sampling-based motion planners, and
benchmarking against PDDLSTREAM. We show TAMPEST’s effec-
tiveness and efficiency, particularly with topological refinements.

The paper is organized as follows. Section 2 formalizes our TAMP
problem, and Section 3 introduces our meta-engine approach, with its
SMT-based specialization in Section 4. Section 5 details our bench-
marks, Section 6 reviews related work, and Section 7 discusses ex-
periments and results. Finally, in Section 8 we draw our conclusions.
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Figure 1: The Doors domain. (1a) A robot r has to move from qS to qG, passing through doors {d1, d2}, initially closed. Each door opens when
its button is pushed. (1b) Initially, r tries to reach qG but finds d1 closed, shown by blue dots indicating sampled configurations. (1c) After
opening d1, it tries to reach qG again but finds d2 closed. (1d) Only after opening both d1 and d2, r finds a collision-free path from qS to qG.

2 Problem Statement

In this Section, we formalize a TAMP problem with mobile agents
moving within a workspace populated by task-dependent obstacles.
As a motivating example, consider a robot tasked with navigating
an office with sliding doors controlled by button presses (see Figu-
re 1). To reach its destination, the robot has to find a sequence of
actions to move and open doors. Simultaneously, it must physically
execute these actions, finding motion primitives that ensure collision-
free movement. Upon pressing the button, it must be aware of the
change in door configuration so it can pass through and reach the
target. A formal definition of this class of problems follows.

Definition 1. A (ground) Task And Motion Planning problem is a
tuple ψ = 〈R ,W , C ,U,V , I ,A,G〉 such that:

• R is a set of mobile agents, where each agent r is characterized
by a certain geometric model.

• W ⊆ R
N (N = 2 or N = 3) is the workspace, that is the physical

volume of all end point positions reachable by the robots in R . We
define Wf as the subset of W free from fixed obstacles.

• U is a map that assigns to each agent r ∈ R a motion model
Ur , that is a mathematical representation of the kinematic and
dynamic laws that allows the agent to evolve within W .

• C is the configuration space, where Cr ⊆ C is that subset of C
that represents the joint configurations that r ∈ R may assume
given its motion model. In this context, occ(r, q) ⊆ Wf is the set
of points in Wf occupied by r when in configuration q ∈ Cr .

• V = {f1, .., fk} is a finite set of variables (or fluents) f ∈ V , each
with a finite or infinite domain Dom(f).

• I is the initial task state, which assigns a value I (f) ∈ Dom(f)
to each f ∈ V .

• A is a set of actions a = 〈P ,E ,M 〉 such that:

– P is a set of preconditions pre ∈ P , with pre a Boolean combi-
nation of atoms f = v, with f ∈ V and v ∈ Dom(f).

– E is a set of effects eff ∈ E each of the form f := v with f ∈ V
and v ∈ Dom(f).

– M is a (possibly empty) set of motion constraints of the form
〈r, qS , qG,O〉, where r ∈ R is the agent performing a, qS ∈ Cr

is its start configuration, qG ∈ Cr is the target configuration,
and O ⊆ 2R ×C is a function associating the other movable
agents, which r must avoid, to the configurations they occupy.

• G is the goal condition, represented as a Boolean combination of
atoms of the form f = v, with f ∈ V and v ∈ Dom(f).

Focusing on the semantics of the problem, a state S is a total as-
signment of values to the fluents such that S(f) ∈ Dom(f) for all

f ∈ V . An action is applicable in a state S if its preconditions are
satisfied by substituting each fluent f appearing in the Boolean com-
bination with S(f) and if all the motion constraints M are satisfiable.

A motion constraint 〈r, qS , qG,O〉 is satisfied if there exists a
collision-free path τ : [0,1] → Cr that moves r from τ(0) = qS
to τ(1) = qG. τ must be compliant with the motion model Ur ,
must reside in Wf , i.e., ∀t ∈ [0, 1]. occ(r, τ(t)) ⊆ Wf , and
must be collision-free with the obstacles listed on O, i.e., ∀t ∈
[0, 1]. ∀〈r′, q′〉 ∈ O. occ(r, τ(t)) ∩ occ(r′, q′) = ∅.

The successor of S, once applied a = 〈P ,E ,M 〉, is a(S) where:

a(S)(f) =

{
v if 〈f := v〉 ∈ E
S(f) otherwise

The plan π solving ψ is a sequence 〈a0, . . . , an〉 of actions
such that a0 is applicable in I, each action ai is applicable in
ai−1(ai−2(· · · (a0(I)))), and the final state satisfies G .

In our example, r navigates a deterministic and fully observable
2D map with fixed obstacles (walls). Thus, Wf includes all points
on the map not occupied by walls. The robot uses a ReedsShepp-
type motion model [23], with configuration (x, y, θ), where (x, y)
are Cartesian coordinates and θ is the orientation angle. A motion
constraint 〈r, qS , qG,O〉 is satisfied if we find a path from qS to qG
while avoiding doors in O, which open when their button is pressed.

Definition 1 is a ground formalization of the TAMP problem we
tackle. For the sake of brevity, we only formalize the syntax and se-
mantics of the ground representation. In practical modeling, we adopt
a lifted representation, as is customary in the planning community.
Our peculiarity is to consider movable agents and configurations of
interest as objects of the problem, allowing fluents to have subsets
of configurations as domains. This is useful for specifying goals for
the agents and expressions evaluating movable agents or configura-
tions. If er is an expression evaluating a movable agent and eq is
an expression evaluating a configuration, a motion constraint will
have the form 〈er, eqS , eqG ,Ol 〉, with Ol a set of pairs of the form
〈er, eq〉. The semantics is given by grounding: we assess the expres-
sions within the lifted motion constraint in the state where the action
starts, and we obtain the ground motion constraint of Definition 1.

3 Meta-Engine Framework

To efficiently solve the TAMP problem ψ, we developed a meta-
engine framework that interleaves an off-the-shelf task planner and
an off-the-shelf motion planner provided as inputs. The task planner
generates a candidate plan without considering motion constraints.
We then check this plan for motion feasibility. If unfeasible, we ex-
tract data from the search space of the motion planner on unrealizable
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Algorithm 1 Our Meta-Engine Framework
1 procedure METASOLVE(ψ, timeout)
2 cache← ∅ � Cache of successful motion constraints
3 ψ′ ← ψ � ψ′ is the abstracted problem
4 while True do

5 π← task-plan(ψ′) � Call task planner on ψ′
6 if π �= ∅ then

7 found, mc← CHECKMOTIONS(π, cache, timeout)
8 if found then

9 return 〈π, cache〉 � π is a valid plan, cache has the paths
10 else

11 ψ′ ← REFINEPROBLEM(ψ′, mc)
12 else

13 timeout← timeout*2 � Increase motion planner timeout
14 ψ′ ← ψ � Reset the refinements

Algorithm 2 Checking motion constraints in a given plan
1 procedure CHECKMOTIONS(π, cache, timeout)
2 found← True � Final validity of the plan
3 mc← ∅ � Set of unsat motion constraints and learned info
4 for each a = 〈P ,E ,M 〉 ∈ π do

5 for each c = 〈r, qS , qG,O〉 ∈ M do

6 if � ∃〈c, τ〉 ∈ cache then � cache stores past solutions
7 τ , 〈σ, ω〉 ← motion-plan(c, timeout)
8 if τ �= ∅ then � If a path τ is found
9 cache← cache ∪ {〈c, τ〉} � Save path τ in cache

10 else � If no path was found
11 found← False � π cannot be validated
12 mc← mc ∪ {〈r, qS , σ, ω〉} � Learn info
13 return found, mc

constraints, refine the task problem, and restart the process. In this
Section, we detail this general schema and the refinement process.

As reported in Algorithm 1, the task planner searches for a plan
π that is valid for the problem ψ while disregarding the motion con-
straints (line 5). By excluding the motion aspect, the problem is re-
duced to a traditional task-planning problem. If a valid plan is found,
the function CHECKMOTIONS checks all the motion constraints of
all the actions involved in the plan (line 7). Since many motion plan-
ning algorithms are sample-based and do not guarantee termination
if a path does not exist, we set a timeout to each invocation of the mo-
tion planner. The algorithm keeps a cache which stores each motion
constraint successfully checked and its trajectory τ . If all the mo-
tion constraints of all the actions of π are found to be realizable by
the motion planner, then the plan is returned together with the cache
(line 9). If at least one motion constraint cannot be solved, we refine
ψ′ (see Topological Refinements). If no candidate plan is found, the
problem is either unsolvable or a previous plan was feasible, but the
motion planner failed to find a path within the given time. Thus, we
double the timeout of the motion planner, reset our refinements, and
restart the algorithm (line 13). The cache is not reset, preserving any
valid motion plan and improving the efficiency of the algorithm.

In Algorithm 2, CHECKMOTIONS generates a value found which
is True if the plan is valid. Otherwise, it returns a set mc of motion
constraint explanations 〈r, qS , σ, ω〉, where r ∈ R , qS ∈ Cr , σ ⊆ Cr

and ω ∈ 2R ×C . This means the motion planner did not find a path for
r from qS to any target in σ due to obstacles r′ in c′, with 〈r′, c′〉 ∈
ω. We explain how this data is computed and used for refinement.
Topological refinements. It is crucial for the performance of our
technique that CHECKMOTIONS can provide the explanations mc for
the unsatisfied motion constraints. If the constraint 〈r, qS , qG,O〉 is
infeasible, it means the target qG is blocked by fixed or movable ob-
stacles (or we did not give enough time to the motion planner, but this
is handled as discussed above). In the first case, no valid plan exists

for r. In the second case, some obstacles in O prevent r from reaching
the target and must be moved. In our motivating example, this means
a closed door is blocking the robot from reaching its destination.

If the constraint 〈r, qS , qG,O〉 is invalid, we find the convex hull

H(qS) = {
K∑

j=1

λjpj |
K∧

j=1

λj ≥ 0 ∧
K∑

j=1

λj = 1}

of the points {p1, . . . , pk} sampled by the motion planner from qS .
Let X be the set {q1, . . . , qm} ⊆ Cr of interesting configurations

that the agent may assume, i.e., the motion constraints’ configura-
tions involving r for the ground case or the objects of type Config-
uration for the lifted case. We check which configurations yield an
occupancy that does not belong to H(qS). The idea is that H(qS) is
an approximation of the positions that the agent can reach and we
want to compute the set of interesting locations that are unreachable
from the specified starting configuration qS . We call the resulting set
σ and we define it formally as {q ∈ X | occ(r, q) �⊆ H(qS)}.

The second element of the explanation concerns the blocking mov-
able obstacles. Not all the obstacles in O block the agent from reach-
ing its goal, hence we isolate the obstacles that prevent the motion
planner from computing a feasible path connecting qS to σ. We call
this set ω ⊆ O. This set can be efficiently computed by keeping track
of the collisions analyzed by the motion planner: if a collision hap-
pens in a point p ∈ occ(r′, q′) with 〈r′, q′〉 ∈ O, we add the element
〈r′, q′〉 to ω. The intuition is that obstacles we do not collide with
do not hinder finding a valid plan, offering no useful information for
pruning the task planner’s search space. Hence, they can be omitted.

CHECKMOTIONS collects all the conflicts in μ and uses this data
to refine the problem (line 11). The idea is to prevent the task planner
from using actions that are not feasible because of the explanations
in μ. We present here two refinements, one for the grounded problem
of Definition 1 and a more practical one for the lifted case.

In the grounded refinement, we remove any actions with motion
constraints that conflict with explanations in mc, thereby refining the
set of actions. Formally, given ψ = 〈R ,W , C ,U,V , I ,A,G〉, we
return ψ′ = 〈R ,W , C ,U,V , I ,A ′,G〉 with A ′ defined as:

{a = 〈P ,E ,M 〉 ∈ A |� ∃m = 〈r, qS , qG,O〉 ∈ M .

〈r, qS , σ, ω〉 ∈ mc ∧ (qG ∈ σ ∨ ω ⊆ O)}
This prevents the execution of actions with known unrealizable con-
straints (with the given timeout).

The lifted case is similar, but requires the addition of preconditions
to eliminate all the groundings that would conflict with the learned
explanations. For each action a in the lifted TAMP problem, we add
the following precondition for each lifted motion constraint m =
〈er, eqS , eqG ,Ol 〉 of a and for each explanation 〈r, qS , σ, ω〉 ∈ mc:

er �= r ∨ eqS �= qS ∨
∧
q∈σ

eqG �= q ∨
∨

〈r′,c′〉∈ω

∧
〈er,ec〉∈Ol

((er �= r′) ∨ (ec �= c′))

which informally means that m of a is consistent with the explana-
tion if any of the following conditions are met: i) er does not evaluate
to r; ii) eqS does not evaluate to qS ; iii) the destination eqG does not
evaluate to any element of σ; iv) there exists an obstacle in ω that has
a different configuration or doesn’t exist in this constraint.
Theoretical Guarantees. Many motion planners exist and can be
leveraged by our meta-engine. In our case, we exploit the Rapidly ex-
ploring Random Tree (RRT) algorithm [20] and its Lazy version. Our
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Algorithm 3 Tampest
1 procedure SOLVE(ψ, hmax, timeout)
2 cache← ∅
3 while True do

4 〈h,mc〉 ← 〈1, ∅〉
5 solver← SMT-solver()
6 solver.add-assertion(initial-step(ψ))
7 while h ≤ hmax do

8 f , l← incremental-step(ψ, h)
9 solver.add-assertion(f )

10 if mc �= ∅ then

11 solver.add-assertion(get-lemmas(mc, h))
12 solver.push()
13 solver.add-assertion(l)
14 while solver.solve() do

15 π← get-plan(solver.get-model())
16 found, mc’← CHECKMOTIONS(π, cache, timeout)
17 if found then

18 return 〈π, cache〉
19 else

20 solver.pop()
21 for each i ∈ {1, . . . , h} do

22 solver.add-assertion(get-lemmas(mc’, i))
23 mc← mc ∪ mc′
24 solver.push()
25 solver.add-assertion(l)
26 solver.pop()
27 h← h+ 1
28 timeout← timeout ∗ 2

proposal becomes probabilistic complete assuming the task planner
is complete, because the probability of finding a solution tends to 1
as the timeout given to the motion planner to compute a plan tends
to infinity. We also assume that when a motion from qS to qG fails,
qG is always unreachable, preventing to enter an infinite loop as the
interesting configuration set is finite.

4 SMT-based Specialization

We tailored our framework to leverage the incremental solution capa-
bilities of SMT-based solvers. Such solvers maintain a stack of con-
straints (called assertions), enabling efficient repeated satisfiability
checks as constraints are pushed onto or popped from the constraint
stack. This feature eliminates the need for restarting the planning rou-
tine upon failure to find a valid plan, enhancing overall scalability.

Our approach is called TAMPEST and it iterates between task and
motion planning while progressively increasing the search depth un-
til finding a valid plan or reaching the maximum step horizon hmax.

As shown in Algorithm 3, the general schema is that of the meta-
engine in Algorithm 1, with the outer while loop serving for the re-
finement of the motion planner timeout, the learned explanations mc,
and the horizon h. The inner loop is the focal point of the approach.
We encode the task part of ψ as an SMT planning problem, analo-
gously to many SATPlan-like approaches [17, 24], and we add to our
SMT solver the assertions relative to the initial state, which hold at
step 0 (line 6). At each step h ≤ hmax, we generate and add the as-
sertions f and l (lines 9-13). As in [5], f asserts that a selected action
implies its preconditions and effects, the state remains the same un-
less changed by an action effect, and only one subset of non-mutex
actions is taken at time. Assertion l, instead, characterizes the goal.
The solver searches for a valid plan π, which means finding a sat-
isfying assignment for the asserted logical formulae (line 15). If a
model exists, we check the motion feasibility of π via CHECKMO-
TIONS, possibly exploiting the cache (line 16). If all constraints are
satisfied, we return the plan and the paths (line 18). Otherwise, we

pop the solver and add the logical lemmas representing the topologi-
cal refinements mc’. We use the same logical formulation used for the
lifted refinement in the meta-engine encoding the preconditions as an
SMT formula instantiated at all the symbolic times i ∈ {1, . . . , h}.
Once this data is added, we push the solver, re-add the goal, and try to
find a solution again (lines 20:25). Every time we enlarge the encod-
ing bound, we permanently add the lemmas for all the explanations
in mc at h, ensuring their validity across all encoding steps (line 11).

5 Modeling and Benchmarking

Besides formulating the TAMP problem of Definition 1 and defin-
ing suitable TAMP solvers, we developed a comprehensive open-
source framework for modeling and benchmarking these problems.
An overview of the key components of this implementation follows,
along with a description of the benchmark suite we designed.

UP1 is an open-source, planner-agnostic planning library that col-
lects planning tools and algorithms to model, manipulate, and solve
classical, numerical, temporal, and other complex tasks, such as
multi-agent assignments. To enable the modeling of TAMP prob-
lems, we extended the TAMP modeling of the UP adding obstacle
avoidance. Besides preconditions and effects, motion actions include
motion constraints of the form path(r, qS , [qG], {o : qo ∀ o ∈ O}),
i.e., there ∃π : [qS , [qG]] → Cr for r ∈ R and {o : qo ∀ o ∈ O},
as in Definition 1. Non-fixed objects are defined as Movable Objects
with a geometric and motion model. Their configurations are Con-
figuration Objects with a value in the form provided by the motion
model of the agent (e.g., (x, y, yaw) in SE(2)). The workspace is an
Occupancy Map collecting all useful data for motion planning and
collision avoidance with fixed obstacles, such as the 2D image or
3D mesh of the operating environment and its reference system. We
allow fluents that accept as input a Movable Object and output its cur-
rent Configuration Object within the Occupancy Map. As for all the
tools of the UP library, this extension is independent of the planning
language and planner available to define and solve this problem.

With this extension, we offer a set of benchmarks that task robotic
agents with Navigating Among Movable Obstacles (NAMO) [27],
i.e., moving through a workspace while removing or avoiding mov-
able obstacles. As in [19], we assume the search space is i) geomet-
ric: motion planning focuses only on finding feasible object poses
based on the geometric constraints of the world; ii) fully observable:
the initial state is completely known both geometrically and seman-
tically; iii) deterministic: world state changes exclusively result from
planned actions, and object motions precisely adhere to the output of
the motion planner. We consider the following evaluation criteria:

• Infeasible task actions. Some task actions are impossible due to
obstructing obstacles that prevent feasible motion plans.

• Large task spaces. The task planning problem requires substan-
tial search effort.

• Motion/Task Trade-off. The problem can be solved with fewer
steps if the right obstacles are moved.

• Non-monotonicity. Some objects need to be moved more than
once for achieving the goal.

• Non-geometric actions. Some actions, like perception, change
the discrete state but not the robot configuration.

The description of our benchmarks follows. For each domain, we of-
fer a comprehensive setup, ensuring faithful replication in both 2D
and 3D environments. This approach guarantees reliable assessment
of solver performance, even within complex search spaces. In 2D
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(a) (b) (c)
Figure 2: 2D setups of our benchmarks. (2a) Maze with nd = 5 doors. (2b) Delivery with nd = 1 door and np = 4 parcels, one delivered. (2c)
Rovers with nd = 2 rovers (and doors) collecting rock and soil samples, and taking images of nc = 4 configurations around the samples.

Criteria Doors Maze Delivery Rover

Infeasible task actions x x x x
Large task spaces x x x x
Motion/Task trade-off x x x
Non-monotonicity x x
Non-geometric actions x

Table 1: Criteria evaluated by each benchmark problem.
scenarios, movable objects are polygons and the robot navigates us-
ing a ReedsShepp path within a black-and-white map, where black
represents areas occupied by fixed obstacles. In 3D, objects are 3D
rigid bodies and move according to an SE(3) motion model. Due to
limited space, we will discuss only the benchmarks deemed paradig-
matic according to the outlined evaluation criteria (see Table 1):

• Doors. One robot needs to navigate through nd closed doors to
reach a final destination, using the {move, open} action set (see
Figure 1). move enables the robot to navigate from a start to a
goal location and incorporates a motion constraint that avoids col-
lisions with movable and static obstacles (doors and walls). open
allows the robot to open a door when positioned in front of it,
like pushing a button. Once the button is pushed, the door con-
figuration changes instantaneously from closed to open. nc extra
configurations are randomly sampled in the free space: they do not
aid in achieving the goal, they merely expand the task space. Thus,
even if the problem is simple, the optimal plan contains 2nd + 1
steps while the worst-case scenario needs 2nd + nc + 1 steps to
take the robot from start to goal while opening all the doors and
visiting all extra locations (large task space). Closed doors make
some locations unreachable (infeasible task actions).

• Maze. A robot must navigate out of a maze while visiting nc ran-
domly distributed configurations (see Figure 2a). nd doors block
various passages, not all leading to exit or target locations. Their
motion model requires the motion planner to compute opening
paths. Actions are {move, open}. Again, we are exploring a large
task space equipped with infeasible task actions. Moreover, we
should find a good motion/task trade-off to efficiently solve the
problem: while opening all doors and reaching the assigned tar-
gets is valid, only opening necessary doors yields efficiency.

• Delivery. Inspired by the delivery domain of IPC, Maze locations
become parcels with no geometry and motion model. They are dis-
tinguished by colors and must be arranged into rows by color, each
row delivered before the next (see Figure 2b). Actions are {move,
open, load, unload}, where load involves collecting a parcel and
placing it atop an agent. unload enables the agent to remove an
item from its cargo and deposit it at a specified location (large
task space). The robot has a fixed capacity (numerical problem),
and can unload packages only when positioned in front of the un-

loading location, though some parcels are already at their stations.
nd doors block nd passages, some of which are useful to reach
the unloading area (unfeasible task actions). The layout of the un-
loading area and the presence of obstructing doors influence the
motion/task trade-off. Parcels initially at unloading stations enable
assessment of non-monotonicity: if a parcel blocks the unloading
of other items, it must be temporally relocated.

• Rovers. We reproduce the rover domain of IPC to demonstrate the
generality of our approach (see Figure 2c). nd rovers must collect
rock and soil samples, separated from each robot by a door. Then,
they must calibrate their cameras, photograph nc objectives lo-
cated around each sample without occlusions, and send the results
back to a lander. Due to obstacles that limit the reachability of
parts of the workspace, one rover must be utilized for each sample
and the objectives around it. Actions are {move, open, calibrate,
sample rock, sample soil, send analysis, drop, take image, send
image}, and some of them change only the discrete state and not
the configuration space (non-geometric actions).

6 Related Work

Many planners exist that combine symbolic and geometric search.
As an example, the aSyMov planner [3] interleaves a FF-based task
planner with lazily-expanded roadmaps. However, this approach is
impractical when action plans are valid in the symbolic space but
infeasible in the geometric one. To address this issue, many ap-
proaches have been developed over the years. For instance, Dorn-
hege et al. [7] add semantic attachments to the definition of the task,
and they call the motion planner after each action to check both
its geometric and semantic feasibility. Other strategies, as discussed
in [16, 26, 10, 29, 9], are tailored to specific classes of manipula-
tion problems, limiting their adaptability to new domains, such as
those introduced in this paper, without significant engineering effort.
They lack a modular, domain-agnostic problem description language
with clear semantics. In this regard, ROSPlan [4] offers tools for AI
Planning in a ROS system, while PDDLStream enhances this capa-
bility by integrating symbolic planners and black-box samplers by
extending Planning Domain Definition Language (PDDL) [13] with
streams: declarative specifications of sampling procedures that link
in a black-box way the symbolic representation of constraints with
their sample-based counterparts. In TAMP, they are used to map the
existence of collision-free paths with the functions checking their
validity. Our formulation is less general as it is tailored specifically
towards TAMP problems. However, this targeted approach allows us
to exploit the motion planner’s output to prune large regions of the
task search space, significantly reducing the computational overhead.
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Figure 3: Overall performance on all benchmark instances and all
planners when exploiting different topological refinements.

Indeed, calling the motion planner after each symbolic call is time-
consuming, particularly when dealing with geometrically unfeasible
states [18]. To enhance efficiency, the geometric search is typically
limited to candidate symbolic plans. Srivastava et al. [26], for ex-
ample, interface a task planner with an optimization-based motion
planner and use a heuristic to remove occluding objects. Dantam et
al.. [6] propose TMKit: an incremental SMT solver that incremen-
tally generates symbolic plans and call the motion planner for val-
idation. They all suffer from long processing time, solve problems
consisting of a limited number of actions and, given their focus on
manipulation tasks, handle a limited quantity of manipulable objects.
Some approaches exist that tries to overcome these limitations. Sim-
ilar to TMKit, our SMT specialization employs an incremental ap-
proach to generate a valid symbolic plan. Initially, it assumes the
validity of all motion actions within the plan. Once a task plan is
established, it invokes the motion planner to verify feasibility. For
any unfeasible motion action, we generate topological refinements
on the geometric space. These refinements are leveraged at the task
level, enhancing efficiency and allowing for plans with many actions.

7 Experimental Evaluation

In this Section, we evaluate our meta-engine framework across var-
ious task and motion planners. We assess the effectiveness of its
SMT-based specialization and quantify improvements from topologi-
cal refinements. Moreover, we compare our framework with PDDL-
STREAM, highlighting our ability to integrate existing solvers and
the superior performance of our proposal. Benchmarks and solvers
are available open source2. Our test cases follows:

• Doors. We feature nd ∈ [1, 2, 4, . . . , 10] closed doors that must
all be open to reach the final destination. Additionally, either 0 (nc

= [(0, 0)]) or 10 extra configurations are randomly distributed in
the reachable space (nc = [(10,0)]), the initially unreachable space
(nc = [(0, 10)]), or equally split between the two (nc = [(5,5)]).

• Maze. We increase domain complexity by introducing nd ∈
[1, 2, 3, . . . , 10] doors in a maze, where not all block the final
destination. Extra-configurations become nc ∈ [0, 1, 2, 3, . . . , 10]
mandatory inspection targets randomly placed within the maze.

• Delivery. We sample nd ∈ [1, 2, 4, . . . , 10] closed doors, not
all obstructing the target, and nr + ng ∈ [0, 1, 2, 3, . . . , 8] red
and green parcels. Colors are randomly sampled among available
parcels. Parcels must be delivered in two rows, with at most 4 red
parcels placed in the front and 4 green parcels in the back. dr ≤ 3

2 Available at https://github.com/fbk-pso/tampest.git

red parcels and dg ≤ 3 green parcels are already in their delivery
spots, eventually blocking the reachability of the unloading loca-
tions behind them, that means nc = x = [(nr, ng, dr, dg)]. The
robot’s load capacity nl ranges from 1 to 4.

• Rovers. We involve nd ∈ [2, 4, 6, 810] robots (and doors). Each
robot analyzes either one soil or one rock sample, each one sit-
uated one closed door away from the robot. We design nc ∈
[0, 1, 2, 3, 4] objectives to be photographed around each sample.

We tested Maze and Rover domains in both 2D and 3D setups, while
Doors and Delivery tests were limited to their 2D implementations.
Indeed, these setups closely resemble those of the former domains.

We instantiate our Meta-Engine with FAST-DOWNWARD [15], the
Expressive Numeric Heuristic Search Planner (ENHSP) [25], and
TAMER [30], and evaluate their performance compared with TAM-
PEST (with hmax = 100), where the last three can solve numerical
problems such as our Delivery domain. We combine each solver with
the RRT [20] and LAZYRRT motion planners (with timeout = 3s).
In 2D scenarios, we implement an ad-hoc collision checker that ver-
ifies the feasibility of a pose of the robot pose by ensuring that its
footprint does not intersect obstacles. In 3D, we exploit the Flexible
Collision Library [22]. Finally, we study our refinement schema by
disabling some of the explanations computed by CHECKMOTIONS.
We set the topological refinements mc′ = {〈σ, ω〉} as follows. All-
Refinements is the full algorithm as described in the previous sec-
tions. Only-Reachables assumes ω = O, disabling the analysis of
the obstacles with which the agent collided, but retaining the anal-
ysis of the unreachable points. Only-Obstacles forces σ = {qG},
retaining the obstacles analysis but disabling the unreachable con-
figurations one, to only remove the target location. No-Refinements
forces σ = {qG} and ω = O, removing only the violated constraint.

Focusing on PDDLSTREAM, we explore its incremental, fo-
cused, binding, and adaptive variants equipped with FAST-
DOWNWARD [14], as provided by default. To enable them to solve
our benchmarks, we convert the motion constraints into streams,
mapped with functions that certificates the existence of paths. We
employ the same motion planners and collision checkers as before.

We set a global timeout of 1800 s, a memory limit of 10 GB, and
ran tests on an Intel Xeon CPU 6226R @2.9GHz.
Results. In Figure 3, we show the impact of leveraging topological
refinements across all instances of all domains. The x-axis denotes
the number of solved instances, while the y-axis represents computa-
tional time. Utilizing All-Refinements increases the number of solved
instances by roughly 20% compared to single refinements and 30%
compared to none, also reducing computational time. Some instances
have numerous obstacles obstructing large portions of the workspace,
highlighting the usefulness of leveraging topological refinements, es-
pecially in scenarios with a high number of infeasible task actions.

Focusing on the motion planner, RRT outperforms its lazy ver-
sion, which performs collision checking only at the end. Indeed, our
setups feature many obstacles, causing LAZYRRT to add a signifi-
cant number of validation steps during collision checking. Figure 4a
proves this statement when using TAMPEST, especially for the De-
livery case, where LAZYRRT timeouts in all cases.

In Table 2, we compare planners across all domains, once selected
RRT. All PDDLSTREAM variants exhibit lower performance com-
pared to other algorithms, with adaptive showing the best results, fol-
lowed by incremental. Indeed, incremental generates all streams in
advance and then searches for a plan, while adaptive first finds a plan,
checks its motion validity, and dynamically adjusts its search strat-
egy based on the progress. Their lower performance may stem from
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(a) (b) (c)
Figure 4: Computational time (in seconds) to solve the problem by domain (with timeout TO = 1800 s). (4a) RRT vs. LAZYRRT when using
TAMPEST, regardless of the refinement exploited. (4b) TAMPEST vs. Meta(ENHPS), both with RRT and All-Refinements. (4c) TAMPEST vs.
PDDLSTREAM-adaptive, both with RRT and TAMPEST with All-Refinements.

Planner Doors (tot. 24) Maze (tot. 220) Delivery (tot. 525) Rover (tot. 50)
PDDLSTREAM-binding 2 17 - 0
PDDLSTREAM-focused 0 17 - 0
PDDLSTREAM-incremental 6 43 - 1
PDDLSTREAM-adaptive 1 65 - 1
Meta(FAST-DOWNWARD) 4 3 52 67 - 7 9
Meta(TAMER) 4 7 51 56 376 376 12 11
Meta(ENHSP) 13 21 121 154 287 287 18 27

TAMPEST 17 24 126 164 415 422 12 14

Table 2: Overall performance of all planners on all benchmarks when combined with RRT (left column with No-Refinement, right column with
All-Refinements). All PDDLSTREAM variants are equipped with FAST-DOWNWARD, as provided by default by this framework.

the use of FAST-DOWNWARD, which also impacts our Meta(FAST-
DOWNWARD). Meta(TAMER) has good performance in the numeric
case, while Meta(ENHSP) and TAMPEST demonstrate the highest
success rates: they can manage large task spaces more effectively,
achieving a good trade-off between motion and task. In Figure 4b,
we better compare the quality and quantity of the solutions proposed
by these two algorithms, each equipped with RRT and all refine-
ments. Our proposal performs particularly well in the Maze (magenta
dots) and Delivery (green triangles) domains, i.e., it can face effec-
tively also non-monotonic scenarios. When adding non-geometric
actions as in the Rover domain (red squares), instead, our solver ex-
cels with simpler instances but faces scalability issues as plan size in-
creases, similar to other SAT/SMT-based planners. Processing more
parameters leads to longer resolution times. In detail, when combined
with RRT and all refinements in a 2D setup (best case), it fully solves
the Doors domain. In the Maze domain, performance decreases with
8 or more doors, requiring about 20 actions for 8 doors and failing
with 10. In Delivery scenarios, scalability issues arise with 4 red and
4 green parcels if 3 block others and the robot’s capacity is below 4
(requiring at least 20 actions). For Rovers, the performance decreases
with 4 robots sampling rocks or soil and photographing at least one
sample, needing at least 40 actions. Finally, in Figure 4c we compare
PDDLSTREAM’s adaptive variant with TAMPEST (both with RRT
and TAMPEST with all refinements). The former consistently times
out, even when our approach easily finds solutions. This stands out
notably in the Maze domain (magenta dots).

8 Conclusion and Future Work

In this paper, we provided a detailed representation of a multi-agent
TAMP scenario with one agent moving at a time and multiple task-

dependent obstacles. Our contributions include a general problem
formulation and semantic definition, supported by an open-source
library for modeling and benchmarking. We also introduced a novel
meta-engine framework for combining off-the-shelf task and motion
planners to solve complex scenarios. We proposed using geometric
context to generate topological refinements and prune the task plan-
ner’s search space. Additionally, we demonstrated how this meta-
engine can be adapted for an incremental SMT-based task planner,
named TAMPEST. We compared TAMPEST with existing planners in-
terleaved with sample-based motion planners, with and without topo-
logical refinements. SMT’s incremental nature accelerates problem
resolution, while topological refinements decrease the time required
to find a valid plan. Finally, we integrated PDDLStream enabling di-
rect comparison of solvers on the same input data: TAMPEST outper-
forms PDDLStream, especially when using topological refinements.

In future work, we will include metric time and address scenarios
with multiple agents moving simultaneously [21, 8]. We will also
integrate replanning mechanisms to handle non-determinism.
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