We present a novel non-object centric approach for discovering activity patterns in dynamic scenes. We build on previous works on video scene understanding. We first compute simple visual cues and individuate elementary activities. Then we divide the video into clips, compute clip histograms and cluster them to discover spatio-temporal patterns. A recently proposed clustering algorithm, which uses as objective function the Earth Mover’s Distance (EMD), is adopted. In this way the similarity among elementary activities is taken into account. This paper presents three crucial improvements with respect to previous works: (i) we consider a variant of EMD with a robust ground distance, (ii) clips are represented with circular histograms and an optimal bin order, reflecting the atomic activities’similarity, is automatically computed, (iii) the temporal dynamics of elementary activities is considered when clustering clips. Experimental results on publicly available datasets show that our method compares favorably with state-of-the-art approaches.

Sorting Atomic Activities for Discovering Spatio-temporal Patterns in Dynamic Scenes

Ricci, Elisa;Messelodi, Stefano;
2011-01-01

Abstract

We present a novel non-object centric approach for discovering activity patterns in dynamic scenes. We build on previous works on video scene understanding. We first compute simple visual cues and individuate elementary activities. Then we divide the video into clips, compute clip histograms and cluster them to discover spatio-temporal patterns. A recently proposed clustering algorithm, which uses as objective function the Earth Mover’s Distance (EMD), is adopted. In this way the similarity among elementary activities is taken into account. This paper presents three crucial improvements with respect to previous works: (i) we consider a variant of EMD with a robust ground distance, (ii) clips are represented with circular histograms and an optimal bin order, reflecting the atomic activities’similarity, is automatically computed, (iii) the temporal dynamics of elementary activities is considered when clustering clips. Experimental results on publicly available datasets show that our method compares favorably with state-of-the-art approaches.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11582/34783
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact