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Abstract 

The aim of process discovery is to build a process model from an event log 
without prior information about the process. The discovery of declarative 
process models is useful when a process works in an unpredictable and 
unstable environment since several allowed paths can be represented as a 
compact set of rules. One of the tools available in the literature for discovering 
declarative models from logs is the Declare Miner, a plug-in of the process 
mining tool ProM. Using this plug-in, the discovered models are represented 
using DECLARE, a declarative process modeling language based on LTL for 
finite traces. However, the high execution times of the Declare Miner when 
processing large sets of data hampers the applicability of the tool to real-life 
settings. Therefore, in this paper, we propose a new approach for the discovery 
of DECLARE models based on the combination of an Apriori algorithm and a 
group of algorithms for Sequence Analysis to enhance the time performance 
of the plug-in. The approach has been developed in a way that it is easy to 
be parallelized using two different partitioning methods: the search space 
partitioning, in which different groups of candidate constraints are processed 
in parallel, and the database partitioning, in which different chunks of the 
log are processed at the same time. The approach has been implemented in 
ProM in its sequential version and in two multi-threading implementations 
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leveraging these two partitioning methods. All the new variants of the plug-in 
have been evaluated using a large set of synthetic and real-life event logs. 

Keywords: Process Mining, Process Discovery, Declarative Process Models, 
Apriori Algorithm, Sequence Analysis 

 

 

1. Introduction 

Process mining [1] is a family of techniques that allow for the analysis 
of business processes using event logs. It consists of three main branches: 
process discovery, model enhancement and conformance checking. Process 
discovery deals with the extraction of process models from an event log. 
Model enhancement is the extension or improvement of process models using 
information extracted from a log. Conformance checking consists in analyzing 
whether the real executions of a process, as recorded in a log, are compliant 
with a process model representing the expected behavior of the process. 

The majority of process discovery algorithms try to construct a procedural 
model. However, the resulting models are often spaghetti-like and difficult to 
interpret especially for processes working in unstable environments. Therefore, 
when dealing with processes with high variability and where multiple paths 
are allowed, declarative process models are more effective than procedural 
ones [2, 3, 4]. Instead of explicitly specifying all possible sequences of activities 
in a process, declarative models implicitly specify the allowed behavior of 
the process with constraints, i.e., rules that must be followed during the 
execution. In comparison to procedural approaches, which produce closed 
models (what is not explicitly specified is forbidden), declarative languages 
are open (everything that is not constrained is allowed). In this way, models 
enjoy flexibility and still remain compact. An example of a declarative 
process modeling language is DECLARE, first introduced in [5]. A DECLARE 
model consists of a set of constraints which, in turn, are based on templates. 
Templates are parameterized classes of rules and constraints are their concrete 
instantiations. 

The Declare Miner is a plug-in for the discovery of DECLARE models from 
an event log included in the process mining tool ProM. It implements the 
two-phase approach presented in [6]. The first phase is based on the Apriori 
algorithm  developed by Agrawal and Srikant for mining association rules 
[7]. During this preliminary phase, the frequent sets of correlated activities 
are identified in the log.   A list of candidate constraints is computed on 
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the basis of the correlated activity sets only. During the second phase, the 
candidate constraints are checked by replaying the log on specific automata, 
each accepting only those traces that are compliant with one constraint. Each 
constraint among the candidates becomes part of the discovered model only 
if the percentage of traces accepted by the related automaton exceeds a user-
defined threshold. Constraints constituting the discovered DECLARE model are 
weighted according to their support, i.e., the probability of such constraints to 
hold in the mined process. To filter out irrelevant constraints, more metrics are 
introduced, such as confidence and interest factor. 

In [8], an approach for the discovery of DECLARE models enhancing the 
time performance of the Declare Miner has been presented. Such an approach 
integrates the Apriori algorithm and a set of algorithms for Sequence Analysis, 
i.e., algorithms that, based on the analysis of the positioning of events in a 
trace, are able to understand whether a DECLARE constraint is satisfied in 
that trace or not. In this paper, we further enhance the approach presented 
in [8] to make it suitable for parallelization. In particular, we leverage the 
notions of search space partitioning and database partitioning presented in [9] 
using them as a basis for two multi-threading implementations of the plug-in. 
The difference between the two partitioning methods lies in the fact that 
in database partitioning the event log is divided into separate chunks and 
each chunk is analyzed by a different thread. In the other case (search space 
partitioning), the candidate DECLARE constraints to be checked are grouped 
per template and each template is processed separately. All three variants of 
the approach (the sequential one and the two additional variants leveraging 
search space partitioning and database partitioning) have been implemented 
in the Declare Miner 2.0 plug-in in ProM and evaluated using 76 synthetic 
logs with different characteristics and 8 publicly available real-life logs. 

The paper is structured as follows. Section 2 introduces some background 
notions about process mining and DECLARE. Section 3 illustrates the proposed 
approach. Section 4 describes the experimental evaluation. Finally, Section 5 
discusses related work and Section 6 concludes the paper and spells out 
directions for future work. 

 
2. Background 

In this section, we provide a brief overview about the main concepts 
used in this work. Section 2.1 gives some background about process mining. 
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Section 2.2 provides some basic notions about DECLARE. In Section 2.3, we 
introduce an example of a DECLARE model. 

 

2.1. Process Mining 

Process mining is still a rather young research discipline, which lies between 
data mining and computational intelligence, and between process modeling 
and analysis. The general idea of process mining is to discover, monitor and 
improve real-life processes by extracting knowledge from event data registered 
by different information systems [1]. Over the last ten years, event data has 
become more widely available and process mining techniques have greatly 
matured. Different process mining algorithms have been implemented in 
academic and commercial systems. As there is an increasing interest from 
industry in this discipline, a growing number of software vendors are adding 
functionalities that provide process mining capabilities to their software and 
tools. 

Starting point for process mining techniques is an event log. Each event 
in a log refers to an activity (i.e., a well-defined step in some process) and is 
related to a particular trace (i.e., a process instance). The events belonging 
to a trace are ordered and can be seen as one “run” of the process. Event 
logs may store additional information about events such as the resource (i.e., 
person or device) executing or initiating the activity, the timestamp of the 
event, or data elements recorded with the event. 

Process mining mainly covers three different groups of techniques: 

process discovery, which takes an event log and produces a model without 
using any apriori information; 

model enhancement, which is used to extend or to adapt an existing 
process model based on the behavior recorded in an event log; 

conformance checking, which is used to compare an existing process 
model with an event log. 

The main guiding principles and upcoming challenges of process mining have 
been reported in [10]. The former serve as a means for process miners to 
orient their investigations in real-life environments. The latter shed light 
on relevant open issues that are worth being tackled in the future. In 
this work, we tackle the challenge of implementing an approach dealing 
with logs of different sizes and characteristics (Challenge C2 in [10]), the 

• 

• 

• 
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challenge related to the creation of representative benchmarks for process 
mining (Challenge C3), and the challenge related to the improvement of 
the representational bias used for process discovery (Challenge C5). Indeed, 
our extensive evaluation shows that the proposed discovery approach is able 
to deal with logs with diverse characteristics (Challenge C2). In addition, 
the large set of synthetic logs we generated starting from DECLARE models 
provide the process mining community with benchmark data characterized 
by high variability typical of unstable environments (Challenge C3). Finally, 
the proposed approach aims at discovering process models described using a 
declarative language (DECLARE), which alleviates the representational issues 
that procedural languages need to face in case of processes working in highly 
variable environments (Challenge C5). 

 

2.2. The DECLARE Modeling Language 

Recently, several works have investigated advantages and disadvantages 
of using procedural or declarative process modeling languages to describe a 
business process [2, 3, 4]. The results of these studies highlighted that the 
dichotomy procedural versus declarative reflects the nature of the process. 
Procedural  models  like  Petri  nets,  BPMN,  and  EPCs  are  more  suitable 
to support business processes working in stable environments, in which 
participants have to follow predefined procedures, since they suggest step by 
step what to do next. In contrast, declarative process modeling languages like 
DECLARE provide process participants with a (preferably small) set of rules 
to be followed during the process execution. In this way, process participants 
have the flexibility to follow any path that does not violate these rules. 

DECLARE is a declarative process modeling language introduced in [5]. A 
DECLARE model consists of a set of constraints applied to (atomic) activi- 
ties. Constraints, in turn, are based on templates. Templates are abstract 
parameterized patterns, and constraints are their concrete instantiations on 
real activities. Templates have a user-friendly graphical representation un- 
derstandable to the user. Their semantics can be formalized using different 
logics [11], the main one being LTL for finite traces. Each constraint inherits 
the graphical representation and semantics from its template. The major 
benefit of using templates is that analysts do not have to be aware of the 
underlying logic-based formalization to understand the models. They work 
with the graphical representation of templates, while the underlying formulas 
remain hidden. Table 1 reports the main DECLARE templates, their graphical 
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Figure 1: The DECLARE model for a fracture treatment process. 
 
 

representation and a textual description. The reader can refer to [12] for a 
full description of the language. 

Here, we indicate template parameters with capital letters (see Table 1) 
and real activities in their instantiations with lower case letters (e.g., constraint 
RESPONSEpa, bq).  A  trace  is  a  sequence  of  events  like  xa, a, b, cy.  DECLARE 
templates can be grouped in three main categories: existence templates 
(first 4 rows of the table), which involve only one event; (mutual) relation 
templates (rows from 5 to 15), which describe a dependency between two 
events; and negative relation templates (last 3 rows), which describe a negative 
dependency between two events. 

Consider, for example, the RESPONSE constraint RESPONSE a, b . This 
constraint indicates that “If a occurs, then b occurs after a”. Therefore, the 
RESPONSE constraint is satisfied for traces   a, a, b, c ,   b, b, c, d   and    a, b, c, b . 
It is not satisfied for a, b, a, c , because the second occurrence of a is not 
followed by a b in such a trace. An activation of a constraint in a trace 
is an event whose occurrence imposes, because of that constraint, some 
obligations on another event (the target ) in the same trace. For example, for 
RESPONSE a, b , a is an activation, because the execution of a forces b to be 
executed eventually. Event b is a target. 

An activation of a constraint can be a fulfillment or a violation for that 
constraint. When a trace is perfectly compliant with a constraint, every 
activation of the constraint in the trace leads to a fulfillment. Consider, again, 
the RESPONSE constraint RESPONSEpa, bq.  In trace xa, a, b, cy, the constraint 

Check 
X-ray risk 

Init 

Examine 
patient 
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Template Explanation Notation 

Existence templates 
 

EXISTENCEpn, Aq A occurs  at  least  n  times 

ABSENCEpm ` 1, Aq A occurs  at  most  m  times 

INITpAq A is  the  first  to  occur 
 

Relation templates 
 

RESPONDEDEXISTENCEpA, Bq If  A occurs,  then  B occurs 

RESPONSEpA, Bq If  A occurs,  then  B occurs  after  A 

ALTERNATERESPONSE  A, B Each time A occurs, then B occurs af- 

terwards, before A recurs 

CHAINRESPONSE  A, B Each time A occurs, then B occurs im- 
mediately after 

PRECEDENCEpA, Bq B occurs  only  if  preceded  by  A 

ALTERNATEPRECEDENCE  A, B Each time B occurs, it is preceded by 
A and no other B can recur in between 

CHAINPRECEDENCE   A, B Each time B occurs, then A occurs im- 
mediately before 

Mutual relation templates 
 

COEXISTENCE  A, B If B occurs, then A occurs, and vice 
versa 

SUCCESSIONpA, Bq A occurs if and only if B occurs after A 

ALTERNATESUCCESSION   A, B A and B occur if and only if the latter 
follows the former, and they alternate 
each other 

CHAINSUCCESSION  A, B A and B occur if and only if the latter 
immediately follows the former 

Negative relation templates 
 

NOTCOEXISTENCEpA, Bq A and  B never  occur  together 

NOTSUCCESSIONpA, Bq A never  occurs  before  B 

NOTCHAINSUCCESSION   A, B A and B occur if and only if the latter 

does not immediately follow the former 
 

Table 1: DECLARE templates. 
 
 

is activated and fulfilled twice, whereas, in trace a, b, c, b , the same constraint 
is activated and fulfilled only once. On the other hand, when a trace is not 
compliant with a constraint, at least one activation leads to a violation. In 
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trace  xa, b, a, cy,  for  example,  the  RESPONSE  constraint  RESPONSEpa, bq is 
activated twice, but the first activation leads to a fulfillment (eventually 
b occurs), whereas the second activation leads to a violation (b does not 
occur subsequently). Finally, there exist cases in which the constraint is 
not activated at all. Consider, for instance, trace b, b, c, d . The considered 
RESPONSE constraint is satisfied in a trivial way in this trace, because a never 
occurs. In this case, we say that the constraint is vacuously satisfied [13]. 
In [14, 15], the authors introduce the notion of semantical vacuity detection 
according to which a constraint is non-vacuously satisfied in a trace when it 
is fulfilled and activated at least once in that trace. 

 

2.3. DECLARE Model Example 

As an example of a DECLARE model, we consider the frac- 
ture treatment   process   reported   in   Fig.   1.   It   includes   8   activi- 
ties: Examine patient, Check X-ray risk, Perform X-ray, Perform reposition, Apply cast, 
Remove cast, Perform surgery, and Prescribe rehabilitation. Its behavior is specified 
by the following constraints 1 - 7: 

 

1. INITpExamine patientq 

2. ALTERNATEPRECEDENCEpCheck X-ray risk, Perform X-rayq 

3. PRECEDENCEpPerform X-ray, Perform repositionq 

4. PRECEDENCEpPerform X-ray, Apply castq 

5. SUCCESSIONpApply cast, Remove castq 

6. PRECEDENCEpPerform X-ray, Perform surgeryq 

7. RESPONSEpPerform surgery, Prescribe rehabilitationq 
 

According to these constraints, every process instance starts with ac- 
tivity Examine patient. Moreover, if activity Perform X-ray is performed, then 
Check X-ray risk must be performed before it, without other executions of 
Perform X-ray in between. Activities Perform reposition, Apply cast and Perform surgery 

require that Perform X-ray is executed before they are executed. If Perform surgery 

is performed, then Prescribe rehabilitation is performed eventually after it. Finally, 
after every execution of Apply cast, eventually Remove cast is executed and, vice 
versa, before every execution of Remove cast, Apply cast must be performed. 
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Figure 2: Architectural scheme of the approach without partitioning. 
 
 

3. Approach 

The approach proposed in this paper aims at discovering DECLARE con- 
straints from an event log. The idea is to identify and provide users with 
frequent constraints, i.e., constraints that are fulfilled in a percentage of 
traces (in the log) higher than a given threshold (suppmin). To this extent, it 
combines the Apriori algorithm presented in [7], and Sequence Analysis, i.e., 
a novel collection of algorithms that aim at discovering declarative constraints 
by analyzing how events are positioned along traces. 

The approach is composed of two phases (Fig. 2). In the first phase, 
a list of frequent activity sets is derived from the log using the Apriori 
algorithm. In the second phase, the frequent activity sets are used to generate 
candidate DECLARE constraints (by instantiating DECLARE templates with 
those activities). The list of candidate constraints is then pruned by only 
keeping those that are frequently satisfied in the log, i.e., with a support 
higher than suppmin (through Sequence Analysis). 

As shown in detail in our experiments in Section 4, the application of 
the Apriori algorithm is less time consuming than the Sequence Analysis on 
the traces in the log. Therefore, we propose two versions of the discovery 
algorithm that can be used to parallelize the Sequence Analysis phase. 

 

3.1. Search Space and Database Partitioning 

The first version (Fig. 3(a)) of the discovery algorithm presented in this 
work is based on search space partitioning [9]. In particular, the analysis 
of each template is managed independently in a separate thread and the 

templates min.support % ⏉/⏊        vacuity detection enabled 
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Figure 3: Architectural scheme of the approach with partitioning. 
 
 

results coming from each thread are finally collected to return the discovered 
constraints. 

The second version (Fig. 3(b)) is based on a database partitioning [9]. In 
this case, the analysis of each trace is managed independently in a separate 
thread. In this version, we can compute the support of each candidate 
constraint only when all the threads have completed their execution. As 
shown in Section 4, in some cases this additional step can decrease the 
performance of this algorithm. In this version of the algorithm, since we 
partition per trace, it is possible, for each trace, to reduce the number of 
candidate constraints to be checked. In particular, two actions are performed 
for each trace: 
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Figure 4: The hierarchy of the DECLARE constraints. 
 

1. we remove candidates that are not activated at all; 

2. we rank the constraints so as to check first the strongest ones. 

In particular (action 1), for each trace, we derive the events that occur 
in the trace and we only check candidates whose activation occurs at least 
once in the trace. The ones that are not activated at all are not needed 
to be checked and are classified as vacuously satisfied. For instance, con- 
straint RESPONSE d, b , would be directly discarded for traces a, j, j, e, e   and 
a, b, b, c, j, e, f, b . Indeed, the constraint is vacuously satisfied in these traces 
and it does not need to be checked. 

In addition (action 2), for each trace, we start checking the candidates 
instantiations of the strongest templates according to the hierarchy presented 
in [16]. Figure 4 reports a detailed view of the lattice describing the order of 
the DECLARE templates. In the figure, each node is labeled with a shortening 
for a DECLARE template (for example, the label C S in the lattice stands for 
CHAINSUCCESSION).  According to the lattice, for instance, CHAINRESPONSE 
is stronger than ALTERNATERESPONSE, which is, in turn, stronger than 
RESPONSE.  Moreover, for the transitivity of the order, CHAINRESPONSE 
is also stronger than RESPONSE. When checking whether constraints are 
valid in a given trace, if a stronger constraint has already been found to 
be (non-vacuously) satisfied in the trace, it is not necessary to check also 
the weaker constraints, as they will also be (non-vacuously) satisfied. For 
instance, if CHAINRESPONSE a, b  is verified in a trace, RESPONSE a, b  will 
also hold. 

Algorithm 1 and Algorithm 3 report the pseudo-code of the two versions 

C R C S C P 

A R A S A P Init 

R S P 

RE CE RE−1 

¬ CE 

¬ S 

¬ C S E CH CH 

ABSn+2 ABSn+1 ABSn 

EXAn+1 EXAn 

EXIn+1 EXIn 



12  

 
 
 
 

of the discovery algorithm based on search space and database partitioning, 
respectively. After a common part including the discovery of frequent activity 
sets through the Apriori algorithm (procedure apriori, line 1 in Algorithm 1 
and Algorithm 3) and an initialization phase (lines 2-3) required to prepare 
the necessary data structures (detailed in Algorithm 2), they implement the 
Sequence Analysis differently. 

In particular, in the case of search space partitioning, a replayer is created 
for each template (line 5 in Algorithm 1) in charge of processing one by one 
all the traces of the log and identifying, among the candidate constraints, the 
ones that are fulfilled in each trace. In the case of the database partitioning 
(Algorithm 3), instead, the templates are ordered according to their strength 
(line 4), and processed starting from the strongest ones. More specifically, 
for each trace and each template the list of candidate constraints is pruned 
by removing the candidates that are not activated at all in the current trace 
(line 7), as well as the ones for which there exists a stronger constraint that is 
satisfied in the current trace (line 12). In this way, we are able to instantiate 
a replayer for each trace and each template (line 13) on a smaller set of 
candidate constraints. 

The core part of the Sequence Analysis is then the invocation of procedure 
process (line 8 and line 15, respectively) to analyze the traces event by event 
and identify the fulfilled constraints for each template. The number of traces 
fulfilling each constraint is computed both in case of vacuity detection enabled 
(lines 10-13 and lines 19-22, respectively) and disabled (lines 15-18 and lines 
24-27, respectively). In particular, in the case of search space partitioning, 
the number of traces fulfilling a given constraint is directly retrieved from 
the replayers, which incrementally update the number of fulfilling traces. In 
the case of database partitioning, instead, the number of traces fulfilling 
a given constraint is obtained by combining the number of traces fulfilling 
the constraint with the number of traces fulfilling the stronger constraints. 
Finally, the list of candidate constraints is filtered based on their support 
(line 19 and line 28), i.e., based on the percentage of traces fulfilling them. 

In Section 3.2, we explain in detail how procedure apriori works. The 
implementation of process is different for different templates. In Section 3.3, 
we provide a detailed description of the algorithms used to implement this 
procedure for all the standard DECLARE templates. 
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Algorithm 1: Discovery algorithm with search space partitioning 
 

Input:  L “ rt1, . . . , t|L|s the  event  log  to  be  analyzed,  consisting  of  traces  ti  (1 ď i ď |L|); 
T “ tT1, . . . , T|T|u the  set  of  templates  Tj  (1 ď j  ď |T|); 
suppmin  the minimum support; 
vacuity? : a flag to enable or disable vacuity detection, such that v P J, K. 

Data:  ful:  a  map  associating  each  constraint  instantiating  a  template  Tj T to  the  number  of 
traces where it is fulfilled. 

1    tA1, A2u Ð aprioripL, suppmin q /*  frequent  activity sets  of  size 1  and  2  */ 

2    tA1, A2u Ð initializeCandidatespA1, A2q 

3    ful Ð initializeMappA1, A2, Tq 

4    foreach   Tj  P T   do 

5 rj  Ð new  ReplayerpTj , Akq /*  one  replayer  for  each  template  */ 
6 foreach   ti  P L   do 
7 foreach   ei,h  P ti    do 
8 rj .processpei,h, tiq /*  process  event  ei,h   in  trace  ti   with  the  replayer  */ 

9 if vacuity? then 
10 foreach paq P A1 do 
11 ful.putp T 1paq,     ful.getpT 1paq ̀  rj .fulfillingTraces.getpaq q 

j j 

12 foreach  pa, bq P Ax2  do 

   
14 else 

15 
16 

foreach paq P A1 do 
ful.putp T 1paq, ful.getpT 1paqq`rj .fulfillingTraces.getpaq`rj .vacuousTraces.getpaq q 

j j 

17 foreach  pa, bq P Ax2  do 

 
 rj .vacuousTraces.getpa, bq q 

  19     ful Ð filterOnSupportpful, suppmin q  

 
 

3.2. Phase 1:  Apriori Algorithm 

The Apriori algorithm [7] applied in the first phase of the approach 
allows for the discovery of sets of activities occurring frequently in the traces 
composing the log (frequent activity sets). This algorithm implements the 
procedure apriori reported in Algorithm 1 and Algorithm 3. 

Let Σ be the set of activities available in the input event log L. Let t  Σx 

be a trace over Σ, i.e., a sequence of activities in Σ.  L is a multi-set over Σx 
(a trace can appear multiple times in an event log). The support of a set of 
activities is a measure that assesses the relevance of this set in an event log. 

Definition 1. The  support  of  an  activity  set  A Ď Σ in  an  event  log 
L “ rt1, t2, . . . , tns is the ratio of traces in L that contain all the activities in 

ful.putp T 2pa, bq, ful.getpT 2pa, bq ̀  rj .fulfillingTraces.getpa, bq ̀  18 

ful.putp T 2pa, bq,     ful.getpT 2pa, bq ̀  rj .fulfillingTraces.getpa, bq q 13 
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Algorithm 2: Initialization procedures 
 

1  Procedure initializeCandidates 
Input: A1, A2 

2 A1 Ð H 

3 A2 Ð H 

4 foreach tau P A1 do 

5 A1 Ð A1 Y tpaqu 

6 foreach ta, bu P A2 do 

7 Ax2  Ð Ax2  Y tpa, bq, pb, aqu 

9 return  Ax1, Ax2 

10 Procedure initializeMap 

Input: A1, A2, T 

 
12 foreach T 1 P T do 

13 ful.putpT 1paq, 0q /*  existence  templates  */ 

14 foreach pa, bq P A2  do 
15 foreach T 2 P T do 

16 ful.putpT 2pa, bq, 0q /*  relation  templates  */ 
 

18 return ful 

19 Procedure initializeMaps 

Input: A1, A2, T 

 
21 foreach T 1 P T do 

22 ful.putpT 1paq, 0q /*  existence  templates  */ 

23 vac.putpT 1paq, 0q 

24 foreach pa, bq P A2  do 
25 foreach T 2 P T do 

26 ful.putpT 2pa, bq, 0q /*  relation  templates  */ 

27 vac.putpT 2pa, bq, 0q 
 

29 return ful, vac 
 

 

A , i.e., 

supppA q “ 
|LA | 

,  where  L “ rt P L|@x P A , x P ts 
|L| 

An activity set is considered to be frequent if its support is above a given 
threshold suppmin.  Let Ak  denote the set of all frequent activity sets of size 
k   N and let Ck denote the set of all candidate activity sets of size k that 
may potentially be frequent. The Apriori algorithm starts by considering 
activity sets of size 1 and progresses iteratively by considering activity sets of 
increasing sizes in each iteration. The consideration upon which this iterative 

A 
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Algorithm 3: Discovery algorithm with database partitioning 
 

Input:  L “ rt1, . . . , t|L|s the  event  log  to  be  analyzed,  consisting  of  traces  ti  (1 ď i ď |L|); 
T “ tT1, . . . , T|T|u the  set  of  templates  Tj  (1 ď j  ď |T|); 
suppmin  the minimum support; 
vacuity? : a flag to enable or disable vacuity detection, such that v P J, K. 

Data:  ful:  a  map  associating  each  constraint  instantiating  a  template  Tj T to  the  number  of 
traces where it is fulfilled; 
vac:  a  map  associating  each  constraint  instantiating  a  template  Tj  to  the  number  of 
traces where it is vacuously satisfied; 
inheritedFromStronger:  a  map  associating  each  constraint  instantiating  a  template  Tj  to 
the number of traces where a stronger constraint is satisfied. 

1    tA1, A2u Ð aprioripL, suppmin q /*  frequent  activity sets  of  size 1  and  2  */ 

2    tA1, A2u Ð initializeCandidatespA1, A2q 

3    ful, vac Ð initializeMapspA1, A2, Tq 

4   T Ð sortpTq 
5    foreach   ti  P L   do 
6 foreach   Tj  P T   do 

7 tAk, Vku Ð filterVacuouslySatisfiedCandidatespAk , ti, Tj q 

8 foreach paq P V1 do 
9 vac.putp T 1paq, vac.getpT 1paqq ̀  1 q 

j j 

10 foreach  pa, bq P Vp2  do 

   
12 Ak  Ð filterCandidatesSatisfiedByStrongerpAk, ful, Tj q 

13 rj  Ð new  ReplayerpTj , Akq   /*  one  replayer  for  each  trace  and  each  template  */ 
14 foreach   ei,k  P ti    do 
15 rj .processpei,h, tiq /*  process  event  ei,h   in  trace  ti   with  the  replayer  */ 

 

16    foreach   Tj  P T   do 
17 inheritedFromStronger.updateTemplatepT kq 

18 if vacuity? then 
19 foreach paq P A1 do 
20 ful.putp T 1paq,     ful.getpT 1paq ̀  rj .fulfillingTraces.getpaq ̀  

inheritedFromStronger.getpT 1paqq q 

21 foreach pa, bq P A2  do 
22 ful.putp T 2pa, bq,     ful.getpT 2pa, bq ̀  rj .fulfillingTraces.getpa, bq ̀  

inheritedFromStronger.getpT 2pa, bqq q 
 

23 else 

24 

25 

 
foreach paq P A1 do 

ful.putp T 1paq, ful.getpT 1paqq ̀  rj .fulfillingTraces.getpaq ̀  
inheritedFromStronger.getpT 1paqq ̀  vac.getp T 1paq q 

j j 

26 foreach  pa, bq P Ax2  do 

 
 

inheritedFromStronger.getpT 2pa, bqq ̀  vac.getp T 2pa, bq q 
 

  28     ful Ð filterOnSupportpful, suppmin q  

ful.putp T 2pa, bq, ful.getpT 2pa, bq ̀  rj .fulfillingTraces.getpa, bq ̀  27 

vac.putp T 2pa, bq, vac.getpT 2pa, bqq ̀  1 q 11 
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algorithm is built is that every set is always at least as frequent as its supersets 
(downward closure). 

The set of candidate activity sets of size k ` 1, Ck`1, is generated by 
joining relevant frequent activity sets from Ak. Ck`1 can be pruned efficiently 
by using the downward closure property ensuring that a relevant candidate 
activity set of size k ` 1 cannot have an infrequent subset. The activity sets 
in Ck`1 that have a support above the given threshold suppmin constitute the 
frequent activity sets of size k ` 1 (Ak`1) used in the next iteration. 

For  instance,   let   L  be   an   event   log   on   the   alphabet   Σ   “ 

ta, b, c, d, e, f, g, h, i, ju: 

L “ rxa, b, c, j, b, b, d, ay, xa, b, b, c, d, ay, xa, b, b, i, i, a, c, dy, 

xa, j, j, e, ey, xa, d, b, c, j, e, f, bys 

and suppose that suppmin=0.5. 
The Apriori algorithm starts considering frequent activity sets of size 1. 

C1, in Table 2(a) (table on the left), shows the candidate activity sets of size 
1 on the log L and the corresponding support values (supp). A1 (table on the 
right) shows the corresponding frequent activity sets (i.e., all the activity sets 
with a support value higher than suppmin). The candidate activity sets of 
size 2, C2, are then computed starting from A1. C2, in Table 2(b) (table on 
the left), shows the candidate activity sets of size 2 and the related support 
values (supp). A2 (table on the right) shows the list of the frequent activity 
sets (of size 2) that will become the starting point for building C3, and so 
on. The Apriori algorithm also allows for taking into account negative events 
(non-occurrences). Such information might be useful for inferring, for instance, 
events that are mutually exclusive, e.g., a and b never occur together. 

The Apriori algorithm returns frequent activity sets, without specifying 
what kind of relation exists between activities. These relations are captured 
by DECLARE templates.   Therefore,  we generate candidate constraints to 
be verified over the event log as follows: for every DECLARE template, we 
assign its k parameters with the permutations of activities taken from the 
discovered frequent sets of size k. For instance, given a frequent activity 
set ta, bu and templates RESPONSE and PRECEDENCE,  the following con- 
straints are generated:  RESPONSEpa, bq, RESPONSEpb, aq, PRECEDENCEpa, bq, 
and PRECEDENCE b, a . It is worth noting that we configure the Apriori 
algorithm according to the template under analysis. For example, for relation 
templates, we discover frequent activity sets including only pairs of positive 
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Candidate 
activity sets 

 
 

C1 supp [%] 

tau 100 
tbu 80 
tcu 80 
tdu 80 
teu 40 
tfu 20 
tgu 0 
thu 0 
tiu 20 

   tju 60  

Frequent 
activity sets 

A1 supp [%] 

tau 100 
tbu 80 
tcu 80 
tdu 80 

   tju 60  

Candidate 
activity sets 

 
 

C2 supp [%] 
 

 

ta, bu 80 
ta, cu 80 
ta, du 80 
ta, ju 60 
tb, cu 80 
tb, du 80 
tb, ju 40 
tc, du 80 
tc, ju 40 

   td, ju 40  

Frequent 
activity sets 

 
 

A2 supp [%] 

ta, bu 80 
ta, cu 80 
ta, du 80 
ta, ju 60 
tb, cu 80 
tb, du 80 

   tc, du 80  

(a) Activity sets of size 1 (b) Activity sets of size 2 

Table 2: Candidate and frequent activity sets of size 1 and 2 (suppmin “ 50%). 

 
(i.e., occurring) events. On the other hand, for negative relation templates, 
also negative (i.e, non-occurring) events are taken into account. 

 

3.3. Phase 2: Sequence Analysis 

After the list of candidate constraints has been generated in Phase 1, a 
list of relevant DECLARE constraints is extracted from it using a group of 
algorithms for Sequence Analysis. These algorithms implement the procedure 
process reported in Algorithm 1 and Algorithm 3 for each DECLARE template. 
Relevant constraints are the ones that are frequently fulfilled in the input log. 

Let L be an event log on the alphabet Σ and constr a constraint, i.e., an 
instantiation of a DECLARE template with activities in Σ. The support of 

constr is a measure that assesses the relevance of the constraint in the event 
log. 

Definition 2. The support of  a  constraint  constr  in  an  event  log  L  “ 

t1, t2, . . . , tn is the ratio of traces in L where the  constraint  is  fulfilled, 
i.e., 

 

 

supp 

 
 

constr 

|Lconstr | , 
|L| 

where  Lconstr  “ rt P L|constr  is  fulfilled  in  ts 

“ 
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A constraint constr is considered to be relevant if its support is greater than 
a given threshold suppmin.1 

Each Sequence Analysis algorithm is in charge of computing the support 
of each candidate constraint instantiation of a given DECLARE template. To 
this aim, these algorithms check, for each candidate constraint, whether each 
trace in the input log is compliant with the constraint. Therefore, for each 
template, each Sequence Analysis algorithm requires to have access to the 

list of candidate constraints generated in Phase 1, Ak. 
The event log is replayed and, all events in each trace of the log are 

processed and analyzed by the algorithms. Based on their position in the trace, 
each specific Sequence Analysis algorithm assesses whether each candidate 
constraint is fulfilled or not in the trace. Once all events in the log have been 
processed, only the candidate constraints with suppconstr greater than the 
minimum support suppmin are kept and presented to the user. 

The discovered constraints can also be filtered in order to leave out 
vacuously satisfied constraints. If vacuity detection is enabled only constraints 
that are activated and satisfied frequently will be discovered. If vacuity 
detection is disabled, also vacuously satisfied constraints will be presented 
to  the  user.  For  instance,  let  L be  an  event  log  on  the  alphabet  Σ “ 

ta, b, c, d, e, f, g, h, i, ju: 

L “ rxa, b, c, j, b, b, d, ay, xa, b, b, c, d, ay, xa, b, b, i, i, a, c, dy, 

xa, j, j, e, ey, xa, d, b, c, j, e, f, bys 

and suppose that suppmin=0.7. 
By applying the Sequence Analysis algorithm for the PRECEDENCE tem- 

plate  to  constraint  PRECEDENCEpc, dq,  it  results  to  be  satisfied  in  the  first 
four traces. Therefore, the support value for this constraint is suppconstr “ 0.8, 
which is greater than suppmin. Constraint PRECEDENCE c, d will thus be 
discovered. If vacuity detection is enabled, only the first three traces of the 

 
1Note that we use the same support threshold for activity sets (in the Apriori algorithm) 

and for constraints (in the Sequence Analysis). Indeed, these two notions of support are 
strictly correlated. Suppose, for example, that we want to discover RESPONSE constraints 
with vacuity detection enabled and with minimum support suppmin. In this case, we should 
instantiate the RESPONSE template using all the pairs of activities that occur together 
in a ratio of traces that is at least equal to suppmin. Indeed, the RESPONSE constraints 
instantiated using pairs of activities whose support is lower than suppmin can never be 
(non-vacuously) satisfied in a percentage of traces equals to or higher than suppmin. 
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Algorithm 4: Sequence Analysis for RESPONDEDEXISTENCE 
 

Input: e the event to be processed; 
t the current trace. 

Data: fulfillingTraces a map associating each candidate constraint to the number of traces where 
it is fulfilled; 
vacuousTraces a map associating each candidate constraint to the number of traces where 
it is vacuously satisfied; 

A2 the set of candidate constraints. 

1  if isFirstEvent e, t   then 
2 initialize set occurredEvents 
3 initialize map pendingActivations 

4   if e R occurredEvents then 
5 occurredEvents.addpeq 

6  foreach pa, bq P A2 do 
7 if e ““ b then /* e  is equal  to the  second  activity */ 
8 pendingActivations.putppa, eq, 0q 
9 else if e ““ a then /* e is equal to the first activity */ 

10 if  b R occurredEvents then 
11 pendingActivations.putppe, bq, 1q 

12 if isLastEvent(e,t) then 
13 acts pendingActivations.get(  a, b  ) 
14 if acts == 0 then 
15 if a P t then 
16 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ̀  1) 
17 

18 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1)) 

 
 

 

example log are counted for suppconstr , which is 0.6 and lower than suppmin. 
Therefore, in this case, constraint PRECEDENCE c, d will not be returned. 

The Sequence Analysis algorithms for all the standard DECLARE templates 
are presented in the following. 

 

Sequence  Analysis   for 
RESPONDEDEXISTENCE 

RESPONDEDEXISTENCE. The semantics of the 
template can be defined as “If A occurs, then B 

occurs”. The pseudo-code for the RESPONDEDEXISTENCE algorithm is re- 
ported in Algorithm 4. It takes as input the current event e and the current 
trace t and, if e is the first event in t, it initializes set occurredEvents 
(containing the events already occurred at least once in the current trace) 
and map pendingActivations (containing the number of pending activations 
in the current trace for each candidate RESPONDEDEXISTENCE constraint) 
(lines 2-3). If event e has never occurred in t, e is added in occurredEvents 
(line 5). Line 8 of the algorithm sets to 0 the pending activations in t for 
the RESPONDEDEXISTENCE constraints having e as second parameter (there 

else 
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Algorithm 5: Sequence Analysis for RESPONSE 
 

Input: e the event to be processed; 
t the current trace. 

Data: fulfillingTraces a map associating each candidate constraint to the number of traces where 
it is fulfilled; 
vacuousTraces a map associating each candidate constraint to the number of traces where 
it is vacuously satisfied; 

A2 the set of candidate constraints. 

1  if isFirstEvent e, t   then 
2 initialize map pendingActivations 

3  foreach pa, bq P A2 do 
4 if   e ““ b then /* e is equal to the second parameter */ 
5 pendingActivations.putppa, eq, 0q 
6 else if e “ a then /* e is equal to the first parameter */ 
7 pendingActivations.putppe, bq, 1q 

8 if isLastEvent(e,t) then 
9 acts pendingActivations.get(  a, b  ) 

10 if acts == 0 then 
11 if a P t then 
12 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ̀  1) 
13 

14 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1)) 

 
 

 
are no longer pending activations for these constraints when e occurs). All 
the RESPONDEDEXISTENCE constraints having e as first parameter are acti- 
vated when e occurs and, therefore, if the second parameter has not occurred 
yet, the number of pending activations for these constraints in t is set to 
1 (indicating that there is at least 1 pending activation) (line 11). At the 
end of each trace, if the number of pending activations is 0 for a candidate 
constraint, the constraint is satisfied (or vacuously satisfied) in that trace. 
If the first parameter of the constraint occurs in the current trace, i.e., the 
constraint is activated, the number of fulfilling traces is incremented by one 
for that constraint (since the constraint is non-vacuously satisfied in this case) 
(line 16); if, instead, the constraint is not activated, the number of traces in 
which the constraint is vacuously satisfied is incremented by one (since the 
constraint is vacuously satisfied) (line 18). 

Sequence Analysis for RESPONSE. The semantics of the RESPONSE template 
can be defined as “If A occurs, then B occurs after A”. The pseudo-code 
for the RESPONSE algorithm is reported in Algorithm 5. It takes as input 
the current event e and the current trace t and, if e is the first event in 
t, it initializes map pendingActivations (containing the number of pending 

else 
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activations in the current trace for each candidate RESPONSE constraint) 
(line 2). Line 5 of the algorithm sets to 0 the pending activations in t for the 
RESPONSE constraints having e as second parameter. On the other hand, all 
the RESPONSE constraints having e as first parameter are activated when e 
occurs and, therefore, the number of pending activations for these constraints 
in t is set to 1 (indicating that there is at least 1 pending activation) (line 
13). At the end of each trace, if the number of pending activations is 0 for 
a candidate constraint, the constraint is satisfied (or vacuously satisfied) in 
that trace. If the first element of the constraint occurs in the current trace, 
i.e., the constraint is activated, the number of fulfilling traces is incremented 
by one for that constraint (since the constraint is non-vacuously satisfied in 
this case) (line 12); if, instead, the constraint is not activated, the number 
of traces in which the constraint is vacuously satisfied is incremented by one 
(since the constraint is vacuously satisfied) (line 14). 

 

Sequence   Analysis   for 
ALTERNATERESPONSE 

ALTERNATERESPONSE. The semantics of the 
template can be defined as “Each time A occurs, 

then  B occurs  afterwards,  before  A recurs”. The  pseudo-code  for  the 
ALTERNATERESPONSE algorithm is reported in Algorithm 6.  It takes as 
input the current event e and the current trace  t and,  if  e  is  the  first 
event in t, it initializes set violatedCandidates (containing the candidate 
ALTERNATERESPONSE constraints that have already been recognized as vi- 
olated in the current trace) and map pendingActivations (containing the 
number of pending activations in the current trace for each candidate 
ALTERNATERESPONSE constraint) (lines 2-3). Line  7  of  the  algorithm  sets 
to 0 the pending activations in t for the ALTERNATERESPONSE constraints 
having e as second parameter. Every candidate ALTERNATERESPONSE con- 
straint having e as first parameter is activated when e occurs. Therefore, if 
the number of pending activation for a candidate (not yet violated) is greater 
than 0, the constraint is violated in the current trace. Otherwise, the number 
of pending activations for this constraint in t is set to 1 (line 13). At the end 
of each trace, if the number of pending activations is 0 for a (not violated) 
candidate constraint, the constraint is satisfied (or vacuously satisfied) in 
that trace. If the first parameter of the constraint occurs in the current trace, 
i.e., the constraint is activated, the number of fulfilling traces is incremented 
by one for that constraint (since the constraint is non-vacuously satisfied in 
this case) (line 18); if, instead, the constraint is not activated, the number 
of traces in which the constraint is vacuously satisfied is incremented by one 
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Algorithm 6: Sequence Analysis for ALTERNATERESPONSE 
 

Input: e the event to be processed; 
t the current trace. 

Data: fulfillingTraces a map associating each candidate constraint to the number of traces where 
it is fulfilled; 
vacuousTraces a map associating each candidate constraint to the number of traces where 
it is vacuously satisfied; 

A2 the set of candidate constraints. 

1  if isFirstEvent e, t   then 
2 initialize set violatedCandidates 
3 initialize map pendingActivations 

4   foreach   a, b A2 do 
5 if violatedCandidates.contains    a, b    then 
6 if   e b then /*  e  is equal  to  the  second  parameter  */ 
7 pendingActivations.put   a, e , 0 
8 else if e a then /* e is equal to the first parameter */ 
9 pends pendingActivations.get   e, b 

10 if pends 0 then 
11 violatedCandidates.add   e, b 
12 else 
13 pendingActivations.putppe, bq, 1q 

14 if  isLastEvent e, t   then 
15 acts pendingActivations.get(  a, b  ) 
16 if acts == 0 then 
17 if a P t then 
18 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ̀  1) 
19 

20 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1)) 

 
 

 

(since the constraint is vacuously satisfied) (line 20). 
 

Sequence Analysis for CHAINRESPONSE.   The semantics of the 
CHAINRESPONSE  template  can  be  defined  as  “Each  time  A  occurs, 
then B occurs immediately after”. The pseudo-code for the CHAINRESPONSE 
algorithm is reported in Algorithm 7. It takes as input the current event 
e and the current trace t and, if e is the first event in t, it initializes set 
violatedCandidates (containing the candidate CHAINRESPONSE constraints 
that have already been recognized as violated in the current trace) (line 2) 
and the global variable lastEventInTrace (containing the last event processed 
in the current trace) (line 3). All candidates having the previous event 
processed as first parameter and an event different from the current one as 
second parameter are recognized as violated (line 8). 

If a candidate constraint has not yet been violated in the current trace 

else 
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Algorithm 7: Sequence Analysis for CHAINRESPONSE 
 

Input: e the event to be processed; 
t the current trace. 

Data: fulfillingTraces a map associating each candidate constraint to the number of traces where 
it is fulfilled; 
vacuousTraces a map associating each candidate constraint to the number of traces where 
it is vacuously satisfied; 

A2 the set of candidate constraints; 
lastEventInTrace a variable containing the last event occurred in the current trace. 

1  if isFirstEvent e, t   then 
2 initialize set violatedCandidates 
3 initialize variable lastEventInTrace 

4  foreach pa, bq P A2 do 
5 if  ¬isF irstEventpe, tq then 
6 if  pa ““ lastEventInTraceq then 
7 if pe ‰ bq then /*  e  is not  equal  to  the  second  parameter  */ 
8 violatedCandidates.addppe, bqq 

9 if  ¬violatedCandidates.containsppa, bqq then 
10 if  isLastEventpe, tq then 
11 if pe ‰ aq then /*  e  is not  equal  to  the  first parameter  */ 
12 if a P t then 
13 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ̀  1) 
14 

15 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1)) 

 
  16  lastEventInTrace “ e  

 
 

and the current event e is the last event of the trace and is different from 
the first parameter of the constraint, the constraint is satisfied (or vacuously 
satisfied) in the trace. If the first parameter of the constraint occurs in the 
current trace, i.e., the constraint is activated, the number of fulfilling traces is 
incremented by one for that constraint (since the constraint is non-vacuously 
satisfied in this case) (line 13); if, instead, the constraint is not activated, the 
number of traces in which the constraint is vacuously satisfied is incremented 
by one (since the constraint is vacuously satisfied) (line 15). 

Sequence Analysis for EXISTENCE and ABSENCE. The existence constraint 
EXISTENCE n, A can be described as “A occurs at least n times”. Similarly, 
ABSENCE m     1, A   means “A occurs at most m times”.  Algorithm 8 shows 
the pseudo-code for the EXISTENCE and ABSENCE algorithms. Their imple- 
mentations differ based on the existenceCondition function. The algorithm 
takes as input the current event e and the current trace t and, if e is the first 
event in t, it initializes the maps eventCounter (for counting the number of 

else 
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Algorithm 8: Sequence Analysis for EXISTENCE and ABSENCE 
 

Input:  e the event to be processed; 
t the current trace. 

Data: fulfillingTraces a map associating each candidate constraint to the number of traces where 
it is fulfilled; 

A1 the set of candidate constraints. 

1  if isFirstEvent e, t   then 
2 initialize map eventCounter 
3   if e    eventCounter then 
4 eventCounter.put  e, 1 
5  else 
6 eventCounter.putpe, eventCounter.getpeq ` 1q 

7  forall a P A1 do 
8 if  isLastEventpe, tq then 
9 acts Ð eventCounter.getppaqq 

10 if existenceConditionpactsq then 
11 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ̀  1)) 

 

 
occurrences of each event in the current trace). At the end of each trace, if 
the existenceCondition is verified for a candidate constraint, the constraint 
satisfied in that trace and the number of fulfilling traces is incremented by 
one for that constraint (line 11). 

The existenceCondition differs based on the specific template of the 
Sequence Analysis: 

 

EXISTENCE n, A : the number of occurrences of A must be greater than 
or equal to n, 

• ABSENCEpm ` 1, Aq:  the number of occurrences of A must be at most 

 

The algorithms for the other templates specified in Table 1 can be easily 
derived from the ones described in this section. In particular, the algorithms 
for PRECEDENCE, ALTERNATEPRECEDENCE and CHAINPRECEDENCE are 
the same as the ones described for RESPONSE, ALTERNATERESPONSE 
and  CHAINRESPONSE,   respectively. The only difference is that, for the 
PRECEDENCE templates, the traces in the input log have to be parsed from 
the end to the beginning. Similarly, the algorithms for checking the negative 
relation templates are the same as the ones described for the corresponding 
relation templates. In this case, every trace that is (non-vacuously) satisfied 
for a relation template is violated for the corresponding negative relation 
template. 

• 



25  

 
 
 

 

 
 

Figure 5: A screenshot of the Declare Miner 2.0 ProM plug-in. 
 
 

We close this section by mentioning that we handle the specific case of 
empty traces outside the presented algorithms. An empty trace (vacuously) 
satisfies all relation, mutual relation and negative relation constraints. It 
satisfies ABSENCE constraints and violates any EXISTENCE constraint. 

 

3.4. Implementation 

All the algorithms presented in this work have been implemented in the 
Declare Miner 2.0, a plug-in of the process mining tool-kit ProM.2 In the 
plug-in, the user can select the version that she prefers to run (sequential, 
with search space or with database partitioning), according to her needs. 
Figure 5 shows a screenshot of the Declare Miner 2.0 plug-in. 

To enhance the usability of the tool, a feature has been added, which allows 
for avoiding to retrieve overcomplicated models when looking for negative 
constructs such as NOTSUCCESSION and NOTCHAINSUCCESSION. Such  a 
feature allows for considering NOTSUCCESSION and NOTCHAINSUCCESSION 
constraints activated in a trace only if both the involved activities occur in 

 
2http://www.processmining.org/ 

http://www.processmining.org/
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Whenever activity “Accepted-Wait - Implementation” is executed, activity “Completed-Resolved” is 
eventually executed afterwards. 

• cases where activity “Accepted-Wait - Implementation” is executed and the statement is valid 
(5,33% of cases, 403 cases in total) 

• cases where activity “Accepted-Wait - Implementation” is executed and the statement is not 
valid (0,13% of cases, 10 cases in total) 

• cases where activity “Accepted-Wait - Implementation” is not executed (94,53% of cases, 
7 141 cases in total) 

 

 

 
 

the trace. In this way, if we have the following log 
 

L “ rxb, a, dy, xb, c, ay, xb, d, ay, 

xb, e, ay, xb, f, ay, xb, g, ay, xb, h, a, dys 

such a new feature allows the user to consider the NOTSUCCESSION template 
as interesting only when instantiated with the pair of activities a, b , instead of 
considering as activated and satisfied all over the log also constraints obtained 
by instantiating the NOTSUCCESSION with pairs a, c , a, e , a, f , a, g , a, h . 
This significantly improves the understandability of the resulting models. 

Finally, the  application  has  also  been  enhanced  with  a  new  feature 
that provides  users  with  a  textual  report  about  the  discovered  DE- 
CLARE constraints.  For instance, a RESPONSE constraint between activ- 
ities Accepted-Wait - Implementation and Completed-Resolved, discovered from the 
BPIC2013 (incidents) log [17] will be verbalized as follows: 

 

 

4. Evaluation 

We evaluated the presented algorithms in terms of memory consumption 
and time performance using a wide range of synthetic and real-life logs. In 
the remainder of this section, we describe the event logs in Section 4.1 and 
the procedure we used for the evaluation in Section 4.2. Finally, we discuss 
the results in Section 4.3. 

 

4.1. Event Logs 

For our experimentation we used: (i) 76 synthetic logs with different char- 
acteristics to compare how the algorithms perform under different conditions; 
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and (ii) 8 real-life logs, made publicly available during the last six years 
(2012–2017) by the IEEE Task Force on Process Mining.3 

 

4.1.1. Synthetic Logs 

The synthetic logs have been generated using the generator described 
in [18, 19]. The log generator allows for the generation of logs obtained 
simulating a DECLARE model. In our experiments, we have used the DECLARE 
model of our running example shown in Fig. 1. Using the generator, we can 
create logs of a specified size (s), containing traces of a given length (l) 
and built on an alphabet of a given size ( Σ ). We used these parameters, 
characterizing the complexity of an event log, as independent variables for 
assessing and comparing the performance of the different algorithms. To 
account for the separate effect of the three dimensions under analysis, we let 
each variable vary individually while keeping the remaining two assigned with 
a default value. In particular, we assigned s with values ranging from 400 to 
8 800 traces at steps of 400, l ranging from 8 to 108 events at steps of 4, and 
Σ ranging from 8 to 116 activities at steps of 4 (the smallest one being the 
alphabet of the running example, Σ a, b, c, d, e, f, g, h ). We assigned as 
defaults s      1 600, l       16, and   Σ       16.4 The following configuration sets 
have thus been applied for the generation of the synthetic logs: 

1.  s 400, 800, . . . , 8 800 , l 16 (default), and  Σ 16 (default), i.e., 
22 logs of different sizes; 

2.  s 1 600 (default), l 8, 12, . . . , 108 , and  Σ 16 (default), i.e., 26 
logs with traces of different lengths; 

3.  s 1 600 (default), l 16 (default), and  Σ 8, 12, . . . , 116 , i.e., 28 
logs built on alphabets of increasing sizes. 

We remark that the increase in the size of Σ introduces activities that are 
not subject to constraints, thus entailing a higher variability in the sequences 
of events in each trace. We have made the used synthetic event logs publicly 

 
3Available at https://data.4tu.nl/repository/collection:event_logs_real 
4The default values were selected to resemble the characteristics of the Sepsis2016 [20] 

real-life log. 
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available as benchmarks,5 to the benefit of researchers and practitioners 
interested in the conduction of similar performance experiments. 

 

4.1.2. Real-Life Logs 

To evaluate the performance of our approach on real-life benchmarks, we 
have used the event logs listed in Table 3: 

the BPI Challenge 2012 log (BPIC2012 [21]) and the BPI Challenge 
2017 log (BPIC2017 [22]) pertain to an application process for personal 
loans or overdrafts in a Dutch financial institute; 

the BPI Challenge 2013 logs (BPIC2013 (open), BPIC2013 (incidents), 
BPIC2013 (closed) [17]) are related to an incident management process 
supported by a system called VINST in use at Volvo IT Belgium; 

the BPI Challenge 2014 log (BPIC2014 [23]) pertains to the manage- 
ment of calls or mails from customers to the Service Desk concerning 
disruptions of ICT-services from Rabobank Group ICT; 

the Traffic Fines log (Fines2015 [24]) was extracted from an information 
system handling road traffic fines that are processed by an Italian 
municipality; 

the Sepsis log (Sepsis2016 [20]) reports the trajectories of patients 
showing symptoms of sepsis in a Dutch hospital, from their registration 
in the emergency room to their discharge. 

Sepsis2016 was included because of the reported flexibility of the healthcare 
process behind it [25]. This makes it a suitable input for declarative process 
discovery, because of the inherent knowledge-intensive nature of the underlying 
process [12, 26]. 

In order to prove that our approach is not only suitable for flexible 
scenarios, but also applicable to event logs stemming from more structured 
processes, we have considered other benchmarks chosen for their heterogeneous 
characteristics in terms of number of traces, events per trace, and alphabet 
sizes. In particular, BPIC2012 and BPIC2014 have a large alphabet size. 
BPIC2017 contains more than one million events and traces with high average 

 
5The full set of synthetic logs can be found at https://github.com/cdc08x/ 

DeclareMiner2 

• 

• 

• 

• 

• 

https://github.com/cdc08x/DeclareMiner2
https://github.com/cdc08x/DeclareMiner2
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Log Traces  Events Alph. size 

  Total Avg. per trace  

BPIC2012 13 087 262 200 20.03 36 
BPIC2013 (closed) 1 487 6 659 4.48 7 
BPIC2013 (open) 819 2 350 2.87 5 
BPIC2013 (incidents) 7 554 65 532 8.68 13 
BPIC2014 46 616 466 737 10.01 39 
Fines2015 150 370 561 469 3.73 11 
Sepsis2016 1 050 15 214 14.49 16 
BPIC2017 31 509 1 202 266 38.16 26 

 

Table 3: Characteristics of the real-life logs. 
 
 

length. Fines2015 contains a large amount of traces, but traces are rather 
short (3 to 4 events per trace). 

In real-life use cases, indeed, it might not be possible to be aware of the 
degree of flexibility of the mined process prior to the analysis of its event 
logs, hence the need to make our approach capable of analyzing a wider 
spectrum of datasets. In addition, we remark that declarative models are 
reportedly effective to shed light on circumstantial information, i.e., to clarify 
which circumstances will cause an action to be performed [27]. Conversely, 
procedural models tend to obscure such a representation of facts. Therefore, 
the opportunity to mine declarative models should be given regardless of the 
nature of the underlying process, so as to provide the process analyst with a 
different view on details that could otherwise remain hidden. 

 

4.2. Procedure 

All the experiments have been run using all the combinations of values 
80%, 90%, and 100% for suppmin with both vacuity detection enabled and 
disabled. Both the multi-threading variants have been configured with 4 
threads. This configuration has been chosen because, on the machine used for 
the experiments, the performance of the algorithms improves when increasing 
the number of threads from 1 to 4 and starts to degrade with more than 4 
threads. The experiments have been run on a Ubuntu Linux 12.04 server 
machine, equipped with Intel Xeon CPU E5-2650 v2 2.60GHz, using eight 
64-bit CPU cores and 16GB main memory quota.   The time required for 
both Apriori algorithm and Sequence Analysis has been collected for all logs 
and configurations, averaged over three runs and reported in seconds. The 
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memory usage has been checked for the processing of every trace in the 8 real-
life logs, and finally averaged. The reported measurements are in MBs. 

 

4.3. Results 

In the following, we discuss the results of our evaluation. First, we show 
the results obtained with the synthetic logs in terms of computation times 
(Section 4.3.1). Then, we show computation times and memory consumption 
obtained from experiments on the real-life logs (Section 4.3.2). 

 

4.3.1. Synthetic Logs 

The synthetic logs have been used to investigate the time performance 
of the 3 algorithms presented. We show the plots obtained using suppmin 
90% since the trends for different supports are similar with generally lower 
computation times for higher suppmin.6 We report the results when varying 
the log size, the trace length, and the alphabet size. In particular, we show, 
for all configurations, both the computation time needed for the Apriori 
algorithm (apriori) and for Sequence Analysis without partitioning (no 
par), with database partitioning (par.db), and with search space partitioning 
(par.src.sp). In addition, we show the relative difference between the 
computation times needed for Sequence Analysis without partitioning, and 
with database (vs par.db) and search space partitioning (vs par.src.sp). 

Varying the log size. Figure 6 reports the plots related to the time performance 
of the presented algorithms when varying the log size. The computation times 
are very low (in the order of few seconds). As expected the average times 
obtained with vacuity detection enabled (  6 sec for the log with 8 800 traces) 
are lower than the ones obtained with vacuity detection disabled ( 10 sec for 
the log with 8 800 traces). Indeed, with vacuity detection disabled the Apriori 
algorithm returns a significantly higher number of frequent activity sets that 
need to be handled in the Sequence Analysis. However, the trends in the two 
cases are similar and, in both cases, par.db and par.src.sp perform slightly 
better than no par. The plots showing the relative difference of par.src.sp 
and par.db with respect to no par show that  par.src.sp improves  a  bit 
more the performance with respect to par.db, especially when the vacuity 
detection is disabled. The time needed for the Apriori algorithm („ 4 sec and 

 
6The entire collection of plots can be downloaded at https://github.com/cdc08x/ 

DeclareMiner2 

https://github.com/cdc08x/DeclareMiner2
https://github.com/cdc08x/DeclareMiner2
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Figure 6: Computation time as a function of the log size. 
 
 

7.5 sec for the log with 8 800 traces with and without vacuity detection, 
respectively) is always significantly lower with respect to the one needed for 
Sequence Analysis. 

Varying trace length. Figure 7 reports the plots related to the time per- 
formance of the presented algorithms when varying the trace length. The 
highest average computation time obtained for par.db and par.src.sp with 
vacuity detection enabled is     3 sec and with vacuity detection disabled 
is    4 sec (for traces with 108 events).  The highest average computation 
time obtained for no par with vacuity detection enabled and disabled is of 

7.5 sec and 8 sec, respectively.  Thus, for logs containing long traces, 
par.db and par.src.sp perform significantly better than no par. The plots 
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Figure 7: Computation time as a function of the traces length. 
 
 

showing the relative difference of par.src.sp and par.db with respect to no 
par show that par.src.sp performs a bit better than par.db and reaches 
50% of improvements with respect to no par with both vacuity detection 
enabled and disabled. The time needed for the Apriori algorithm is always 
significantly lower with respect to the one needed for Sequence Analysis. 

Varying alphabet size. Figure 8 reports the plots related to the time perfor- 
mance of the presented algorithms when varying the alphabet size. In this 
case, the trends of the average computation times obtained with and without 
vacuity detection is significantly different. When vacuity detection is enabled 
par.src.sp, par.db and no par have similar performance (the computation 
time is extremely low and always lower than 7 sec). par.db and no par 
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Figure 8: Computation time as a function of the alphabet size. 
 
 

have a similar trend also in the case in which vacuity detection is disabled. 
However, in this case, par.src.sp performs significantly better than no par 
with an improvement of up to 50%. Also in this case, the time needed for 
the Apriori algorithm is lower with respect to the one needed for Sequence 
Analysis. 

Enabling Vacuity Detection. Figure 9 shows how the time performance of the 
implemented algorithms improves by enabling vacuity detection. The reported 
times are gathered from runs on the synthetic event log having default values 
for  s,  l,  and  |Σ|.   Computation  times  of  no  par,  par.db,  and  par.src.sp 
are compared at different levels of suppmin (80%, 90%, and 100%) having 
vacuity detection either enabled (dark grey) or disabled (light grey). All the 
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Figure 9: Computation time reduction achieved through the enablement of vacuity detec- 
tion. 

 
 

implemented algorithms show a similar improvement in terms of computation 
times when the vacuity detection is enabled. In addition, the number of 
constraints returned when the vacuity detection is enabled is much lower. 
This confirms the usefulness of this mechanism especially when dealing with 
real-life logs. 

To summarize, the results found with the experiments on synthetic logs 
show that: 

• the computation times are generally very low (few seconds); 

the time needed for the Apriori algorithm is always significantly lower 
with respect to the one needed for Sequence Analysis; 

the computation times with vacuity detection disabled are significantly 
higher than the ones obtained with vacuity detection enabled; 

par.db and par.src.sp perform in general better than no par. The 
highest improvement is obtained with logs containing long traces and, 
in general, a better improvement is obtained with vacuity detection 
disabled (when the computation time is higher); 

no par. par. db. par. src.sp. 
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Log supp Average computation time [sec] 

 no par par.src.sp par.db  [6] 

BPIC 80% 19.196 17.240 17.372 68.270 

2012 90% 19.292 18.092 17.391 66.544 

 100% 19.952 17.512 17.064 64.251 

BPIC 80% 0.504 0.421 0.444 7.613 

2013 90% 0.461 0.431 0.487 7.553 
(closed) 100% 0.433 0.435 0.405 0.544 

BPIC 80% 4.243 3.769 3.673 2.968 

2013 90% 3.972 3.634 3.889 2.759 
(incidents) 100% 4.080 3.991 3.755 2.401 

BPIC 80% 0.210 0.180 0.187 0.415 

2013 90% 0.195 0.170 0.186 0.401 
(open) 100% 0.197 0.180 0.169 0.344 

BPIC 80% 65.422 59.761 62.078 1 292.303 

2014 90% 64.771 61.852 64.066 482.475 

 100% 60.897 61.056 60.353 26.052 

Fines 80% 66.656 59.073 58.901 33.832 

2015 90% 67.031 57.574 60.658 25.782 

 100% 62.561 59.106 59.643 24.449 

Sepsis 80% 1.022 0.738 0.850 62.591 

2016 90% 0.956 0.730 0.869 43.684 

 100% 0.790 0.792 0.900 7.207 

BPIC 80% 114.863 90.593 99.007 17 431.343 

2017 90% 112.916 88.799 101.801 17 974.533 

 100% 98.528 83.862 87.526 3 505.525 

Table 4: Computation times using real-life logs (with vacuity detection). 
 

in general, par.src.sp improves more the performance of no par than 
par.db. 

 

4.3.2. Real-Life Logs 

The real-life logs have been used to investigate the performance of the 
three algorithms presented both in terms of computation time and memory 
consumption. 

Computation time. Tables 4 and 5 report, for each of the presented algo- 
rithms, the computation times required to process the 8 real-life logs for 
different values of suppmin with vacuity detection enabled and disabled, re- 
spectively. By looking at the tables, it is possible to recognize the same trends 
observed in the experiments with synthetic logs. The computation times are 
in general low (from few milliseconds for BPIC2013 (open) to few minutes 

• 
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Log supp Average computation time [sec] 

no par par.src.sp par.db [6] 

BPIC 80% 59.638 41.677 45.443 13 630.461 
2012 90% 50.386 39.764 41.185 8 708.702 

100% 45.655 36.593 38.455 5 169.026 

BPIC 80% 0.671 0.550 0.687 39.422 
2013 90% 0.665 0.643 0.643 33.259 
(closed) 100% 0.709 0.580 0.687 14.776 

BPIC 80% 6.854 5.836 6.412 33.259 
2013 90% 6.786 5.541 6.235 39.422 
(incidents) 100% 5.901 5.840 5.474 81.495 

BPIC 80% 0.250 0.233 0.250 10.486 
2013 90% 0.257 0.233 0.239 6.037 
(open) 100% 0.218 0.217 0.209 0.349 

BPIC 80% 185.442 125.619 153.482 18 000.000 
2014 90% 181.092 130.707 152.194 18 000.000 

100% 111.903 109.115 109.225 2 268.203 

Fines 80% 107.106 90.914 97.097 18 000.000 
2015 90% 101.198 87.012 93.948 18 000.000 

100% 98.126 86.400 91.889 9 521.085 

Sepsis 80% 1.647 1.225 1.432 221.289 
2016 90% 1.600 1.217 1.534 181.873 

100% 1.321 1.426 1.386 65.857 

BPIC 80% 394.033 259.912 298.170 ą 18 000.000 
2017 90% 361.741 255.384 288.128 ą 18 000.000 

100% 270.920 227.391 230.755 ą 18 000.000 

Table 5:  Computation times using real-life logs (without vacuity detection). 
 
 

for BPIC2017). The computation times obtained with vacuity detection 
disabled are significantly higher than the ones obtained with vacuity detection 
enabled.  par.db and par.src.sp perform in general better than no par 
and par.src.sp improves more the performance of no par with respect to 
par.db. The highest improvement of the parallel algorithms is obtained with 
BPIC2017 that contains traces with high average length. With large alphabet 
and log sizes the improvement is less evident. See, for example, the case of 
Fines2015 which contains a large amount of traces but short. Also, a better 
improvement is obtained when the vacuity detection is disabled. From the 
tables it is also possible to notice that, in general, the discovery of constraints 
with lower support requires higher computation time (the computation time 
decreases when suppmin increases). 
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Log 
Average memory usage [MB] 

suppmin 

  no par par.src.sp par.db 

BPIC 80% 2797.896 2990.313 2987.244 
2012 90% 3479.370 3672.308 3689.226 

 100% 2814.076 2982.535 2951.414 

BPIC 80% 3224.890 3402.379 3321.312 
2013 90% 3250.195 3422.971 3320.683 
(closed) 100% 3224.701 3375.245 3378.217 

BPIC 80% 3272.994 3405.096 3350.712 
2013 90% 3336.335 3467.524 3423.487 
(incidents) 100% 3383.542 3582.805 3509.252 

BPIC 80% 3418.733 3591.149 3552.671 
2013 90% 3452.391 3620.048 3567.557 
(open) 100% 3410.776 3594.08 3571.845 

BPIC 80% 2522.498 2525.335 2752.694 
2014 90% 2554.258 2558.694 2784.968 

 100% 3041.431 2812.829 3043.947 

Fines 80% 2757.921 2753.657 2780.860 
2015 90% 3311.736 3031.759 2771.034 

 100% 2756.915 3033.848 2743.068 

Sepsis 80% 3080.066 3117.173 3086.295 
2016 90% 3085.615 3095.000 3111.557 

 100% 3095.138 3097.057 3118.443 

BPIC 80% 3385.102 2730.640 2754.912 
2017 90% 2776.020 2775.573 3225.580 

 100% 3470.691 2816.340 3482.457 
 

Table 6: Memory consumption using real-life logs (with vacuity detection). 
 
 

Tables 4 and 5 report the execution times required to process the logs using 
the Declare Miner [6]. The original version of the Declare Miner attains better 
timings occasionally, e.g., with vacuity detection enabled and for BPIC2013 
(incidents) and Fines2015 logs. However, our approach clearly improves over 
it for scalability:   even having vacuity detection enabled, the performance 
of the original Declare Miner steeply decays as logs increase in the number 
of events per trace (see Table 3). For these logs, indeed, the performance 
improvement is noticeable and the ratio reaches peaks of approximately 1 : 50 
in the case of Sepsis2016 and 1 : 100 for BPIC2017, as shown in Table 4. 
When vacuity detection is disabled, the performance of the original version of 
the Declare Miner decay dramatically, as opposed to our proposed approach. 
In particular, 5 hours turned out to be not sufficient to return a result when 
analyzing BPIC2014, Fines2015, and BPIC2017. 
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Log 
Average memory usage [MB] 

suppmin 

  no par par.src.sp par.db 

BPIC 80% 3164.679 3360.663 3344.785 
2012 90% 2507.653 2671.431 2607.790 

 100% 3179.398 3343.870 3269.200 

BPIC 80% 3222.504 3402.914 3326.421 
2013 90% 3251.205 3422.295 3319.545 
(closed) 100% 3233.109 3399.611 3375.306 

BPIC 80% 3311.958 3459.879 3388.076 
2013 90% 3369.209 3523.088 3497.857 
(incidents) 100% 3422.844 3598.485 3541.132 

BPIC 80% 3410.075 3621.799 3576.108 
2013 90% 3440.457 3608.402 3586.726 
(open) 100% 3422.180 3628.260 3569.316 

BPIC 80% 2492.127 2682.854 2878.689 
2014 90% 2527.365 2521.371 2531.285 

 100% 3124.654 2553.222 2552.657 

Fines 80% 2677.579 2685.744 3104.895 
2015 90% 2683.610 3082.046 2895.949 

 100% 2882.841 2889.041 2916.918 

Sepsis 80% 3082.985 3086.389 3069.019 
2016 90% 3085.844 3097.296 3101.323 

 100% 3094.253 3110.253 3139.643 

BPIC 80% 2648.188 2873.389 2672.466 
2017 90% 2915.772 2912.520 2927.845 

 100% 3184.292 2947.643 3429.015 
 

Table 7: Memory consumption using real-life logs (without vacuity detection). 
 
 

Memory consumption evaluation. Table 6 and Table 7 report the average 
memory usage (in MBs) needed for processing each trace in the real-life logs. 
The reported measurements are in MBs. The memory consumption is quite 
uniform across all the logs and ranges from 2 500 to 3 500 MBs. This suggests 
that, overall, the characteristics of the input logs do not affect the memory 
usage. 

 
5. Related Work 

Different approaches have been proposed so far for mining declarative 
process models. Some of them belong to the group of the probabilistic process 
mining approaches. For instance, Statistical Relational Learning has been 
used for learning, from process traces labeled as compliant or non-compliant, 
declarative constraints expressed as ICs (Integrity Constraints) [28]. A logic- 
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based approach for probabilistic process mining that leverage this approach 
is presented in [29]. 

An approach that makes use of logic programming for declarative process 
mining is presented in [30]. The proposed methodology is based on Inductive 
Logic Programming. The Inductive Constraint Logic algorithm, used in that 
approach, is adapted to the problem of learning ICs in SCIFF and is able to 
learn a model by considering both compliant and non-compliant traces. 

An algorithm to discover DECLARE models was developed in [31] using 
email messages as event log traces. The implemented algorithm, MINERful 
[32], is a two-step algorithm. The first step aims at building a knowledge 
base starting from the event log. The second step aims at computing the 
support of constraints by querying the knowledge base. In [33, 34], the 
authors propose an extension of the approach presented in [32] to discover 
target-branched DECLARE constraints, i.e., constraints in which the target 
parameter is replaced by a disjunction of real activities. 

In [35, 36], a semantics for defining DECLARE constraints on non-atomic 
activities and an approach for the discovery of this type of constraints are 
presented. In [37, 38], the semantics of DECLARE is extended to consider 
metric temporal constraints and, in [39], an approach for the discovery of these 
constraints is presented. In [40], the semantics of DECLARE is extended to 
consider conditions on data. In the same paper, a technique based on daikon 
and decision trees is presented for the discovery of data-aware DECLARE 
constraints. 

In [41], the authors present a mining approach that works with Relation- 
alXES, a relational database architecture for storing event log data. The 
relational event data is queried with conventional SQL. Standard queries allow 
for the discovery of DECLARE constraints. However, they can be customized 
and cover process perspectives beyond control flow as shown in [42]. 

An on-line process discovery technique which takes data from event streams 
is presented in [43, 44]. The proposed approach is able to produce at runtime 
an updated picture of the process behavior in terms of DECLARE constraints. 

 
6. Conclusion 

The Declare Miner is a plug-in of the process mining tool ProM for the 
discovery of DECLARE models from logs. The high execution times of the 
Declare Miner when processing large sets of data hampers the applicability 
of the tool to real-life settings. Therefore, in this work, we have presented a 
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new approach for the discovery of DECLARE models based on a combination 
of an Apriori algorithm and a group of algorithms for Sequence Analysis to 
enhance the time performance of the plug-in. In addition, we have used the 
notions of search space partitioning and database partitioning as a basis for 
the development of two multi-threading variants of the approach. The new 
algorithms have been implemented and tested on synthetic and real-life logs 
to assess their efficiency. 

In the future, we aim at investigating the possibility of using the proposed 
algorithms to: (i) support branched DECLARE; and (ii) consider additional 
perspectives other than the pure control flow, such as time and data. 
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