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Leveraging Commonsense for Object
Localisation in Partial Scenes
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Abstract—We propose an end-to-end solution to address the
problem of object localisation in partial scenes, where we aim
to estimate the position of an object in an unknown area given
only a partial 3D scan of the scene. We propose a novel scene
representation to facilitate the geometric reasoning, Directed Spa-
tial Commonsense Graph (D-SCG), a spatial scene graph that
is enriched with additional concept nodes from a commonsense
knowledge base. Specifically, the nodes of D-SCG represent the
scene objects and the edges are their relative positions. Each object
node is then connected via different commonsense relationships
to a set of concept nodes. With the proposed graph-based scene
representation, we estimate the unknown position of the target
object using a Graph Neural Network that implements a sparse
attentional message passing mechanism. The network first predicts
the relative positions between the target object and each visible
object by learning a rich representation of the objects via aggre-
gating both the object nodes and the concept nodes in D-SCG.
These relative positions then are merged to obtain the final position.
We evaluate our method using Partial ScanNet, improving the
state-of-the-art by 5.9% in terms of the localisation accuracy at
a 8x faster training speed.

Index Terms—Vision and scene understanding, scene analysis,
computer vision, machine learning.

I. INTRODUCTION

LOCALISING an unobserved object given only a partial
observation of a scene, as shown in Fig. 1, is a fundamental

task in many automation applications such as object search
with embodied agents [1], layout generation for interior layout
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Fig. 1. Given a set of objects (green nodes) in a partially known scene that is
semantically segmented, we aim to estimate the position of a target object (the
cyan node) in the unexplored (grey) area. We address this localisation problem
with a novel scene graph representation dubbed D-SCG, that contains both the
spatial knowledge extracted from the reconstructed scene, i.e., the proximity
(black edges), and the commonsense knowledge represented by a set of relevant
concepts (pink nodes) connected by relationships, e.g., UsedFor (blue edges)
and AtLocation (orange edges).

design [2], and for assisting visually impaired people in finding
everyday items. Humans can perform such a task with ease,
using the past experience and the fact that there exists some
commonsense in terms of object arrangement patterns within
specific scenarios. For example, when we arrange objects in a
house, we often place the television in front of a sofa in the living
room, and put the nightstand beside the bed in the bedroom.

In this work, we present a novel solution for the localisation
of objects in partially observed 3D scenes. Our method is able
to infer the position of an object in the unobserved part of the
room by leveraging the commonsense knowledge together with
the geometric arrangement of objects in the visible part. We
demonstrate that the commonsense knowledge that indicates
how objects are used, e.g., a chair is used for sitting, and
where they are typically located, e.g., a chair is often located
in a kitchen, can be exploited to improve the accuracy of the
localisation.

As shown in Fig. 1, we propose to model the objects’ ar-
rangement and commonsense information as a heterogeneous
graph called Directed Spatial Commonsense Graph (D-SCG).
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First, the nodes representing the known objects in the partially
observed scene construct a Directed Spatial Graph (D-SG),
which is fully connected. The edges between the nodes are
called proximity edges, representing the relative position be-
tween a pair of objects. Then, the D-SG is further expanded
into the D-SCG by adding and connecting nodes that represent
concepts through relevant commonsense relationships extracted
from ConceptNet [3]. The object to locate, i.e., the target, is a
node in the graph, connected to the other known object nodes
with proximity edges, where the respective relative positions are
treated as unknowns. Our proposed solution for object localisa-
tion exploits a Graph Neural Network (GNN) that can efficiently
learn the representations of the nodes and edges of D-SCG. Our
network predicts the relative positions between the target object
node and each known object node. It then converts the relative
positions into absolute ones which agree on a single final position
of the target object.

As an extension of [4], our new D-SCG represents the
proximity edges with directional relative positions. Instead,
the method in [4] localises objects with Spatial Commonsense
Graph (SCG-OL) that connects object nodes with undirected
proximity edges defined by the relative object distances. This
difference in the graph formulation allows us to regress and
estimate the target position in an end-to-end trainable manner.
This is not possible with SCG-OL [4] due to the requirement of
a non-differentiable multilateration procedure for localising the
target object. The novel scene graph formulation also leads to a
simpler loss calculation and training procedure which benefits
the encoding of both the geometrical information regarding the
arrangement of the objects in the observed part of the room and
commonsense attributes that define what they are commonly
used for or where they are commonly located, resulting in a
better target localisation both on the 2D floor map and in the 3D
scene. Moreover, we propose to employ a new attention module
in the GNN that is adapted from the Rectified Linear Attention
(ReLA) [5] for its high expressive power that encourages the
sparsity of attention weights, while being stable and efficient in
terms of training. With extensive experiments, we demonstrate
that our new method achieves an increase of 5.9% in terms
of Localisation Success Rate (LSR), compared to the previous
state-of-the-art method SCG-OL, with a 8x speed-up in both
training and inference. Furthermore, the proposed solution is
able to generalise to the 3D domain, reaching 25% in terms of
LSR compared to the 5% of SCG-OL.

The main contributions of this paper are summarised below:
� We introduce the Directed Spatial Commonsense Graph

(D-SCG), an heterogeneous scene graph representation
that integrates both the spatial information of the partially
observed scene and the commonsense knowledge that is
relevant to the observed objects. D-SCG defines its prox-
imity edges with the directional relative positions, different
from the formulation in [4] that represents the proximity
edges as distances. This allows for the design of an efficient
end-to-end learnable localisation network, leading to a
better localisation performance in both 2D and 3D.

� We propose D-SCG Object Localiser, a GNN-based solu-
tion that uses the D-SCG for the localisation of objects in

the unobserved part of the scene. We utilise a new sparse
attention module that is adapted from [5] in our GNN,
contributing to a higher object localisation success rate and
training efficiency.

� We present an extensive evaluation of our solution, as
well as an in-depth analysis of the internal working of the
proposed model, to explain the utility of commonsense
reasoning.

II. RELATED WORK

We cover related works regarding the use of graphs for
modelling scenes and performing inference, and the use of
commonsense reasoning in neural networks.

Scene Graph Modelling and Inference. Scene graphs allow
high-level description of a scene by its content. They were
initially introduced to model the objects in an image and their
relations. In most applications, the nodes in the scene graph
indicate the objects in the image, and the edges define the
relationships between these objects, which can be spatial [6] or
semantical [7]. Scene graphs are useful in many applications,
such as image retrieval [7], [8], image captioning [9], [10],
[11] and visual question answering [12], [13], where using
an abstract representation of the scene is better than directly
working with pixels. Scene graphs have also been shown to
be useful in improving classical tasks like object detection
by allowing reasoning on contextual cues from neighbouring
objects [6].

Recently, their usage has been extended to 3D, providing an
efficient solution for 3D scene description. The scene graphs for
3D applications vary from simple structures, where the nodes
define the objects in the scene, and the edges define the spatial
relationship between them [14], [15], [16], to more complex,
hierarchical structures. Armeni et al. [17] propose a hierarchi-
cal scene graph for large-scale environments that can encode
information at different “levels” with each level providing a
more abstract representation. The first level records the data
retrieved from the individual cameras, such as images and cam-
era positions. The second level provides information regarding
the objects in the environment, the third is about the rooms, and
finally, the last one is about the buildings. Such representation
is ideal for large environments, but it is needlessly complex
for most applications where the environment is composed of
a few rooms, where more straightforward representations are
typically used. 3D scene graphs are commonly used for layout
completion, scene synthesis and robot navigation [18], [19],
[20]. Zhou et al. [18] uses a GNN in combination with a 3D
scene graph to enrich indoor rooms with new objects that match
their surroundings. In [19], the layout of the scene is encoded
using a relation graph with objects as nodes and spatial/semantic
relationships between objects as edges. The relation graph is then
used to train a generative model that produces novel relation
graphs, thus new layouts. For robot navigation, the scene graph
is used to encode the environment efficiently. In [20] the scene
graph is used to encode the scene’s geometry, topology, and
semantic information. The scene graph is then mapped to the
robot’s control space for navigation via a learned policy.
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Fig. 2. General overview of our proposed approach. First, we construct the Directed Spatial Commonsense Graph (D-SCG) from the known scene by enriching
the directed scene graph with concept nodes and relationships, resulting in edges of three types: UsedFor (Blue edges), AtLocation (Orange edges) and Proximity
(edges). The D-SCG is then fed into our D-SCG Object Localiser that first performs message passing with attention to update the node features taking into
consideration the heterogeneous edges, then concatenates the node features of the target node and one of the scene object nodes (at a time) and passes it through
an MLP to predict the relative position. The final position is given by aggregating all the predicted relative positions via mean pooling.

Commonsense Knowledge in Neural Networks. Common-
sense reasoning refers to the high-level reasoning that humans
employ when solving tasks. In particular, it is our ability to use
prior information gained in our lifetime and use it for a new task.
While modelling human-level commonsense is something that
we are still far away from achieving, much work has been done
in this direction in recent years. A fundamental requirement is
to have a way to provide “known prior information”. This is
typically achieved using knowledge bases that are considered
to contain some kind of axiomatic truths regarding our world.
Examples of such knowledge bases are WikiData [21] and
ConceptNet [3].

In the field of Natural Language Processing (NLP), the work
presented in [22] makes use of ConceptNet to create richer
contextualised sentence embeddings with the BERT architec-
ture [23]. In [24], the authors utilise the knowledge graph
Freebase to enrich textual representations for a question an-
swering system. In computer vision, a few works [25], [26]
have exploited an external knowledge base for Visual Question
Answering (VQA) as it helps the network to reason beyond
the image contents. In the scene graph generation task, the
ConceptNet [3] knowledge graph has also been exploited to
refine object and phrase features to improve the generalisation
of the model [27]. In this work, we incorporate commonsense
information from ConceptNet into the spatial scene graph to
improve the object localisation performance when only a partial
scene is observed.

III. DIRECTED SPATIAL COMMONSENSE GRAPH

Our scene representation has the objective to embed common-
sense knowledge into a geometric scene graph extracted from
a partial 3D scan of an area. As shown in Fig. 2, we construct
the D-SCG with nodes that are: i) object nodes that include all
the observed objects in the partial scene and any unseen target
object to be localised; ii) concept nodes that are retrieved from
ConceptNet [3].

Each D-SCG is constructed on top of a directed Spatial
Graph (D-SG), a fully directed graph with all object nodes. Each

object node is further connected to a set of concept nodes via
some semantic relationships available in the knowledge base.
This renders the edges of D-SCG heterogeneous, separating the
spatial interactions from the “commonsense”. In practice, the
edges of our proposed graph structure are of three types:
� Proximity, represented by the relative position vector, indi-

cating both the distance and direction, between all object
nodes given the partial 3D scan. This is different from our
previous work [4] where Proximity is represented by the
relative distance between all the object nodes of the partial
scene;

� AtLocation, retrieved from ConceptNet, indicating in what
environment the objects are often located in;

� UsedFor, retrieved from ConceptNet, describing common
use-cases of the objects.

The proximity edges connect all the objects nodes of the D-
SCG in a directed and complete manner, while the semantic
AtLocation and UsedFor edges connect each object node with
its related concept nodes that are queried from ConceptNet (e.g.,
bed AtLocation apartment or bed UsedFor resting). The two
semantic edge types provide useful hints on how objects can
be clustered in the physical space, thus benefitting the position
inference of indoor objects.

We formulate D-SCG as a directed graph that is composed
by a set of nodes H = {hi| i ∈ (0, N ]}, where N = No +Nc is
the total number of nodes. No is the number of the object nodes
andNc the number of the concept nodes, where each node is rep-
resented by a feature vector hi ∈ R300 from ConceptNet [28].
The edges are defined by the set E = {ei,j | i ∈ (0, N ], j ∈ Ni],
where ei,j is the edge between node i and node j and Ni is set
of neighbouring nodes of i.

We represent each edge with a 6-dimensional feature vector,
i.e., ei,j ∈ R6, whose first three elements indicate the edge
type in a one-hot manner, the fourth element indicates whether
a proximity relation involves the target node, while the last
two elements indicate the relative position di,j = [Δxi,j ,Δyi,j ]
between node i and node j, in Cartesian coordinates such
that Δxi,j = xj − xi and Δyi,j = yj − yi. This definition is
different from the SCG in [4], where edges were represented
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by 4-dimensional vectors that represented the one-hot encoded
edge class and only the distance between the objects that were
connected by the edge. In our new graph formulation, we are
able to achieve a more detailed spatial reasoning and to train
in an end-to-end manner, which contributes to the performance
improvement in both object localisation and computational ef-
ficiency as shown in Section V-B. As the relative positions are
only measurable among object nodes in the observed part of the
3D scan, we initialise the relative positions to [0,0] when the
edges are AtLocation, UsedFor, or Proximity edges involving
the unknown target object node.

Note that we focus on localising the target object on the
XY plane since the target’s positions vary little along the Z
axis, as indicated in the benchmark’s statistics, shown in [4].
Nevertheless, our method can easily be extend to perform pre-
dictions in 3D space by predicting the relative 3D positions
di,j = [Δxi,j ,Δyi,j ,Δzi,j ] between nodes i and j, in Cartesian
coordinates. We provide experimental results on 3D localisation
in Section V-C.

IV. END-TO-END D-SCG OBJECT LOCALISER

We propose an end-to-end solution to address the task of lo-
calising the arbitrary unobserved target object using the D-SCG.
The model first predicts the relative positions of the unseen target
object w.r.t. the objects in the partially known scene. Then the
relative positions are converted in absolute coordinates and mean
pooling is applied to estimate the final position. This approach
is fully differentiable and requires no additional localisation
module based on circular triangulation to predict the position
of the target object as in [4], thus improving the network’s
efficiency.

A. Model

To predict the relative position of the unseen target node w.r.t.
the visible scene objects, we make use of a stacked GNN archi-
tecture. Our proposed GNN replaces the attention mechanism
in Graph Transformer [29] with an sparse attentional message
passing mechanism that is based on ReLA [5]. We further
add a ScaleNorm layer on top of ReLA and utilise different
normalisation layers to stabilise the training of the new module
on our D-SCG. The node embeddings are updated iteratively
by utilising the heterogeneous information of the edge type,
to allow effective fusion between the commonsense knowledge
and the metric measurements. We highlight the main differences
between the attention mechanism in [29] and ours in Fig. 3.

The input to the network is a set of node features H and the
output is a new set of node features H′ = {h′

i| i ∈ (0, N ]}, with
h′
i ∈ R300. Each node i in the graph is updated by aggregating

the features of its neighbouring nodesNi via four rounds of mes-
sage passing. The resulting h′

i forms a contextual representation
of its neighbourhood.

At each round of the message passing, we learn an attention
coefficient αi,j between each pair of connected nodes using
a graph-based and rectified version of the scaled dot-product
attention mechanism, conditioned on the node and edge features.
Our GNN can learn sparse and (positively) unbounded attention

Fig. 3. Overview of the differences between the attention mechanism of [29]
(a), used in SCG [4], and the one employed in this paper that is based on
ReLA [5] with an added ScaleNorm and reprojection (highlighted in the red
dashed box)(b). The new attention mechanism contains more parameters, thus
producing more expressive representations, and learns sparse weights with
reduced training and inference time thanks to the ReLU activation function.
Moreover, we utilise two different normalisation layers to stabilise the network’s
training.

weights due to the usage of the activation function ReLU, as
proposed for the vanilla Transformer model by [5], thus allowing
for the understanding of arbitrary relationships between the
different node types.

The network starts by performing an affine transformation of
the relevant node and edge features to calculate the correspond-
ing query, key, value and edge vector that will be used to compute
the attention weights:

qi = Wqhi + bq, (1)

kj = Wkhj + bk, (2)

vj = Wvhj + bv, (3)

eij = Weeij + be, (4)

where W and b represent respectively the learnable weight
matrices and bias vectors for each transformation.

The network then calculates the attention weightαi,j between
two nodes i and j as:

αi,j = ReLU

( 〈qi, kj + eij〉√
d

)
(5)

where
√
d is a scaling term equal to the square root of the

dimension of the projected features kj . As seen in (5), the use
of the softmax is dropped, since it involves aggregating the
scores for all the edges connected to each node, which implies
many operations for large graphs and slows down the training.
Additionally, the use of ReLU allows for sparsity in the attention
weight matrix, which helps analyse how the network prioritises
the exchange of information. As the attention weights that are
calculated using ReLU are not limited to the range (0,1), we use
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Layer Normalisation [30] when calculating the updated node
features h′

i, followed by a gated residual connection that pre-
vents the node features from converging into indistinguishable
features [29]:

h′
i = LayerNorm(hi + 〈αi,j , vj + eij〉) (6)

βi = Sigmoid(Wg[h
′
i;Wrhi + br;h

′
i − (Wrhi − br)]) (7)

h′
i = (1− βi)h

′
i + βi(Wrhi + br), (8)

where [; ] represents the concatenation operation, LayerNorm
is the Layer Normalisation, βi is a learnable parameter that
guides the gated residual connection, and W and b are the
learnable weight matrices and bias vector for the respective
linear transformations.

Different from [5], we then re-normalise and re-project these
features in a similar fashion to the original Transformer model, a
practice that has been empirically shown to stabilise and improve
the training of self-attentive neural networks [31].

h′
i = ScaleNorm(Woh

′
i + bo), (9)

This step further increases the number of learnable parameters
of our GNN, allowing for better scaling and more expressive
representations, while not sacrificing efficiency thanks to the
sparse attention mechanism (described previously) and the Scale
Normalisation introduced in [31].

We combine all these operations in a module, and use it
for a total of four message passing rounds. Finally, we obtain
the set of final node embeddings H∗ = {h∗

i | i ∈ (0, N ]}, with
h∗
i = [hi;h

′
i]. In this way, the final representation of each node

contains both the original object embedding and the aggregated
embedding of its context in the scene. Finally, we concatenate
the features of the two nodes h∗

i,t = [h∗
i ;h

∗
t ], and predict the

relative position d̂i,t between the target object node t and the
observed object node i via linear projection. To obtain the final
position, we first convert the relative positions d̂i,t in absolute
coordinates by summing to them the positions pi = [xi, yi] of
the observed object nodes and then take the mean of the absolute
positions as our predicted position p̂t.

B. Loss

We train our network with a strategy which considers that
multiple instances of the searched object can exist in the un-
observed part of the scene. Therefore, only the instance closest
to the prediction is accounted when calculating the loss. By
doing this, the network learns to correctly predict a specific
position instead of a point that minimises the distance w.r.t. all
the instances. For the loss, we minimise the squared L2 distance
between the predicted position p̂t and the ground-truth position
of the target position pt as follows:

L2(p̂t, pt) = ‖p̂t − pt‖22. (10)

V. EXPERIMENTS

We evaluate our proposed method on a dataset of partially re-
constructed indoor scenes. In the following sections, we first give
some relevant details on the partial scene dataset in Section V-A.

Then we present comparisons of our proposed method against
the state-of-the-art methods, accompanied by the implementa-
tion details, evaluation metrics and discussions in Section V-B.
Finally, we show different ablation studies in Section V-C to
prove our main design choices and to demonstrate some interest-
ing aspects of our method, including how the proposed attention
evolves over message passing and the extension towards 3D
object localisation.

A. Dataset

Our training and evaluation is based on the partial 3D scenes
dataset [4]. The dataset is built using data from ScanNet [32]
which contains RGB-D sequences taken at a regular frequency
with a RGB-D camera, providing the camera position corre-
sponding to each captured image, as well as the point-level
annotations, i.e., class and instance id, for the complete Point
Cloud Data (PCD) of each reconstructed scene.

As the original acquisition frequency in ScanNet is very high
(30 Hz), the partial scene dataset only uses a subset provided in
the ScanNet benchmark1 with a frequency of about 1/100 of the
initial one. Each full RGB-D sequence of each scene is divided
into smaller sub-sequences to reconstruct the partial scenes,
with varying length to reflect different levels of completeness
of the reconstructed scenes (see Fig. 4 for an example). For each
sub-sequence, the RGB-D information is integrated with the
camera intrinsic and extrinsic parameters to reconstruct the PCD
at the resolution of 5 cm using Open3D [33]. The annotation
for each point in the partial PCD is obtained by looking for the
corresponding closest point in the complete PCD scene provided
by ScanNet.

We extract the corresponding D-SG, i.e., the graph with only
proximity edges, for each partially reconstructed scene and
its object nodes. The nodes of the graph contain the object
information: its position, defined as the centre of the bounding
box containing the object and the object class. The proximity
edge connects two object nodes and contains the relative position
of the second object with respective to the first. We consider the
position of each scene object as a 2D point (x, y) on the ground
plane as most objects in the indoor scenes of ScanNet are located
at a similar elevation. Each node is marked as observed if it
represents an object in the partially known scene; or as unseen if
it represents the target object in the unknown part of the scene.

On top of D-SG, each D-SCG is constructed by adding
two semantic relationships AtLocation and UsedFor, as well as
the concept nodes that are linked to the scene nodes by these
relationships. The concepts are extracted from ConceptNet by
querying each scene object using the two semantic relation-
ships. The query returns a set of related concepts together with
their corresponding weight w, which indicates how “safe and
credible” each related concept is to the query. We include a
concept to the D-SCG only when it has a weight w > 1. Fig. 6
shows an example of a scene and the extracted D-SCG. Fig. 5
shows the average number of nodes linked by different types of
edges in the D-SCG. On average, each D-SCG contains about

1http://kaldir.vc.in.tum.de/scannet_benchmark

http://kaldir.vc.in.tum.de/scannet_benchmark


GIULIARI et al.: LEVERAGING COMMONSENSE FOR OBJECT LOCALISATION IN PARTIAL SCENES 12043

Fig. 4. The dataset with (a) the complete scene from the ScanNet [32] dataset, and (b) the extracted partial scenes [4]. The observed part of the scene is coloured
based on the object semantics, while the unexplored part of scene is coloured in grey.

Fig. 5. Average number of different types of nodes in the D-SCG for both
train and test splits of the dataset. The outliers in the boxplots are introduced
by uncommon room types with a large amount of objects, e.g., libraries with
several books.

5 times more the concept nodes than the object nodes in the
D-SG, demonstrating that a rich commonsense knowledge is
included in D-SCG.

Finally, we follow the same training/validation/test split as
in [4], using 19461 partial scenes for training and validation, and
5435 partial scenes for testing, with each partial scene having
its corresponding D-SG and D-SCG.

B. Experimental Comparisons

We validate D-SCG-OL by comparing its performance
against a set of baselines, a method for layout prediction adapted
for the localisation task [34] and the state-of-the-art approach
SCG-OL for object localisation [4]. The baselines and SCG-OL
follow the two-staged pipeline, where they first predict the
pairwise distances and then estimate the position by using a
localisation module, which minimises these pairwise distances
(circular intersection). We summarise all the approaches imple-
mented for evaluation below.
� Statistics-based baselines use the statistics of the training

set, i.e., the mean, mode, and median values of the pairwise
distances between the target object and the scene objects,
as the predicted distance.

� MLP learns to predict pairwise distances between the tar-
get object and every other observed object in the scene
without considering the spatial or semantic context. The

input to this model is a pair of the target object and the
observed object with each object represented by a one-hot
vector indicating the class, passed to an MLP that predicts
pairwise distances.

� MLP with Commonsense learns to predict the pairwise
distance between the target object and every other observed
object in the scene without considering the spatial context.
We first use GCN to propagate the conceptnet information
to object nodes, then the features are passed to a MLP that
predicts pairwise distances.

� LayoutTransformer [34] uses the transformer’s self-
attention to generate the 2D/3D layout in an auto-regressive
manner. We describe the observed objects as a sequence of
elements as in [34], where each element contains the object
class and the position (x, y). We then feed the class of the
target object to generate its corresponding position (x, y).
For a fair comparison, we retrain the model on our training
set.

� SCG-OL [4] exploits SCG that contains the proximity
edges that describe the relative distances. The localisation
method is a two-stage approach which first predicts the
pairwise distances via a stacked GNN, and then passes
these to a Localisation module to obtain the final position.

� D-SCG-OL w\o Commonsense is a variant of our approach
to test the capability of the method when it is used without
commonsense knowledge. The input is the D-SG, which is
composed only by the object nodes and proximity edges.
The initial node features are not pre-trained word embed-
dings, but are learned during training via an embedding
layer.

� Graphormer [35] is a recent work that adapted Transformer
models [36] to graph learning. It uses different embedding
strategies to add inductive bias related to the graph struc-
ture. It then propagates features between nodes up to k-hop
distances using the attention mechanism. We adapted the
method so that the node features are updated using the
Graphormer network, then the target node features are used
to regress the position of the searched object.

� D-SCG-OL is our proposed method, described in
Section IV, along with a variant that is trained with learn-
able node embeddings, instead of initialising each node
with the commonsense embedding coming from Concept-
Net’s Numberbatch.
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Fig. 6. Example of a Partial Scene and its generated D-SCG. The target object is represented by the cyan node, the scene objects are the green nodes, and the
concept nodes have a pink background. The colour of the edge distinguishes the relationship type: orange ones are AtLocation edges, blue ones are UsedFor edges,
and black ones are Proximity edges. (a) Scene. (b) Directed spatial commonsense graph.

We evaluate the different methods for the localisation on the
2D floor plane, and report additional results for 3D localisation
in the ablation studies.

Evaluation Measures. We evaluate the performance in terms
of the successful target object localisation and the relative pair-
wise distances, as also proposed in [4].
� Localisation Success Rate (LSR) quantifies the localisation

performance. LSR is defined as the ratio of the number of
successful localisations over the number of tests. A local-
isation is considered successful if the predicted position
of the target object is close to a target instance within a
predefined threshold. Unless stated differently, the distance
threshold is set to 1 m. We consider LSR as the main
evaluation measure for our task.

� mean Successful Localisation Error (mSLE) quantifies the
localisation error among successful cases. mSLE is the
Mean Absolute Error (MAE) between the predicted target
position and the ground-truth position among all successful
tests.

� Finally, mean Predicted Proximity Error (mPPE) quanti-
fies the performance of the methods that rely on pairwise
relative distance prediction, as described above. mPPE is
the mean absolute error between the predicted distances
and the ground-truth pairwise distances between the target
object and the objects in the partially known scene.

Implementation Details. We train our network using the
Adafactor optimiser [37] for 200 epochs. We use a total of
4 message passing layers, a number that is carefully chosen
(see details in Section V-C). The dimension of the first message
passing projection is set to D = 256 and 2D for the remaining
rounds. All attention modules use 4 attention heads. During
training, we augment the dataset by applying random rotations
to the scene objects to allow for better generalisation.

Discussion. Table I reports the localisation performance mea-
sures in terms of mPPE, LSR, and mSLE, of all compared
methods evaluated on the dataset with partially reconstructed

TABLE I
METHODS COMPARISON FOR OBJECT LOCALISATION IN PARTIAL SCENES.

MPPE: MEAN PREDICTED PROXIMITY ERROR. MSLE: MEAN SUCCESSFUL

LOCALISATION ERROR. LSR: LOCALISATION SUCCESS RATE. SG: SPATIAL

GRAPH. SCG: SPATIAL COMMONSENSE GRAPH. D-SG: DIRECTED SPATIAL

GRAPH. D-SCG: DIRECTED SPATIAL COMMONSENSE GRAPH. THE FIRST PART

OF THE TABLE FOLLOW THE 2-STAGE APPROACH WHICH FIRST PREDICTS THE

PAIRWISE DISTANCES AND THE LOCALISE THE OBJECT VIA MULTILATERATION.
THE LAST PART CONSISTS OF OUR METHOD AND ITS VARIANTS WHICH

DIRECTLY PREDICT THE FINAL POSITION

scenes. We can initially observe that methods which rely only
on pairwise inputs, e.g., statistics-based approaches or MLP,
lead to worse performance compared to methods that account
for other objects present in the observed scene. Nevertheless,
introducing semantic reasoning on top of these methods seems to
improve the performances, as shown by MLP w/ Commonsense,
with an improved LSR of 2% compared to the standard MLP.
LayoutTransformer directly predicts the 2D position of the target
object by taking as input the list of all the observed scene objects
and using the target class as the last input token. LayoutTrans-
former can better encode the spatial context and outperforms
the statistic-based and MLP baselines. SCG-OL that uses the
SCG with pairwise distances is able to improve on all metrics
w.r.t. the baseline methods, suggesting that a scene-graph based
solution with added commonsense knowledge is a more effective
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Fig. 7. Localisation performance over different levels of scene completeness.
(a) The localisation error in terms of MAE between the estimated target position
and the ground-truth position. (b) The LSR at different threshold levels.

way of modelling the problem. The adapted Graphormer [35]
model performs the best amongst the baselines, but it fails
to reach the same performances as our proposed approach.
Graphormer proposes to enhance the propagation of information
by aggregating the information not only from directly connected
nodes but also from nodes up to a k-distance by creating new
edges between them where the edge features are an inner prod-
uct between all the edges along the path. While this works
fine on a homogeneous graph, the effect can be limited with
heterogeneous edge types, since the structural information of
our proposed heterogenous graph is not as meaningful as the
molecular graphs, for which Graphormer was proposed.

The different versions of our proposed method D-SCG-
OL are able to reach the best performance. D-SCG-OL with
learned embeddings has a 0.8% increase in the LSR performance
w.r.t. the GNN working only on the D-SG, revealing the useful-
ness of the concept nodes, with a further increase of 2.4% when
initialising the node embeddings of the graph by using Concept-
Net’s Numberbatch, showing that the commonsense information
introduced from ConceptNet is useful for the localisation task.

As previously mentioned in this section, we consider the LSR
as the primary evaluation metric. It is therefore useful to demon-
strate and understand how the completeness (known) level of
the scene impacts the localisation performance of D-SCG-OL.
Fig. 7(a) reports the mean absolute error (MAE) between the
estimated position and the ground-truth position compared to
the scene completeness. Note that the MAE is calculated on all
the test cases, including both the successful and failed ones. We
use MAE instead of the mSLE as the mSLE is calculated only
on successful cases and does not change with the completeness
of the scene. As a general trend, our model can predict more
accurately the position of the target object with an increasing
scene completeness. Fig. 7(b) presents how the LSR varies as
the scene gets more complete. In general, the LSR increases
when the localisation error decreases. We report the LSR at four
different threshold values, i.e., 0.5 m, 1 m, 2 m, and 3 m, where
a larger threshold leads to a larger LSR value, as it might be
expected.

Qualitative Results. Fig. 8 shows the qualitative results ob-
tained using our method D-SCG-OL. Fig. 8(a) shows that the
“sink” object class was successfully located near the counter.
Similarly in Fig. 8(b), the position of the chair (target object) is
correctly estimated in a position which is coherent with other

TABLE II
IMPACTS OF DIFFERENT CONCEPTNET RELATIONSHIPS WITH THE PROPOSED

D-SCG-OL. LSR: LOCALISATION SUCCESS RATE

instances of chair and tables in the observed part of the room.
Interestingly, Fig. 8(c) presents a failure case in which the
method fails to locate a window in an office setting. In this case
the network successfully identify the general direction where
the window should be located, but overestimated its concrete
placement w.r.t to the visible objects. This error is plausible as
the network does not see any objects that can help create an idea
of the actual shape of the room.

Computational Efficiency. There are 20.5 M parameters in
D-SCG-OL, which is 3.4 M more than the previous state-
of-the-art method SCG-OL [4] (17.1 M). Nevertheless, our
proposed D-SCG-OL takes 13h35 m to fully train the model
for 200 epochs on a single Titan RTX, while SCG-OL requires
108h40 m, thus 8x slower. This is mostly due to the two-stage
approach of SCG-OL which includes the non-differentiable
localisation module and the more expensive activation function
in the attention mechanism.

C. Ablation Studies

We further analyse D-SCG-OL to justify the usefulness of
the commonsense relationships and our new attentional message
passing mechanism. We also investigate the impact of increasing
the number of message passing layers. To verify the applicability
in 3D, we also evaluate the localisation performance of our
method in comparison to the state-of-the-art methods. Lastly,
we provide in-depth investigation on how the attention weights
evolve over the message passing when forming the node and
edge representation.

Which commonsense relationship is more important? In order
to better understand the effects of using different common-
sense relationships, we compare the performance of D-SCG-
OL against four variants where the D-SCG contains: i) only
Proximity edges without commonsense relationships, ii) Prox-
imity edges with AtLocation edges, iii) Proximity edges with
UsedFor edges, and vi) Proximity edges with AtLocation and
UsedFor edges. We report the main Localisation Success Rate
(LSR) measure for all variants, as well as the scene average
percentage of object nodes which are linked by 0, 1, or 2 types
of semantic edges, i.e., AtLocation and UsedFor edges.

Discussion. Table II shows that AtLocation is more effective
than UsedFor for localising objects. This is reasonable, since the
AtLocation edge leads to message passing among objects that
are connected in the same location, containing information more
relevant to the localisation task. However, the best performance
is obtained when the D-SCG rely on all types of edges which
provides a higher connectivity among object nodes to concept
nodes. There are 80% object nodes linked to concept nodes by
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Fig. 8. Qualitative results obtained with D-SCG-OL. The partially known scene is coloured with a yellow background, while the unknown scene is indicated
with grey. The coloured circles indicate the object nodes present in the D-SCG. The red star indicates the GT position of the target object, while the cyan diamond
indicates the predicted positions. The network is able to correctly predict the position of a sink in (a) and a chair in (b). In the failure case of (c), the network
correctly identified the direction of the window but overestimated the distance from the visible objects.

both AtLocation and UsedFor edges, leading to a more effective
knowledge fusion than when only one type of semantic edge is
used.

Which attention network is more effective? We examine the
usefulness of the proposed attention mechanism in D-SCG-
OL compared to other, commonly used, attentional message
passing modules in the GNN literature. As most of these ap-
proaches do not support the use of edge features, we modify the
node features for this ablation study to include the positional
information to the node features. For a fair comparison, we re-
move the edge embedding from D-SCG-OL. The set of attention
networks we compare with is listed below:
� No attention [38] is the first baseline, where we use Graph-

SAGE without relying on any attention module.
� GAT [39] adds an attention mechanism to the message

passing procedure.
� GATv2 [40] is similar to GAT but improves the attention

mechanism in terms of the expressiveness and addresses
the problem of “static attention” when using GATs for
message passing.

� HAN [41] defines multiple meta-paths that connect neigh-
bouring nodes either by specific node or edge types. It
employs attentional message passing sequentially by first
calculating the semantic-specific node embedding and then
updating them by using an attention mechanism [36]. With
D-SCG we define three sets of meta neighbours, i.e., the
proximity neighbours, the AtLocation neighbours, and the
UsedFor neighbours, connected by the specific edges. We
implement the message passing for each meta-path using
specialised GraphTransformer layers.

� GraphTransformer [29] is similar to ours, except that it
does not accommodate sparse attention and has less expres-
sive power due to the smaller number of parameters. This
module is essentially a porting of the scaled dot-product
attention mechanism [36] to GNNs.

� Ours - Only ReLA [5] is our GNN with the original
ReLA [5], i.e., without the ScaleNorm and Linear layer.

Discussion. As shown in Table III, different attention modules
can produce results that vary greatly in terms of LSR. Among all,
HAN achieves the worst performance, showing that features are
better to be propagated simultaneously rather than sequentially.

TABLE III
IMPACTS OF DIFFERENT ATTENTION MODULES FOR THE OBJECT LOCALISATION

TASK WITH OUR D-SCG-OL. LSR: LOCALISATION SUCCESS RATE

TABLE IV
IMPACT OF DIFFERENT NUMBERS OF MESSAGE PASSING LAYERS IN OUR

D-SCG-OL. LSR: LOCALISATION SUCCESS RATE

TABLE V
COMPARISON OF OBJECT LOCALISATION PERFORMANCE IN THE 3D

ENVIRONMENT INSTEAD OF ON THE 2D FLOOR PLANE

GAT and GraphTransformer perform better than HAN, yet it
is still worse than GraphSAGE which uses no attention. This
is potentially due to the limitations of the standard attention
mechanism when used in GNNs [40]. GraphSAGE is a general
inductive framework that leverages node feature information at
different depths and is proven to work well on large graphs.
In general the attention module should be carefully designed
in order to provide advantageous performance. For example,
GATv2 improves the localisation performance by fixing the
static attention problem of the standard GAT.

Our ReLA-based attention model avoids the usage of a soft-
max as in the original Graph Transfomer [29] achieves the
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Fig. 9. Feature propagation at different layers of our GNN that are directed by our attention module. The cyan node indicates the target object, the green nodes
represent the scene nodes, and the pink nodes represent the concept nodes. The black edges indicate the sharing of information between two nodes in the direction
indicated by the arrows. For ease of visualisation, we show edges with a mean attention weight over the heads that are superior to 0.2%, and only display concept
nodes that are connected via these types of edges.

Fig. 10. Attention weights for messages that are propagated to the target
node are indicated in Fig. 9. The network learns to propagate information from
different nodes by leveraging different attention heads. The first and last layer
the network propagate information from most of the neighbouring nodes, while
the intermediate layers focus on few specific nodes.

best overall performance in terms of LSR. This substantial
improvement is contributed by the increased expressive power
and the ability to reason on sub-graphs during the message
passing procedure. The usage of only ReLA, i.e., without scale
normalisation and the successive re-projection [31] achieves a
lower LSR compared to ours, confirming the advantage brought
by the proposed additional normalisation as the learned weights
are positively unbounded.

Does the number of message passing layers and the final node
concatenation of D-SCG-OL make a difference?

We examine a set of variants of our D-SCG-OL with varying
numbers of message passing layers ranging from 1 to 5. Table IV
shows that using four message passing (MP) layers leads to
the best performance. When using a single MP layer, there is
not enough information regarding the context to be propagated
to the nodes and this leads to the worst performance. With
more than two MP layers, the performance starts to increase,
saturating at four layers. With additional layers, we observe
that the performance starts to degrade. This might be due to
the over-smoothing problem [42], [43], where after multiple
message passing rounds, the embeddings for different nodes are
indistinguishable from one another. Given the best layer number,
we also validate the choice of concatenating the original embed-
ding to the aggregated contextual ones, instead of using only the
aggregated features. Concatenation is more advantageous with
an LSR of 0.29, while directly using the aggregated node rep-
resentation leads to an LSR of 0.28. We argue that this happens
because concatenation allows the network to still remember the
initial representation, developing a better understanding of the
context after message passing.

Localising in 3D. We examine the network capability to
localise the target object directly in 3D scenes instead of on
the 2D floor plane. We compare D-SCG-OL with SCG-OL by
making the appropriate modifications for 3D localisation.

Table V reports the localisation performance in the 3D scenes.
We can observe that all the three methods suffer a drop in terms
of LSR performance due to the increased difficulty level of the
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problem. SCG-OL experiences the highest drop in performance,
with an LSR score of only 0.05, down from its original score of
0.24 when evaluated in the 2D domain. This decrease in perfor-
mance can be attributed to a difficulty in representing the object
arrangement using only distances when an additional dimension
is considered. Utilising a less abstract representation by using
relative positions between objects leads to much more accurate
results. Despite the increased problem difficulty, our proposed
D-SCG-OL achieves the best LSR of 0.26, which is significantly
higher than the second-best method LayoutTransformer with a
LSR of 0.15.

Attention Visualisation In Figs. 9 and 10 we show how the
network prioritises the exchange of information when localising
a chair. Note that our network does not use the softmax function
when calculating the attention weights, thus they do not neces-
sarily sum to one. We normalise the weights for the visualisation
results. Fig. 9 shows the features propagated via message passing
that are assigned a high weight by our attention modules. The
network learns to operate very differently depending on the layer,
and most of the attention weights are given to edges between
object nodes. The network also learns to attend differently to
instances of the same object based on the scene geometry that is
described by the edge features. For instance, in the first layer only
two of the five chairs nodes propagate their features with a high
weight to the refrigerator. Incidentally, these nodes represent the
two chairs closest to the fridge. Fig. 10 shows the different heads’
attention scores for messages that are propagated to the target
node. We can see that each head focuses on different nodes: some
heads are giving high weights to specific nodes, e.g., head zero
and three of the second layer, while others balance the features
from many nodes, e.g., head two and three of the first layer.
Lastly, we can see that most of the commonsense information is
propagated in the first and last layer of the GNN.

VI. CONCLUSION

We proposed an novel scene graph model, the D-SCG, to
address the problem of localising objects in a partial 3D scene.
The spatial information regarding the arrangement of the object
is described via directional edges with relative positions instead
of undirectional relative distances as in the prior work. With
the proposed D-SCG, we developed a new GNN-based solution
for object localisation, D-SCG Object Localiser, that can di-
rectly estimate the position of the target object by predicting its
relative positions with respect to other objects in the partially
observed scene, leading to an efficient end-to-end trainable
solution. Our approach also features a new attention module,
wrt to our previous approach, to further improve the localisa-
tion performance, by using the ReLA attention. We thoroughly
evaluated our proposed method on the partial scene dataset
and proved its superior performance in terms of localisation
success rate against baselines and the state-of-the-art methods.
Finally, we showed that our approach can be applied for 3D
object localisation with a marginal performance drop, while
the previous state-of-the-art method degrades dramatically due
the increased localisation difficulty. Future work will focus on
scaling our proposed approach to large-scale outdoor scenarios
and extending to robotic applications.
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[39] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018.

[40] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?,” in Proc. Int. Conf. Learn. Representations, 2022.

[41] X. Wang et al., “Heterogeneous graph attention network,” in Proc. World
Wide Web Conf., 2019, pp. 2022–2032.

[42] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and
relieving the over-smoothing problem for graph neural networks from the
topological view,” in Proc. AAAI Conf. Artif. Intell., 2020, pp. 3438–3445.

[43] K. Oono and T. Suzuki, “Graph neural networks exponentially lose ex-
pressive power for node classification,” in Proc. Int. Conf. Learn. Repre-
sentations, 2020.

Francesco Giuliari (Student Member, IEEE) re-
ceived the MsC degree in computer science from
the University of Verona, in 2018. He is currently
working toward the PhD degree with the University of
Genoa. He is currently affiliated with Istituto Italiano
di Tecnologia under the supervision of Dr. Alessio Del
Bue. His main research interests include computer
vision, scene understanding, and vision-based agent
navigation.

Geri Skenderi received the master’s degree in com-
putational data science from the Free University
of Bolzano-Bozen, in 2020. He is currently work-
ing toward the PhD degree with the University of
Verona, working under the supervision of Prof. Marco
Cristani. His research interests cover the broad area
of graph learning and disentangled representation
learning, with an applicative focus on forecasting and
prediction.

Marco Cristani (Member, IEEE) is full professor
(Professore Ordinario) with the Computer Science
Department, University of Verona, associate member
with the National Research Council (CNR), external
collaborator with the Italian Institute of Technology
(IIT). His main research interests include statistical
pattern recognition and computer vision, mainly in
deep learning and generative modeling, with applica-
tion to social signal processing and fashion modeling.
On these topics, he has published more than 180 pa-
pers, including two edited volumes, 46 international

journal papers, 126 conference papers and 13 book chapters. He has organized
11 international workshops, cofounded a spin-off company, Humatics, dealing
with e-commerce for fashion. He is or has been principal investigator of several
national and international projects, including PRIN and H2020 projects. He
is a member of the editorial board of the Pattern Recognition and Pattern
Recognition Letters journals. He is managing director of the Computer Science
Park, a Technology Transfer Center, University of Verona. He is a member of
the ACM and IAPR.

Alessio Del Bue (Member, IEEE) is a tenured senior
researcher leading the Pattern Analyisis and computer
VISion (PAVIS) Research Line of the Italian Institute
of Technology (IIT), Genoa, Italy. He is a coauthor
of more than 100 scientific publications in refereed
journals and international conferences on computer
vision and machine learning topics. His current re-
search interests include 3D scene understanding from
multi-modal input (images, depth, and audio) to sup-
port the development of assistive artificial intelligence
systems. He is a member of the technical committees

of major computer vision conferences (CVPR, ICCV, ECCV, and BMVC). He
serves as an associate editor of the Pattern Recognition and Computer Vision
and Image Understanding journals. He is a member of the ELLIS.

Yiming Wang received the PhD degree in electric
engineering from the Queen Mary University of Lon-
don, U.K., in 2018, working on vision-based multi-
agent navigation. She is a researcher with the Deep Vi-
sual Learning (DVL) Unit, Fondazione Bruno Kessler
(FBK). Her research mainly focuses on vision-based
scene understanding that facilitates automation for
social good. Since 2018, she has worked as a post-doc
researcher with the Pattern Analysis and Computer
Vision (PAVIS) Research Line, Istituto Italiano di
Tecnologia (IIT), working on topics related to active

3D vision. She is actively serving as a reviewer for top-tier conferences and
journals in both the computer vision and robotics domains.

Open Access provided by ‘Istituto Italiano di Tecnologia’ within the CRUI CARE Agreement

https://openreview.net/forum{?}id=OeWooOxFwDa


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


