
Sensor-level Maps with the Kernel Two-Sample Test

Abstract—Traditional approaches to create sensor-level maps
from magnetoencephalographic (MEG) data rely on mass-
univariate methods. In order to overcome some limitations of
univariate approaches, multivariate approaches have been widely
investigated, mostly based on the paradigm of classification.
Recently a multivariate two-sample test called kernel two-sample
test (KTST) has been proposed as an alternative to classification-
based methods. Unfortunately the KTST lacks methods for
neuroscientific interpretation of its result, e.g. in terms of sensor-
level maps. In this work, we address this issue and we propose a
cluster-based permutation kernel two-sample test (CBPKTST) to
create sensor-level maps. Moreover we propose a procedure that
massively reduces the computation so that maps can be produced
in minutes. We report preliminary experiments on MEG data in
which we show that the proposed procedure has much greater
sensitivity than the traditional cluster-based permutation t-test.

Index Terms—brain decoding ; two-sample test ; MEG ; brain
maps

I. INTRODUCTION

Multivariate pattern analysis (MVPA) [1] is often presented
as an alternative to mass-univariate pattern analysis [2] in
electroencephalographic (EEG) and magnetoencephalographic
(MEG) data analysis tasks from neuroimaging experiments. In
these experiments the neural correlates of different stimuli are
studied to understand how a given mental process of interest
occurs in the brain.

Mass-univariate analysis is based on performing multiple
tests, one for each univariate unit of the data, for example
one t-test for each sensor value at each timepoint. The high
spatial and temporal granularity of the tests allows to interpret
the results of the analysis in many useful ways, for example
as sensor-level brain maps and across time. On the other side,
univariate tests experience low sensitivity when the effects are
distributed across space and time. Notice that when a joint
inference has to be made over all univariate tests, e.g. when
creating a map illustrating which sensors show significant
differential activity across different stimuli, the univariate
tests need a further layer of analysis to address the issue
of multiple comparisons. The most common correction for
multiple comparisons are [2]: the 1) Bonferroni correction,
which assumes that all tests are statistically independent from
each other, the 2) cluster-based correction, which assumes that
effects occurs in clusters of units, and the 3) false discovery
rate (FDR) correction.

Multivariate approaches frequently relies on the statistical
learning framework where a classifier is built to predict the
stimulus provided to the subject from concurrent MEG data.
From the ability to accurately predict future stimuli, the
classifier answers the question whether there is evidence about
the mental process of interest within neural correlates. By
analysing how the classifier uses the data, it is often possible to

create brain maps. This approach has been recently criticised
when compared to generative approaches [1], and there is no
final consensus on how to create brain maps from classifiers.

Recently a different multivariate approach, called kernel
two-sample test (KTST), has been proposed for the analysis
of MEG data [3]. This approach recasts the multivariate
discrimination problem as a high-dimensional two-sample test.
The idea is to directly test whether the neural correlates of
different stimuli are different. This is conceptually simpler
than training a classifier and then testing its ability to correctly
predict. In [3], it is empirically shown that the KTST and
classifiers provide equivalent results about the discrimination
problem. A major limitation for the adoption of the KTST
in neuroimaging data analysis is that up to now, to the best
of our knowledge, no solutions have been proposed to allow
deeper interpretation of the results, for example in terms of
brain maps.

In this work, we tackle the interpretability issue of the
KTST and we propose a procedure to create sensor-level
brain maps from MEG data. The proposed solution is based
on conducting a KTST at each sensor using the timeseries
of that sensor as multidimensional description of each trial.
In order to cope with the multiple comparisons problem, a
second level consisting of a cluster-based permutation test
is used to compute the actual significance of the results.
For these reasons, the proposed method is called cluster-
based permutation kernel two-sample test (CBPKTST). Since
the KTST is a permutation-based test1, the straightforward
implementation of the proposed solution would require a
global permutation test of all the permutation tests conducted
at sensor-level, which would require months of computation
for the data of a typical MEG experiment. For this reason,
another key contribution of this work is an algorithm to greatly
reduce the computational burden by reusing the permutations
computed at the sensor level as permutations for the global
level. The proposed algorithm provides the same expected
solution of the straightforward implementation and not just an
approximation. The computational complexity of the proposed
procedure is that of conducting one single KTST at each
sensor. With the proposed approach, a sensor-level map from
a typical MEG experiment can be computed in approximately
25 minutes on a standard computer. A final contribution of this
work is to show preliminary empirical evidence of the greatly
enhanced sensitivity of the proposed method with respect to
the traditional cluster-based permutation t-test.

In the remaining part of the paper first, in Section II,
we formally describe the proposed approach together with

1We are aware that some approximated versions of the KTST do not requite
a permutation-based approach.



the cluster-based permutation t-test. Then, in Section III, we
provide preliminary empirical evidence on real MEG data that
the CBPKTST maps can be produced in a reasonable amount
of time and that they show much greater sensitivity than the
cluster-based permutation t-test. The results are discussed in
Section IV together with some perspectives on future work.

II. METHODS

In this section, we assume that the brain activity is repre-
sented only in the time domain, for simplicity. Additionally
we assume that the stimulation protocol presents just two
categories of stimulus, i.e. that the neuroscientific study is
focused on a contrast of two conditions.

A. Notation

Let X ∈ RC×Q, where C is the number of channels and
Q the number of timepoints, be the multivariate timeseries
describing the MEG brain activity recorded when a given
stimulus, represented by the binary variable y ∈ Y = {0, 1},
is presented to the subject. Let x be a realisation of X , then a
pair (x, y) is called trial. Multiple trials are collected during
and experiment and let A = {xi|yi = 0, i = 1 . . .m} and
B = {xi|yi = 1, i = 1 . . . n} be two samples of trials, one
for each category of stimulus. A ∪ B is the dataset recorded
during the MEG experiment. Typical values for the quantities
expressed so far, after a standard preprocessing procedure, (see
Section III) are: C ≈ 300, Q ≈ 100 and N = m+ n ≈ 500.

B. Cluster-based Permutation Test

The cluster-based permutation test [2], [4] is based on the
assumption that the effect, when present, appears in clusters of
neighbouring units. Under our assumptions, a unit is a sensor
at a given timepoint. Once it is defined how two units are
considered neighbours, the neighbouring units exhibiting a sig-
nificant activity are clustered and then a cluster-level statistic is
computed. The most well-known cluster-based statistic is the
cluster-level mass, which is defined as the sum of the unit-
level statistics in each cluster. The procedure to compute the
clusters and the cluster-statistic is (adapted from [2]):

1) Compute the value of test statistic T at each unit and
their related p-value.

2) Keep only the units that are significant, i.e. those where
p-value < θ.

3) Cluster the neighbouring units.
4) Compute the cluster-level statistic for each cluster by

summing the statistic value of each unit in the cluster:
Tcluster =

∑
i∈cluster Ti.

The cluster-level statistic of each cluster, Tcluster, is then
compared against its null distribution to get its p-value, i.e.
the significance level of the cluster. The null distribution of
the cluster-level mass is usually computed as the distribution
of the max cluster-level mass of all clusters under the null-
hypothesis [2]. In practical cases it is not possible to explicitly
derive this null distribution, so it is estimated through a resam-
pling approach, usually by drawing M random permutations
of {y}i=1..N and, for each permutation, by computing the
resulting clusters and cluster-based statistic. The maximum

value of the cluster-based statistic over all clusters at each
permutations is stored and the set of maximum values creates
the estimated null distribution.

In the case of the cluster-based permutation t-test, the t-
statistic is computed for each timepoint at each sensor together
with the related p-value through the Student’s t-distribution.
Units showing significant departure from the null-hypothesis
are clustered as explained in the previous procedure and the
null distribution of Tcluster is assessed through permutations.
The significance of the clusters computed on the original (non
permuted) data is assessed against this null distribution and
then sensor-level maps can be produced across time.

C. The Kernel Two-Sample Test

In a two-sample test problem, two samples A and B are
drawn independently and identically distributed (i.i.d) from
their respective distributions PA and PB . The problem is
to test the hypothesis H0 : PA = PB , based only on the
information from the two samples. If H0 is true, then the
two set of trials are expected to be indistinguishable. In
the decoding context, this means that the neuroimaging data,
recorded during the presentation of the two kinds of stimuli, do
not present systematic differences. In [5] the maximum mean
discrepancy (MMD) is adopted as a distance between two
distributions:

MMD[G, PA, PB ] := sup
g∈G

(ExA∼PA
[g(xA)]−ExB∼PB

[g(xB)]).

(1)
For a specific family of kernel functions, i.e. the characteristic
kernels 2, a kernel-based expression of MMD2 can be obtained
(see [5], [6] for further details):

MMD2 = E[k(XA, X
′
A)]−2E[k(XA, XB)]+E[k(XB , X

′
B)].
(2)

Given two samples A and B, an unbiased estimate of MMD2

is:

MMD2
u =

1

m(m− 1)

∑
i 6=j

k(xAi , x
A
j )−

2

mn

∑
i,j

k(xAi , x
B
j )+

+
1

n(n− 1)

∑
i 6=j

k(xBi , x
B
j )

(3)

where A = {xA1 , . . . , xAm} and B = {xB1 , . . . , xBn }. In [6], this
estimate is proved to converge exponentially fast to the true
value.

MMD2
u is a multivariate test statistic that can be used

for a two-sample test even on high-dimensional data because
of the kernel function. The null-distribution of MMD2

u is
problem-specific and the usual approach to its estimation is by
resampling techniques. By means of M random permutations
of the assignment of the trials to A and B, it is possible to
create a large sample of MMD2

u values under H0 and thus to
estimate the p-value of MMD2

u for the actual dataset at hand.

2The well-known Gaussian/RBF and Laplacian kernels are characteristic
kernels.



In this work, we propose to conduct a KTST at each sensor
by using the timecourse of each trial at that sensor as its local
multidimensional description. In this way, at each sensor, the
MMD2

u distance aims at quantifying how much the neural
correlates of the two stimuli systematically differ.

Notice that the value of MMD (and of MMD2
u) is not

absolute, i.e. we cannot compare the MMD values from two
different problems because their underlying null distributions
may be different. Thus the MMD value is problem specific
and for this reason, in our case, it is necessary to compute the
null distribution of MMD2

u at each sensor.

D. Scalable Cluster-based Permutation KTST

In this work, we propose a cluster-based permutation test
based on the MMD2

u statistic . This approach is different
from the traditional solution based on the t-test because it
is multivariate: the new units are just the sensors because
the time dimension is used as the multivariate description of
each trial. We denote the proposed approach as cluster-based
permutation kernel two-sample test (CBPKTST). In order to
carry out a CBPKTST, two technical problems need to be
solved: the inhomogeneity between MMD2

u values at different
sensors and the excessively high computational complexity. In
the following, we describe the two problems and our proposed
solutions.

1) Inhomogeneity of MMD2
u across sensors: When we

need to compute cluster-level statistics, we need to sum
homogeneous unit-level statistics in order to obtain a mean-
ingful quantity. Since the distribution of MMD2

u values is, in
general, sensor-specific, then we need to transform the sensor-
specific MMD2

u values into a homogeneous quantity. For each
sensor/unit, we propose to use T = 1 − p-value, where the
p-value is that of MMD2

u obtained through the permutation
test. This is motivated by the fact that p-values - and thus
1−p-values - are, by definition, uniformly distributed under the
null hypothesis. We prefer 1− p-value to the p-value because
we need a quantity that increases when the distance between
the trials across the two categories increases.

2) Scalability: Ideally, performing a cluster-based permuta-
tion KTST is prohibitively expensive from the computational
point of view. In order to compute the null distribution of the
cluster-based statistic, it is necessary to compute the whole set
of KTSTs, one for each sensor, for each permutation of the
cluster-based statistic. This leads to M2 permutations, each
requiring the computation of C evaluations of MMD2

u, an
amount which is not feasible in practice (see Section III for
actual numbers from a typical MEG experiment).

In this work, we propose a major shortcut in the computa-
tions which consists of re-using the MMD2

u values computed
during the permutations at the unit-level. In essence, when
computing KTST at each sensor, by imposing the exact
same permutation sensor-wise, there is no difference between
the sensor-level permuted values of the test statistic T and
the values necessary to compute the cluster-level statistic,
so they can be used at both levels. The proposed solution
requires to store the intermediate results during the unit-level
permutations and for this reason it trades-off the computational

complexity with increased memory requirements. The memory
required is of C ×M floating-point values, which, for typical
MEG experiments, is in the order of tens of megabytes (see
Section III).

Here follows the detailed description of the proposed CBP-
KTST. Given θ, i.e. the threshold for rejecting the null-
hypothesis for the test at each sensor (e.g. θ = 0.05),

1) For each sensor c = 1 . . . C, compute the three
kernel matrices KA

c = {k(xAc,i, xAc,j)}i,j∈1...m,
KB
c = {k(xBc,i, xBc,j)}i,j∈1...n, KAB =
{k(xAc,i, xBc,j)}i∈1...m,j∈1...n.

2) Compute MMD2
u(c) for each sensor following Eq.3.

3) Do a permutation test for each sensor and store each per-
muted value of MMD2

u in a C×M matrix, MMD2
u[c, l],

c = 1 . . . C, l = 1 . . .M 3. Notice that the exact same
permutation has to be done across all sensors at each
iteration.

4) Compute the test statistic T = 1 − p-value for each
MMD2

u[c, l], by sorting the rows of the matrix.
5) For each permutation:

a) Compute the spatial clusters in sensor space among
the sensors which have a sufficiently low p-value,
i.e. p-value ≤ θ.

b) Compute and store the resulting max cluster-
statistic T = maxγ∈clusters

∑
sensor∈γ Tsensor.

The computational bottleneck of this procedure is Step 3,
which requires M × C evaluations of Equation 3, i.e. M ×
C×N2 sums. Notice that each evaluation is independent and
thus this step can be easily split into parallel computations.

A free / open source reference implementation of the
proposed algorithm is provided in Python at https://github.
com/***ANONYMISED***.

III. EXPERIMENTS

We compared the proposed CBPKTST described in Sec-
tion II-D against the cluster-based t-test described in Sec-
tion II-B on data from a real MEG experiment that we
collected for a forthcoming study. The stimulation protocol
comprised the following visual stimuli: Face, House and Body,
with a balanced design. The visual stimuli were shown either
on the left or on the right side of the screen while the subject
stared at a fixation cross. Moreover the face stimulus was half
of the time a male face and the other half a female face.
Five different two-sample problems were studied: left vs. right,
face vs. house, face vs. body, house vs. body and female vs.
male. The resulting sensor maps, where significant clusters
were detected, are presented in Figure 1. For lack of space,
the results we present here are about only one subject of the
study.

The MEG data were collected with an Elekta Neuromag
scanner comprising 102+102 gradiometers and 102 magne-
tometers. Then 306 timeseries, each of 3s and sampled at

3In order to compute the permuted values of MMD2
u we just need to

rearrange rows and columns of KA
c , KB

c and KAB
c , so no further evaluations

of k(·, ·) are necessary.

https://github.com/***ANONYMISED***
https://github.com/***ANONYMISED***


1KHz, were recorded for each of the 677 trials of the ex-
periment. The pre-processing of the recorded signal was: 1Hz
high-pass filter, baseline removal (baseline: average signal in
[−1s, 0s]), downsampling to 100Hz, and trimming each trial to
[0s, 1s]. Gradiometers were merged in pairs and magnetome-
ter data was removed. For each trial, the 102 preprocessed
timeseries were concatenated into a single vector of 10200
values. For each of the five two-sample problems, a dataset
was created keeping just the trial relevant for each problem.
Each dataset was then z-scored with the grand mean and grand
standard deviation.

In order to define proximity between sensors and between
timepoints, as required by the cluster-based assumption of both
tests, we followed the indications in [2]: 5.4cm between sen-
sors and temporal distance of 1 timepoint. For the CBPKTST
we adopted the Gaussian kernel with the σ2 estimated as the
squared median distance between al pairs of trials.

The threshold for sensor-level and cluster-level tests was
set to θ = 0.05. The number of permutations was set to M =
10000. For each two-sample problem the time to compute the
cluster-based permutation t-test was ≈ 10 minutes and for the
CBPKTST it required ≈ 25 minutes on a quad-core 2.4GHz
Intel CPU. The memory requirement for CBPKTST was ≈
40Mb. As a comparison, the estimated time required to run
the straightforward implementation of CBPKTST would have
been M times more, i.e. 6 months.

Additionally, we note the same dataset was used in
[ANONYMISED] and showed that for the first 4 of the 5
contrasts, i.e. left vs. right, face vs. house, face vs. body
and house vs. body, accurate classification was achieved.
These previous results support the claim that differential brain
activity is present in the data and that evidence of that should
be detected also in sensor-level maps.

IV. DISCUSSION & CONCLUSION

In this work, we proposed a multivariate procedure for
creating sensor-level maps from single-subject MEG data of
neuroimaging experiments. The proposed procedure is based
on the KTST applied at each sensor and a further layer of
cluster-based permutation test to account for spatial correla-
tions and multiple testing. The proposed procedure can be seen
as a multivariate extension of the cluster-based permutation t-
test, which is univariate.

The proposed efficient implementation of the CBPKTST
reduces the cost of the computation by several order of
magnitude with respect to straightforward implementation, i.e.
from months to minutes for data of a typical MEG experiment.

Preliminary results on MEG data shows that the proposed
approach confirms the results in [ANONYMISED] and finds
significant clusters in occipital, parietal and temporal areas (see
Table 1). On the contrary, the cluster-based permutation t-test
is not able to find any significant cluster of activity within the
same data, for each contrast. This evidence support the claim
that the sensitivity of the proposed method is much superior
than that of the cluster-based permutation t-test.

The proposed approach is able to provide means for inter-
pretation of the spatial patterns of the mental activity asso-
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Fig. 1. Sensor-level (gradiometers) brain maps obtained with the CBPKTST
(M = 10000, θ = 0.05). The color indicates the homogeneous statistic at
sensor-level. The contrast is indicated on top of each map. Only significant
clusters are shown, in red. The contrast female vs male had no significant
clusters so it is not reported. The cluster-based permutation t-test had no
significant clusters on all contrasts, so the related maps are not reported.

ciated to the contrasts of interest. Conversely, by exploiting
the multivariate aspect of the signal in time, there is no
interpretation over the time axis. For this reason, future work
will address the use of MMD as a multivariate distance for
other multivariate representations of MEG data.
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