The implementation of single-photon avalanche diode detectors (SPAD) in a standard high voltage 0.7-μm CMOS technology is presented. Two different device structures, combined with integrated quenching circuits, have been fabricated and successfully tested. A novel biasing scheme is proposed allowing the reduction of afterpulsing effect and the decrease of minimum device-to-device distance. Good noise performance is obtained for the 100μm2 active area device where over 50% of the population has a dark count rate below 100cps and afterpulsing lower than 0.3% with a 4-V excess bias and a 32-ns dead time. The peak photon detection probability is about 30%, while the overall system, upper limit, for the time resolution is 144ps.

Low-noise CMOS single-photon avalanche diodes with 32ns dead time

Pancheri, Lucio;Stoppa, David
2007-01-01

Abstract

The implementation of single-photon avalanche diode detectors (SPAD) in a standard high voltage 0.7-μm CMOS technology is presented. Two different device structures, combined with integrated quenching circuits, have been fabricated and successfully tested. A novel biasing scheme is proposed allowing the reduction of afterpulsing effect and the decrease of minimum device-to-device distance. Good noise performance is obtained for the 100μm2 active area device where over 50% of the population has a dark count rate below 100cps and afterpulsing lower than 0.3% with a 4-V excess bias and a 32-ns dead time. The peak photon detection probability is about 30%, while the overall system, upper limit, for the time resolution is 144ps.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/3608
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact