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Abstract. A requirement of Smart Grids is the ability to predict the
energy consumption patterns of their users. In the residential domain,
this is usually not feasible due to the inability of the grid to dialog
with (legacy) domestic appliances. To overcome this issue Non Intru-
sive Load Monitoring (NILM) was introduced, a task in which a pre-
dictor is used to disaggregate household power consumption. Many
of the newer approaches make use of Neural Networks to accomplish
this task, due to their superior ability to detect patterns in temporal
(thus sequential) data. These models unfortunately require a huge
amount of data to achieve good performance, and have the tendency
to overfit the training data, making them difficult to predict future
consumptions. For these reasons, adapting them to optimally pre-
dict a (future) house’s consumption requires expensive and often pro-
hibitive data collection phases. We propose a solution in the form of
a neuro-symbolic framework that refines neural network predictions
via a constrained optimization problem modelling the characteristics
of the appliances of a house. This combined approach achieves supe-
rior performance with respect to the neural network alone over two
out of five appliances and comparable results for the remaining ones,
without requiring further training data.

1 Introduction

The past few years have seen an increased awareness by people and
institutions on climate change and its consequences. With the ob-
jective to avoid/limit its effects, people have started to change their
habits (e.g. walk and cycle more or drive electric vehicles), while
governments have committed themselves to reduce CO2 emissions
1 with the long term goal to be climate-neutral by 20502. Therefore,
huge investments have been made in renewable (aka green) energies
in order to meet the increasing demand and gradually replace the de-
pendence on traditional source of energies 3. Nevertheless, renewable
energies have a limitation connected to the presence of their natural
source. Therefore, investments in the development of a "smart” elec-
trical network, which is able to guarantee an effective distribution
of energy, have been made in parallel. This network has been called
smart grid and, differently to the traditional distribution, where there
is an unidirectional flow from producer to consumer, a bidirectional
exchange of information is achieved in order to guarantee an effec-
tive usage of the electricity.

One of the requirements of a smart grid consists in understand-
ing and predicting the energy consumption pattern of the consumers.

∗ These two authors contributed equally
1 Paris agreement
2 Net-zero
3 Global electricity insights 2022

This is done by processing the data of the energy consumption of the
individual appliances of all houses. To measure the energy consump-
tion of the appliances, two approaches can be adopted: Intrusive Load
Monitoring (ILM) and Non-Intrusive Load Monitoring (NILM). ILM
is based on the installation of a sensor (e.g., smart plugs or smart
sockets) for each appliance that monitors and sends information
about the consumption of the appliance back. Even though, ILM en-
sures accurate measurements, it is usually expensive and often per-
ceived as "too intrusive” by consumers (i.e., each sensor has to be
installed inside the house of the consumer). On the contrary, NILM,
where the consumption of each appliance is obtained from the dis-
aggregation of the total energy of the house, represents a cheap and
less invasive solution (even if less accurate) with respect to ILM.

Due to the success that deep learning models have achieved in
solving tasks of different domains (e.g. computer vision and natural
language processing), these models have been started to be applied
in NILM. Nevertheless, these models require a huge amount of an-
notated training data and lack of the ability to generalize to unseen
situations (e.g., situations not included in the training data). There-
fore, in the last years, neuro-symbolic techniques, which combine
neural networks with symbolic reasoning, have started to be applied
to overcome these issues.

In this paper, we devise a neuro-symbolic algorithm that combines
the prediction of the Neural Network with a Constrained Program-
ming optimization problem, used to refine the raw prediction of the
network. The optimization problem is used to encode the behavior
of the appliance in terms of its consumption over time. For example,
the characteristics that can be captured may be:

• Minimum/maximum duration of appliance activation.
• Minimum/maximum instantaneous used power.
• Presence of multiple "states" with different duration and power

adsorption.

All the characteristics, which are encoded as logic formulas, can then
be used to correct the output of the network, and to find coherent in-
tervals of times in which the the appliance was in use (the whole
duration of a washing cycle of a washing machine, for instance), to-
gether with their expected consumption. Furthermore, the addition
of this logic layer allows for the disambiguation of dubious predic-
tions done by the Neural Network (due for instance to the presence
of noise), increasing the overall disaggregation performance. Exper-
iments have been performed on the UK-DALE dataset in a “seen”
setting, and show that our combined approach is able to outperform
a fully neural model over the prediction of two out of five appliances,
with comparable results for the remaining ones.

The rest of the paper is organized as follows: Section 2 briefly re-
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views the state of the art on NILM, focusing mostly on deep learning
approaches; Section 3 formally describes the problem; Sections 4 de-
scribes our proposed approach; Section 5 presents the experimental
setting; Section 6 shows the experimental results; Finally, in section
7 conclusions are drawn and directions for future works are briefly
discussed.

2 State of the art

Since its introduction by Hart [12], NILM has gathered the atten-
tion of researchers not only for the intrinsic challenges [13] that it
involves but for the benefits that approach like NILM could bring
into our everyday life [10]. Over the last decade, more "classical"
approaches to NILM (see [24] for a survey) have been replaced by
deep learning methods. This is due to the success that deep learning
has achieved in many different fields like computer vision and natural
language processing (see [6] and [19] for a survey). In [25], authors
instantiate a network (one for each appliance) and train it to learn
a mapping between a sequence of mains to a sequence of appliance
consumption. At inference time, multiple predictions for a generic
time t are averaged in order to obtain a single prediction. [15] ob-
tains more accurate results with respect to [25], by predicting from
the current window of mains only the consumption of the appliance
which corresponds to the middle point of the window. A more recent
approach [20], adopts an attention mechanism to improve the gen-
eralization capability of the overall model. [18] proposes a novel ar-
chitecture which integrates the Fourier transform and achieves com-
parable results with respect to the state art approaches while being
faster and smaller. In all the aforementioned approaches, prior (ex-
plicit) knowledge about the behaviour of the appliances is not ex-
ploited to perform the disaggregation (i.e. the disaggregation is com-
pletely learnt from data). As far as we know, the only attempt to ex-
ploit prior knowledge to solve NILM has been done by [5], but this
is a fully symbolic approach and then no neural networks have been
used. In the last years, neuro-symbolic integration, which integrates
neural and symbolic AI, has emerged as a new paradigm to merge
the strengths and reduce/limit the weaknesses of the neural and
symbolic "worlds” [14]. Therefore, different neuro-symbolic frame-
works have been proposed over the years like frameworks based on
fuzzy-logic [3, 17], probabilistic logic programming [16, 23] or Op-
timization modulo theories [21]/Mixed Integer Linear Programming
(MILP) encoding (see [9] and [2]). Furthermore, these approaches
have been applied to solve complex tasks like semantic image inter-
pretation [8] and event recognition from different data sources (e.g.
video [1, 2] and audio [22]). Inspired by [2], we encode the back-
ground knowledge about the behaviour of each appliance as a mixed
integer linear programming problem (MILP), and use it to refine the
prediction of the neural network. Differently from [2], we also learn
the parameters related to the MILP problem (see section 4 for de-
tails).

3 Problem definition

NILM consists in the disaggregation of the total energy consumption
of a house into the consumption of the individual appliances belong-
ing to it. Formally, denoting with Xtot = (x1, . . . xt), xi ∈ R

+, the
total energy consumption for the period of time starting at 1 and end-
ing at t, and supposing the presence of n appliances, we can express

the total energy consumption at a given time i as:

xi =
n∑

j=1

yji + γi with 1 ≤ i ≤ t

where yji is the consumption of the j− th appliance at time i and γi
is a noise factor. We are interested in finding all the appliance con-
sumption Yj = (y1, . . . , yt) yi ∈ R

+, from Xtot. To achieve this
objective, we also assume to have a background knowledge K (de-
fined over a first order language L) about the consumption/behaviour
of each appliance. Therefore, our problem consists in finding an in-
terpretation I (i.e. predicting a sequence of values, one for each ap-
pliance), such that I |= K.

Example 1 Suppose that for a given house h, we have that Xh
tot =

{1000, 1000, 1200, 1400}. We want to predict the consumption for
the appliance app1 of h. The background knowledge K states that
when app1 is active, its consumption has to be less than 500 at time
t and the sum of consumption of the next two timestamps (i.e, t + 1
and t+2) has to be between 700 and 1400. We can write a first order
logical formula that expresses the above conditions:

∀ts,te∃ti, tj , tz
cons(x, ti, yti) ≤ 500 ∧
700 ≤ cons(x, tj , ytj ) + cons(x, tz, ytz ) ≤ 1400 ∧
active(x, ti) ∧ active(x, tj) ∧ active(x, tz) ∧
ts ≤ ti < tj < tz ≤ te ∧
tj = ti + 1 ∧ tz = ti + 2

where ts and te represent respectively the begin and the end of the
period of consumption, cons(x, t, yt) is a function that returns the
consumption of a generic appliance x at time t (i.e., it returns yt)
and active is a predicate that returns 1 if an appliance is active at
a time t and 0 otherwise. Continuing the example, if we know that
app1 is active between time 2 and 4, some of the interpretations that
satisfy K are:

I1 = {cons(app1, 2, 250), cons(app1, 3, 500), cons(app1, 4, 600),
active(app1, 2), active(app1, 3), active(app1, 4)}

I2 = {cons(app1, 2, 350), cons(app1, 3, 600), cons(app1, 4, 700),
active(app1, 2), active(app1, 3), active(app1, 4)}

...

As can be seen, there may be more than one interpretation that satis-
fies K (we denote with Ic the set of such interpretations). Therefore,
as done in [2], we introduce a cost function c that gives a score (i.e. a
real value) for each I and select the interpretation with the minimum
cost:

Imin = argmin
I∈Ic

c(I)

To find Ic, we devise a neuro-symbolic approach where the initial
prediction of the network YNNj is refined in order to produce a
new prediction Y ∗

NNj
that keeps into account the knowledge K. To

train the overall system, we have a training set of consumption of m
houses:

D = {(Xi
tot, {Y i

j }ni
j=1)}mi=1

where Y i
j denotes the consumption of the j − th appliance in house

i and ni the number of appliances in the same house (i.e. different
houses may have different appliances). It is not always that the entire
D is used for the training phase (further details follow).
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4 Proposed approach

The proposed approach consists in a neuro-symbolic framework that
combines the generalization capabilities of a Neural Network with a
constrained satisfaction problem (CSP), which has built in its speci-
fications the domain knowledge and enables to refine the predictions
of the network (see figure 1 for a high level overview of the proposed
approach). Differently from the approaches found in literature [4,11]
the neural and symbolic models are not in competition but cooperate
together. The framework gets an initial prediction from the neural
network, which is then refined by the optimization problem. Con-
trary to some other approaches, our CSP problem is only partially
defined, and before being used is meant to be trained onto a small
set of labeled examples of activations of a specific appliance to fit it
properly.

The goal of the CSP is to model the energy consumption patterns
of a specific appliance. Before moving on, we must briefly formalize
the expected pattern of the appliance. We can imagine the lifecycle
as a contiguous infinite sequence of idle intervals (in which the ap-
pliance is not used/switch off/in standby) and activation intervals, in
which most of the power gets consumed and some useful work is per-
formed. Each activation j starts at a certain time tjstart and ends at
time tjend (we will use tstart and tend later in the article when refer-
ring to a generic activation). An example of this behavior is depicted
in Figure 2.

Following previous work on the field [7], we model an appliance
as a finite state automata. Indeed, an appliance is a machine that
is built to perform a predetermined sequence of actions cyclically.
Therefore, a neuro-symbolic approach, which models an appliance’s
consumption as a sequence of states, has the potential to improve the
accuracy of the prediction. In addition, a neural network trained to
predict an appliance’s consumption over time, generally reasons in
terms of time-points (i.e., the consumption at time x is y), while our
proposed neuro-symbolic approach reasons in term of intervals of
time (i.e., for x seconds the consumption will follow a specific trend
curve) making the prediction more coherent over time. In this con-
ceptualization, the appliance is represented as a collection of n states
{si}n1 each associated with a duration ti and a function fi : R

+ → R

that maps each instant of the interval ti with the power consumed by
the appliance at that instant. Thus, the activation cycle of the appli-
ance is described by a set of states S = {< si, ti, fi >}ni=1. There is
then a special state sidle, the initial state, with associated its function
fidle, that has no fixed duration. This is the state where the appliance
is before is switched on and after is switched off (or put in stand-by).

A life cycle of an appliance starts in s0 = sidle, when it is acti-
vated it switches to s1 and stays in that state for t1 time. After that,
the appliance moves to s2 for t2 time and then switches to the next
state. After tN time spent in state sN , the appliance shuts off and
goes back to sidle.

Our CSP framework applies these ideas by first learning a set of
states S, by fitting a small number of examples of consumption pat-
terns of the target. These are then used to refine the predictions of
the network for the time in which the appliance is considered ac-
tive i.e. between tstart and tend. We currently do not model the idle
state s0 (the CSP problem “knows" that the power consumption at
idle is some constant value pidle), relying on the neural network to
(roughly) identify the tstart and tend of each activation. In the next
sections, we will describe in detail both the training and inference
procedure.

Figure 1: Overall approach on washingmachine appliance: the total
consumption of the house (i.e., the total consumption of all its appli-
ances) is passed to the washingmachine NN that provides an initial
prediction for the consumption of the washingmachine. This predic-
tion is then refined by its corresponding (learnt by CSP) automata
that changes the prediction of the washingmachine NN by leverag-
ing the knowledge encoded in each of its state.
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Figure 2: Example of an activation cycle of an appliance.

4.1 Training

As explained in previous sections, the training procedure of the CSP
problem relies on labeled data about a few activations of the appli-
ance. We can formalize it as a function P : R+ → R that links each
time instant with a power consumption. For training, we have a se-
ries of m intervals {< tj,start, tj,end >}mj=1 that encode the bound-
aries of the activations. The last bit of information is the constant
idle power consumption pidle of the appliance. This is necessary be-
cause, albeit the problem relies on the network for the prediction of
power consumption when idle, it cannot assume that the activation
intervals are perfectly timed, thus it must account for the appliance
potentially being in idle near tstart and tend. Figure 3 depicts the
whole activation cycle of an appliance that follows these principles.
The target is modeled using 3 active states s1, s2, s3, with their cor-
responding state functions f1, f2, f3. Aside from the "active" states,
the framework uses two more states s0 and sn+1 to model the idle
state (before the first and after the last active state), both of them rep-
resented modeled by the function fidle, that have a duration of t0 and
tn+1. The objective of the fitting is to obtain a curve (by adding up
state and idle functions) that closely matches the target consumption
curve in the interval between tstart and tend.
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In order to formalize the fitting problem, we must introduce some
constructs. We define t∗j,i as the summation of tj,start and of all the
durations of all the i− 1 states:

t∗j,i = tj,start +

i−1∑
k=1

tj,k

Each function fi is an exponential function in the form:

fj,i(t) = αj,ie
t + βj,i

while fidle has the form:

fj,idle(t) = C

The function that is learnt from a specific activation j is then:

fj(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fj,idle(t) tj,start < t ≤ t∗j,1
fj,1(t) t∗j,1 < t ≤ t∗j,2
...

fj,i(t) t∗j,i < t ≤ t∗j,i+1

...

fj,n(t) t∗j,n−1 < t ≤ t∗j,n
fj,idle(t) t∗j,n < t ≤ tj,end

(1)

Defining the function encoding the interval of interest as

Pj(t) =

{
P (t− tj,start) tj,start < t < tj,end

0 otherwise
(2)

we can define the difference between the real and predicted con-
sumption as

Δcj =

∫ tj,end

tj,start

|Pj(t)− fj(t)|dt (3)

Moreover, the training problem tries to minimize the deviation be-
tween the parameters. In particular the deviation between the dura-
tion of the states across the various training sequences:

Δs =
n∑

i=1

max({tj,i}mj=1)−min({tj,i}mj=1) (4)

and the same deviation for the fj,i(t) parameters αj,i and βj,i:

Δα =
n∑

i=1

max({αj,i}mj=1)−min({αj,i}mj=1) (5)

Δβ =

n∑
i=1

max({βj,i}mj=1)−min({βj,i}mj=1) (6)

The overall training problem is then defined as:

minimize
C,αj,i,βj,i,tj,i

Δs+Δα+Δβ +
∑
j

Δcj (7)

4.2 Inference

Once the parameters C,αj,i, βj,i, tj,i have been optimized in train-
ing, a new optimization problem is defined for inference. Differently
from training, this time there are two distinct sources of input data:
the actual raw aggregated power consumption (the same input given
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Figure 3: Representation of the result of the training procedure. The
target activation was fitted using an automata with 3 states s1, s2, s3.
In the figure are depicted the corresponding state functions f1 (in
cyan), f2 (green), f3 (red) and the idle function (a constant value, in
this case 0) fidle for the idle state.

to the neural network) and the output of the neural network. The
problem is expected to refine the neural output by using the "learnt
behaviour" of the appliance (encoded in C,αj,i, βj,i, tj,i), while at
the same time ensuring that the final prediction does not conflict with
the actual instantaneous aggregated power consumption (e.g., pre-
dicting a peak appliance power that is higher than the aggregated
one).

Due to the fact that the optimization problem models only the ac-
tive state of the appliance, the algorithm is used to refine the output
of the neural network only where an activation of the appliance is de-
tected. The activation window is computed by looking at the neural
network output. Each activation starts when a consumption greater
than a value ACTSTART, and ends when the power consumption re-
mains below ACTSTART for at least ACTTOLERANCE seconds. Both
the values for ACTSTART and ACTTOLERANCE can be selected by
looking at the ground truth power consumption over time of the ap-
pliance in the training set.

We can define the difference between the aggregated and predicted
consumption as:

Δmj =

∫ tj,end

tj,start

|Pj(t)− fj(t)− BASELINE|dt (8)

Where BASELINE is the average value of the mains power con-
sumption before and after the current activation. The BASELINE off-
set is necessary due to the fact that in each instant there could be
different sets of other appliances draining power, thus resulting in an
unpredictable baseline.

The optimization problem takes into account both the predicted
and aggregated data. As in training, it computes a cost that is used
in the optimization objective. When it predicts an activation (and its
corresponding fj(t)), this cost is:

activec = wcΔcj + wmΔmj (9)

where wc and wm are two appliance dependent hyperparameters that
weights the contributions of the two costs.

Given that the refinement is triggered by the prediction of the neu-
ral network, the model must also consider the hypothesis that the
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neural prediction is a false positive. In this case, the role of the prob-
lem is to discard the prediction. Therefore, the optimization cost is
computed as the power consumption predicted by the neural network.

inactivec =

∫ tj,end

tj,start

Pj(t)dt (10)

Assuming that the parameters αT
j,i, β

T
j,i, t

T
j,i,ΔsT ,ΔαT ,ΔβT

are the ones learnt during training, the optimization problem is de-
fined as:

minimize
αj,i,βj,i,tj,i

(isactive) activec+ (isactive) inactivec

subject to

tTmindB −ΔsT d < tj,i < tTmaxdB +ΔsT d

αT
min −ΔαT < αj,i < αT

max +ΔαT

βT
minhB −ΔβTh < βj,i < βT

maxhB +ΔβTh

where

tTmin = min({tTj,i}mj=1) tTmax = max({tTj,i}mj=1)

αT
min = min({αT

j,i}mj=1) αT
max = max({αT

j,i}mj=1)

βT
min = min({βT

j,i}mj=1) βT
max = max({βT

j,i}mj=1)

(11)

Where isactive is a boolean variable that is true if the opti-
mization problem predicts an activation, and false otherwise. The
hyperparameters dB , d, hB , h are used to scale the values of the pa-
rameters tj,i, βj,i. The parameters αj,i are not scaled to avoid losing
the overall shape of the power consumption curve.

5 Experimental setting

This section describes the experimental setting that we defined to val-
idate our proposed approach. In detail, we compare the predictions of
our neuro-symbolic approach with respect to a fully neural approach.
As a neural baseline, we use the model described in [15] which is
also used as input to our neuro-symbolic approach. All the experi-
ments have been run on the UK Domestic Appliance Level Electric-
ity (UK-DALE) dataset which is one of the most used datasets in the
literature to evaluate the performance of a disaggregation algorithm.

5.1 UK-DALE

UK-DALE contains the measurements of the energy consumption for
the whole house and individual appliances of five UK houses. The
readings have been collected by sampling every 6 seconds and refer
to the period 11/09/2012-04/26/20174. Each house hosts at least two
occupants, with occupants be potentially different for type (family or
not family) or habits (e.g. working all day). Therefore, the consump-
tions are not (always) the same for each house. More than 15 types
of appliances are contained in the dataset but not all of them are in
all houses. As done by other works like [15, 25], we focus on kettle,
microwave, fridge, dishwasher and washing machine because these
are the appliances having the highest impact on the total aggregated
consumption.

4 we used UK-DALE-2017

5.2 Seen setting

We evaluate our neuro-symbolic approach and the neural baseline
on the "seen" scenario. Roughly speaking, it consists in seeing how
both approaches behave when they have to predict the appliances’
consumption over a period of time that they have not seen during
training. In detail, given a time window wh = [shw, e

h
w], shw, ehw ∈ N

with shw < ehw, for an house h, we define two windows, wh
train and

wh
test, where:

wh
train = [shwtrain

, ehwtrain
]

wh
test = [shwtest

, ehwtest
]

with:

shw ≤ shwtrain
< ehwtrain

< shwtest
< ehwtest

≤ ehw

and we train and test both approaches using the data over the time
windows wh

train and wh
test, respectively.

5.3 Metric

As done in other works like [15, 20, 25], we evaluate the predictions
using the mean absolute error (MAE):

MAE(Ŷj , Yj) =
1

l

l∑
i=1

|ŷji − yji|

where l denotes the length of the sequence (i.e. the length of the
main) and Ŷj and Yj represent the predicted and the truth consump-
tion sequence for appliance j (with ŷji and yji representing the con-
sumption at time i).

6 Results

In table 1 are reported the MAEs for both the neural baseline and our
neuro-symbolic approach on all the appliances. As can be seen by
looking at the table, our neuro-symbolic approach outperforms the
neural network on two out five appliances, while having comparable
results on the remaining ones. In figure 4 are shown the prediction
of both the neural network and our neuro-symbolic approach. On the
left, is shown the comparison between the ground truth (blue) and
the neural network (orange), while on the right is shown the com-
parison between the ground truth and our neuro-symbolic approach
(green). As can be seen by looking at the first two rows (i.e, dish-
washer and kettle), the use of background knowledge provided by
our neuro-symbolic approach is useful to the neural network when
the network captures the underlying consumption pattern, but it is
not able to completely fill the gap with respect to the ground-truth.
More precisely, our neuro-symbolic approach works when the pre-
dictions of the neural network are already quite accurate but are not
consistent over time. This is not surprising since a trained appliance’s
network reasons in terms of time points, while our neuro symbolic
approach reasons in terms of intervals of time (see section 4). For
the remaining appliances, the lack of an improvement is due to dif-
ferent reasons: the objective of the constrained optimization problem
consists in refining the predictions of the network, if they are already
optimal (fridge) or too wrong (microwave) then the impact of the
background knowledge is almost null; the training set does not con-
tain enough representatives samples to model correctly the behaviour
of the appliance. This is the case of the washing machine appliance
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that has not so many samples/activations and whose data contains a
lot of variability. As a consequence, its corresponding MAE is low
even though the predictions are not good.
In all the experiments, the automata model is learnt from (a subset
of) data of the target house and then is always available. If not, we
can use the training data of the other houses, but this would led to
a drop in terms of performance, since we are going to learn an au-
tomata on a potentially different models of the same appliance which
is not exactly what we want to predict. Furthermore, even though we
consider only five appliances, the overall model can still be applied
when there are more appliances. Indeed, despite having much more
noise, which is due to the presence of more appliances that switch on
and off, respectively, the model reasons on each appliance indepen-
dently, and then it should work exactly the same.

Appliance MAE nn MAE neuro-symbolic
dishwasher 17.7 8.02

kettle 7.25 4.52

fridge 15.8 15.8
microwave 7.92 7.98
washingmachine 8.55 8.93

Table 1: MAE over the test set.

7 Conclusion and Future Work

In this paper, we propose a neuro-symbolic approach for NILM
where background knowledge about the behaviour of a house’s ap-
pliances is used on top of a neural network to refine its predictions.
The refinement step is done through a (learnt) automata that change
the prediction of the neural network according to the state’s (expo-
nential) function that has been learnt from the data (i.e., from a subset
of activation windows). Experiments show that when the prediction
of the neural networks are already quite accurate (i.e. the network is
able to learn the pattern of consumption of an appliance) but are not
consistent over time, the use of the background knowledge is able
to ensure a greater consistency leading to a drastic increase of the
performance. While these results are promising, there are several di-
rections that can be investigated for future works. One consists in
a more in-depth search for the parameters of the CSP. Indeed, we
notice that a correct setting of the values of those parameters is fun-
damental in order to achieve better results. Therefore, an extensive
evaluation can be conducted in order to set their values. Currently,
one of the drawbacks of the datasets used in NILM is the availability
of only few activations for each appliance making their generaliza-
tion more difficult. Collecting more activations from different houses
may increase drastically both the variability and generalizability of
our proposed approach. Another direction, which could be also be
conducted in parallel with the previous point, would be to move the
setting from “seen" to “unseen", and see how our neuro-symbolic ap-
proach behaves when the prediction has to be done on a house (i.e.,
on its appliances) that it has not seen during training.
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