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Abstract

Automatic speech recognition models require large speech recordings for training.1

However, the collection of such data often is cumbersome and leads to privacy2

concerns. Federated learning has been widely used as an effective decentralized3

technique that collaboratively learns a shared model while keeping the data local4

on clients devices. Unfortunately, client devices often feature limited computation5

and communication resources leading to practical difficulties for large models.6

In addition, the heterogeneity that characterizes edge devices make unpractical7

federating a single model that fits all the different clients. Differently from the8

recent literature, where multiple different architectures are used, in this work we9

propose using early-exiting. This brings 2 benefits: a single model is used on a10

variety of devices; federating the models is straightforward. Experiments on the11

public dataset TED-LIUM 3 show that our proposed approach is effective and can12

be combined with basic federated learning strategies. We also shed light on how13

to federate self-attention models for speech recognition, for which an established14

recipe does not exist in literature.15

1 Introduction16

D eep learning-based approaches are now widely employed for automatic speech17

recognition (ASR) [20], mainly using large centralized training sets [28, 1, 18].18
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Figure 1: (a) FL scenario. (b) Example of EE architectures:
different clients accommodate different exits.

Unfortunately, centralized training19

poses issues related to data ownership,20

data privacy, latency, and cost; these21

aspects gained increasing attention22

with the proliferation of both edge23

devices and low-latency communica-24

tion technologies [17]. Therefore, dis-25

tributed training approaches, such as26

federated learning (FL), have recently27

received more spotlight [5, 9]. As de-28

picted in Fig. 1(a), FL is a distributed29

machine learning approach that aims30

to train models by combining pieces31

of information collected on the edge32

devices [23]. In details, in each FL round a set of clients performs local training using the locally33

acquired data and share with the central server the information needed to update the central models34

(e.g. gradients, weights, etc.). The server agglomerates the received updates and sends the models35

back to the clients to perform their processing. In this way, most of the computation is executed on36

the edge, preserving at the same time, private data to be transmitted over communication networks.37
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In a distributed environment edge devices exhibit a large variability of computational assets demanding38

for resource aware, i.e. client specific, neural networks. This issue can be handled by employing39

different architectures, with different resource requirements, and federating them via some shared40

layer or common processing blocks, as proposed in [49, 36, 4], eventually implementing articulated41

agglomeration strategies. Instead, in this work we propose to use early-exit (EE) architectures, that42

decode the outputs at different layers of an encoder, as depicted in Fig. 1(b). In this way, a single EE43

model is managed at the server side, while only the layers fitting the resources available on clients are44

actually processed locally. In particular, with this work we aim to contribute to the scientific literature45

in the three directions. 1) We show that EE models allow federating heterogeneous models in a rather46

straightforward way. This surpasses the need for multiple models centrally aligned with edge-specific47

solutions of current approaches, as in [5]. 2) The literature on FL for ASR is not uniform in relation48

to model pretraining and centralized training on held-out data [9, 32]. We experimentally confirm that49

in a cross-domain framework, pretraining even on out-of-domain data is indeed necessary, but the50

role of central training seems not to be crucial. 3) We show that using the FedAdam agglomeration51

strategy [39] in combination with freezing part of the pretrained model (pretrained in an EE fashion)52

noticeably helps the convergence. Note that although FedAdam has been already used in literature,53

its efficacy on ASR tasks with EE architectures has never been experimentally verified.54

2 Related Works55

In speech processing, federated learning has been applied to several tasks: ASR [13, 46], keyword56

spotting [22, 27, 14], speaker recognition [45] and other applications [21, 10, 8]. Generally, FL for57

ASR is a challenging task. Other than for the classic non-i.i.d and unbalancing data distributions, the58

main critical issues are: a) most of ASR architectures (e.g Transformers [48], Transducers [30, 47]59

and recurrent neural networks [34]) require powerful computational resources which are not available60

in most edge devices, and b) learning, from scratch, the proper alignment between the latent speech61

representation and the transcription [40] is unfeasible in a FL framework, since it requires large62

datasets, usually available only in the central servers. In [9], the authors prove the need to pretrain63

the global model in order to reach convergence and introduce a held-out data set, to be employed64

after FedAvg, to control model divergence between adjacent FL rounds. They also apply some65

(client-specific) weighting strategies in FedAvg agglomeration, showing the superior performance of66

word error rate (WER)-based weighting compared to loss-based weighting. Similar trends of results67

have been observed on LibriSpeech [35], as reported in [6]. [32] investigated the use of a global68

model initialized as in [9] or based on a pretrained self-supervised model (Wav2Vec 2.0 [2]), using69

FL to adapt to the TEDLIUM-3 dataset [15]. While FL did not improve the WER of the former70

model, the latter has demonstrated effective. In the following, we show that our proposed EE model71

allows applying FL on TEDLIUM-3 without the need of a large self-supervised pretrained model72

(pretraining is on LibriSpeech).73

2.1 Federated learning for Heterogeneous models74

Most FL approaches assume that all clients are "homogeneous" in their computational assets. How-75

ever, this hypothesis cannot be applied in real scenarios, where devices may have severe limitations76

in their memory, computation capabilities, and power consumption and are characterized by a77

dynamic usage of the resources. Therefore, FL frameworks require managing multiple different78

"heterogeneous" architectures, under the guidance of personalized tasks and local resource constricts79

[42].80

Previous works have addressed the client heterogeneity by employing multiple different architectures81

all sharing a common part. In particular: a) mixed model architectures [29], where local models82

share only a subset of parameters with the central model, b) knowledge distillation [33, 26] at the83

client side to preserve the global model parameters while learning local information, c) the usage of a84

contrastive loss [25] to decrease a distance metric between central and local models, and d) federated85

ensemble knowledge transfer (Fed-ET) [5], that uses a consensus distillation, derived from clients, to86

train a large model on the server (also in this case networks share some common layers).87

With respect to the previous works, we propose using EE architectures that introduce intermediate88

exit branches [43, 37] to the network (see Fig. 1(b)): the input is processed by a subset of the layers89

of the neural network, resulting in multiple scaled versions of the same architectures. In section 3.190

we show that the EE architecture allows to agglomerate coherently the local model parameters at91

the server side and to further extract from the global model the suitable sub-models to be sent to the92

connected clients.93
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Figure 2: Illustration of our proposed approach for agglomerating heterogeneous models.

3 Proposed Approach94

The idea of FL is to train multiple versions of a neural model on the client side and then agglomerate95

them on the server side. Let us assume that C clients are available at round τ , and each client96

c ∈ {1, ..., C} observes its own training set Bc. At the beginning of each round, clients receive97

the most recently trained model stored on the central server w−
c (τ) = ws(τ − 1). Note that an98

important requirement here is that all clients can accommodate the same architecture. Each model is99

updated using the local dataset w+
c (τ)← f (w−

c (τ);L(Bc)), where L(Bc) is the loss computed on100

the dataset of client c and f(·) is a weight update strategy (i.e. SGD, ADAM, etc.). Local models are101

in turn used to update the central model ws(τ).102

Recently, several works have been published to find the optimal strategy to agglomerate clients’ model103

parameters (weights) [5, 38, 31] or to improve the type and amount of information shared between104

the clients and the server [24]. Federated averaging strategy (FedAvg) [19], which is based on105

FedSGD [7], is one of the most common strategies as it agglomerates the models by simple weighted106

averaging: ws(τ) =
1
C

∑C
c=1 ηc(τ)w

+
c (τ), where the weights ηc(τ) (such that

∑C
c=1 ηc(τ) = 1)107

are estimates of the client confidence, eventually related to the size of the dataset Bc, the loss L(Bc)108

or the accuracy on a local or centralized development set.109

One of the limitations of FedAvg is the need to use SGD on the clients in order to allow an effective110

averaging of the different models, affecting the overall convergence. FedAdam [39] is an alternative111

agglomeration strategy that updates the weights using one-step adaptive gradient optimization [44].112

3.1 Federated Learning with Early-Exit models113

In the presence of devices with different processing capabilities, using a single model w is not feasible.114

As mentioned above, current approaches employ U different networks wu, u = [1, . . . , U ] with115

different computation requirements which are all maintained on the centralized server. This solution116

requires managing multiple different models, with varying performance, and adopting articulated117

strategies for agglomerating them.118

As mentioned in section 2.1 an interesting solution is offered by EE architectures. Let us assume119

that model ws is split in M subnets ws,1,ws,2, . . . ,ws,M (not necessarily of the same type) each of120

them equipped with an exit layer (producing hypothesis ŷ1, . . . , ŷM ). The overall model is trained121

by optimizing the joint objective LEE(ŷ
1, . . . , ŷM ,y) =

∑
m L(ŷm,y) =

∑
m Lm(B), where122

L(ŷm,y) and ym are the loss and the prediction of the m-th, while y is the ground-truth label.123

It is worth noting that besides reducing the actual number of models, EE allows applying standard124

agglomeration strategies such as FedAvg and FedAdam. More in detail, each client c is equipped125

with a model wc,i, which includes all sub-nets up to i ∈ [1,M ]. According to the notation above126

the weight updates are done as w+
c,i(τ) ← f

(
w−

c,i(τ);
∑i

m=1 Lm(Bc)
)

. Then the updated local127

weights are sent to the server where they are averaged according to all sub-nets. Fig.2 shows the128

graphical representation of the proposed approach in the case of only two clients. Note that while the129

subnet ws,1 is present in all clients, higher subnets (ws,M ) are less frequent and may be not updated.130

Nevertheless, if C ≫M it is likely that all subnets are present in some clients.131
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Table 1: WER of the model pretrained on Librispeech and TEDLIUM-3 tested on both Librispeech
and TEDLIUM-3. The third column reports the heterogeneous FL performance using FedAdam and
freezing the convolutional layers.

Train set Librispeech-960 FedAdam - Hetero -freeze TED-LIUM

Test set Libri-Test-Clean TED-LIUM-Test TED-LIUM-Test @ 1400 rounds TED-LIUM-Test (upper-bound)

exit 1 24.10 50.94 45.40 43.8

exit 2 11.78 34.50 29.93 23.4

exit 3 6.91 29.58 24.31 18.0

exit 4 6.28 28.61 23..43 16.1

exit 5 7.30 28.79 23.36 14.9

exit 6 5.34 27.35 21.83 14.6

4 Experimental Setup132

We evaluate our proposed approach using the TEDLIUM-3 corpus [15] that contains TED talks with133

a total amount of 452 hours of speech data in English from about 2351 speakers. As previously134

mentioned and as observed in previous studies [32], training an ASR model from scratch in a federated135

fashion is unfeasible. Therefore, we pretrain our model using the whole training set (960 hours)136

of Librispeech. Following the best practice in literature and in an attempt to make the scenario as137

realistic as possible, the TEDLIUM training set is split such that each client sees data of a single138

speaker (this way mimicking personal devices). Performance is measured in terms of WER on the139

test set for each of the M exits of the resulting agglomerated model. Note that, differently from the140

current literature, we adapt the initial model, trained on LibriSpeech, to a new domain ("TEDLIUM"),141

instead of applying FL to the same domain ("LibriSpeech"). For ASR, we use the EE architecture142

depicted in Fig. 1(b): it consists of a stack of conformer layers with intermediate linear decoders143

every other conformer.2 Further details are given in Sec. A.1.144

We implement the FL framework using the Flower toolkit [3]. We deploy 2351 clients (one for each145

speaker in the training set). In each round, 10% of all available clients are randomly instantiated146

and used to train the model locally. Local training implements SGD for 5 epochs using a learning147

rate equal to 0.01. Models are centrally agglomerated using either FedAvg or FedAdam. Finally, we148

consider a classic scenario where homogeneous models are used (i.e. the full early-exit architecture)149

as well as the case where models are heterogeneous. In the latter, the number of exits available at150

each client randomly varies across clients and rounds with a uniform probability distribution. Finally,151

in order to improve the model convergence, we also experiment with freezing the convolutional front152

end of the pretrained model, training only the encoder-decoder part. Our code is publicly available3.153

4.1 Experimental Results154

Table 1 reports the performance of our approach considering heterogeneous architectures. The first155

column reports the performance of our model pretrained and tested on Librispeech confirming that it is156

a solid baseline. The second column reports the performance of the pretrained model on TEDLIUM-3:157

this is the starting point for our FL experiment. The third column reports the WER obtained with158

1400 FL rounds using heterogeneous architectures with FedAdam and freezing the feature extractor,159

while the last column reports the upper-bound on TEDLIUM-3 when applying central training. The160

first interesting result is that even if heterogeneous devices are used (i.e. the whole architecture is not161

available at all clients) agglomerating the models with a standard FL approach is viable: note that162

WERs are considerably better than those of the initial model at all exits.163

Fig. 3 compares the WER obtained with heterogeneous and homogeneous architectures as a function164

of the FL rounds for 3 exits: 1,3 and 6. Note that the performance in both cases are very similar using165

either FedAvg (lines orange and black) or FedAdam (lines green and red) for all exits. This further166

confirms the efficacy of EE models in this scenario. The figure also confirms that both FedAdam and167

freezing the convolutional layers noticeably speed up the convergence of the model with respect to168

FedAvg. As a matter of fact, the convolutional front-end is in charge of extracting robust features for169

speech recognition, so it makes sense that it does not need to be adapted to a new speech domain.170

2https://github.com/augustgw/early-exit-transformer
3https://github.com/mnabihali/ASR-FL
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Figure 3: WER achieved with homogeneous and heterogeneous models, using FedAvg and FedAdam
with freezing the convolutional front-end. Three different exits are reported.

5 Conclusions171

In this paper, we have presented an investigation on FL for ASR in the presence of heterogeneous172

clients using early-exit architectures. The experimental results obtained on popular benchmarks173

proved the efficacy of the EE models in this scenario. Differently from other works in the literature,174

we employ a pre trained EE model from out-of-domain data. We demonstrate that centralized training175

is not crucial for model convergence. Finally, we observed significant performance improvements176

when freezing the convolutional layers of the pretrained model.177
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A Supplementary Material282

A.1 ASR model283

For the ASR model, we use the early-exit architecture shown in Fig. 1(b). The network takes as284

input 80 Mel Frequency Cepstral Coefficients (MFCCs). This MFCC sequence is passed through a285

series of a stack of N = 12 conformer layers with M = 6 intermediate linear decoders (one every 2286

conformer layers, M = N
2 ). The optimal sequence of labels in each decoder is chosen by means of287

the CTC algorithm [11, 12]. The model uses a byte pair encoding (BPE) based tokenizer [41] with288

256 tokens. Table 2 summarizes the main hyperparameters for the model.289
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Table 2: Hyperparameters for the early-exit model architecture shown in Fig.1(b).

Params Encoder Attention
dim. # of heads Feed-forward

dim Decoder Input Loss Output
units

LM
scoring

31 M 12-layers 256 8 2048 Linear 80-MFCC CTC BPE (256) ✗
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Figure 4: WER achieved by different FL strategies on TEDLIUM 3. The figure shows results
with homogeneous and heterogeneous models, using FedAvg and FedAdam, as well as freezing the
convolutional front-end.

A.2 Further experimental results290

Figure 4 complements the results reported above with the performance of FedAdam without freezing291

and considering all the exits. Note that both FedAdam and freezing the convolutional layers contribute292

to improving the convergence of the model.293
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Figure 5: WER using FedAvg strategy with and without a central training stage.
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A.3 On the use of central training294

We also experiment with centrally training the agglomerated model using the TEDLIUM 3 devel-295

opment set. This is a common practice in literature when a pretrained model is available and FL296

is applied on data from the same domain [9, 16]. Typically a part of the training set is held out for297

the central training whose main role is to avoid the model diverges. In our scenario, we used the298

development set of TEDLIUM-3 as central training: it includes 8 speakers for a total of 1.6 hours.299

After agglomerating the local models we run 15 epochs of SGD on the development set. Fig. 5 shows300

the results. Note that for the last two exits the use of central training does not bring any improvement301

over a basic FedAvg method. Interestingly, for earlier exits the use of a small set for central training302

is instead detrimental. The reason behind this behavior is that, the TEDLIUM-3 development set303

has not enough samples to train the server large model. Hence, the server model tends to overfit the304

development set.305
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